
Conceptual Connections of Circularity
and Category Theory

Larry Moss
Indiana University, Bloomington

ESSLLI 2012, Opole

1/64

The conceptual comparison chart
Filling out the details is my goal for coalgebra

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
least fixed point greatest fixed point
congruence relation bisimulation equivalence rel’n
equational logic modal logic
recursion: map out of corecursion: map into
an initial algebra a final coalgebra
Foundation Axiom Anti-Foundation Axiom
iterative conception of set coiterative conception of set
useful in syntax useful in semantics
bottom-up top-down

2/64

My goals for this part of the course

At this point, we have seen examples of circularly-defined sets
such as

the set of streams
the set of infinite trees

One of the main goals of the course is to present a theory of
how these “solution spaces” work.
The theory is based on the concept of a coalgebra for a functor
and on similar notions from category theory.

Today’s lecture includes an introduction to the main concepts
which we’ll need.

But it is not a systematic presentation of the subject.

3/64

Review: a stream system

x ≈ 〈0, y〉
y ≈ 〈1, z〉
z ≈ 〈2, x〉

I want to construe such a system as a function
from its set of variables.

So let X = {x , y , z}.

We regard the system as a function e : X → {0,1,2} × N.
(e stands for “equation”.)

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

4/64

Review: a stream system

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

Let’s write {0,1,2}∞ for the set of streams on {0,1,2}.

The solution to our system e is a function e† : X → {0,1,2}∞.
Explicitly,

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

Now what we want to do is to talk
in an abstract way what the relation between
e and e†.

And what we say should hold for all systems.
5/64

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

Here is what we want to say:

X
e //

e†
��

{0,1,2} × X

id{0,1,2}×e†

��
{0,1,2}∞

〈hd,tail〉
// {0,1,2} × {0,1,2}∞

6/64

But let’s go slower

A commutative diagram is something that looks like

A
f //

h
��

B
g

��
C k

// D

Most of the time these are going to be sets and functions.
(But we’ll also need to be more general.)

And in that case, to say the diagram “commutes” means that
if we start with an element a ∈ A and “walk around” both ways,
we get the same thing.

7/64

But let’s go slower

To say that the diagram

A
f //

h
��

B
g

��
C k

// D

commutes means that for all a ∈ A , g(f(a)) = k (h(a)).
More abstractly, g · f = k · h.

7/64

More on our diagram

I’m in the middle of explaining the diagram

X
e //

e†
��

{0,1,2} × X

id{0,1,2}×e†

��
{0,1,2}∞

〈hd,tail〉
// {0,1,2} × {0,1,2}∞

The hard part is the function id0,1,2 × e†.

For this, I will need some general notation on products.

8/64

Product functions

If f : C → A and g : C → B, then we get a new function

〈f ,g〉 : C → A × B .

It is defined by

〈f ,g〉(c) = (f(c),g(c))

9/64

Product functions

If f : C → A and g : C → B, then we get a new function

〈f ,g〉 : C → A × B .

It is defined by

〈f ,g〉(c) = (f(c),g(c))

The product set A × B itself comes with projections

A A × B
πAoo πB // B

And then the diagram below commutes:

C

f

||yyyyyyyyyyyy

〈f ,g〉

��

g

""EEEEEEEEEEEE

A A × BπA
oo

πB
// B

9/64

More on product functions

If f : C → A and g : D → B, then we get a new function

f × g : C × D → A × B .

It is defined by

(f × g)(c,d) = (f(c),g(d))

Note the difference between the notations 〈f ,g〉 and f × g.

They must be related, but how?

10/64

More on product functions
If f : C → A and g : D → B, then we get a new function

f × g : C × D → A × B .

It is defined by

(f × g)(c,d) = (f(c),g(d))

Note the difference between the notations 〈f ,g〉 and f × g.

They must be related, but how?

The f × g notation is a special case of pairing:

C × D

f ·πC

||yyyyyyyyyyyy

〈f ·πC ,g·πD 〉

��

g·πD

""EEEEEEEEEEEE

A A × BπA
oo

πB
// B

So that
f × g = 〈f · πC ,g · πD〉.

10/64

More on our diagram

Let’s get back to the diagram

X
e //

e†
��

{0,1,2} × X

id{0,1,2}×e†

��
{0,1,2}∞

〈hd,tail〉
// {0,1,2} × {0,1,2}∞

Now we know about the function id0,1,2 × e†.
id0,1,2 is the identity function on {0,1,2}.

The definitions that we have seen tell us
that for i ∈ {0,1,2} and w ∈ X ,

(id0,1,2 × e†)(i,w) = (i,e†(w)).

11/64

frame[shrink]
Let’s get back to the diagram

X
e //

e†
��

{0,1,2} × X

id{0,1,2}×e†

��
{0,1,2}∞

〈hd,tail〉
// {0,1,2} × {0,1,2}∞

Recall that X = {x , y , z} and that

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

We’ll check that the diagram really does commute,

Let’s start with y, for example, as a “random” element of X .

Across the top, we get 〈1, z〉.
Then going down, we get 〈1, (2,0,1,2,0,1 . . .)〉.

11/64

But starting again with y and going down, we get
(1,2,0,1,2,0, . . .).
And the head of this stream is 1; the tail is (2,0,1,2, . . .).

So it really does commute!

12/64

Reading the diagram

In fact, we can verbalize what it means to say that our diagram

X
e //

e†
��

{0,1,2} × X

id{0,1,2}×e†

��
{0,1,2}∞

〈hd,tail〉
// {0,1,2} × {0,1,2}∞

commutes.

For all w ∈ X , if e(w) = 〈i, v〉, then
e†(w) is a stream whose head is i, and whose tail is
e†(v).

12/64

From streams to sets

On Tuedsay, we also saw decorations of graphs.

I want to change this point a little, and talk about
systems of equations for sets.

(These are practically the same thing.)

Suppose we want sets x, y, and z so that

x = {y , z}
y = ∅

z = {x , z}

(This is impossible with ordinary sets, but possible with AFA.)

13/64

From streams to sets

Again, we have
x = {y , z}
y = ∅

z = {x , z}

Let X = {x , y , z}.

We construe our system as a function e : X → P(X).

Then what we want is a function e† : X → Sets
with a certain property that we now want to spell out.

First, in words:

For all w ∈ X , e†(w) is the set of
values e†(v), where v ranges over e(w).

14/64

From streams to sets

For all w ∈ X , e†(w) is the set of
values e†(v), where v ranges over e(w).

X
e //

e† &&MMMMMMMMMMMM PX

Pe†wwppppppppppp

Sets

Here Pe†(w) = {e†(v) : v ∈ w}.

The point is that the commutativity of this diagram expresses
what we want.

15/64

From streams to sets

To make the diagram for sets look more like the one for
streams,
we need to do a little more.

If f : A → B, we get a new function Pf : PA → PB
defined as follows. For a subset s ⊆ A ,

Pf(s) = {f(a) : a ∈ s}.

(This is also written f [s].)

Further, let’s write V for the class of all sets,
and PV for the set of subsets of V .

Now every set is a set of sets, and vice-versa.
So PV = V .

16/64

From streams to sets
To make the diagram for sets look more like the one for
streams,
we need to do a little more.

If f : A → B, we get a new function Pf : PA → PB
defined as follows. For a subset s ⊆ A ,

Pf(s) = {f(a) : a ∈ s}.

(This is also written f [s].)

Further, let’s write V for the class of all sets,
and PV for the set of subsets of V .

Now every set is a set of sets, and vice-versa.
So PV = V .

X
e //

e†
��

PX

Pe†
��

V id
// PV

16/64

From streams to sets
To make the diagram for sets look more like the one for
streams,
we need to do a little more.

If f : A → B, we get a new function Pf : PA → PB
defined as follows. For a subset s ⊆ A ,

Pf(s) = {f(a) : a ∈ s}.

(This is also written f [s].)

Further, let’s write V for the class of all sets,
and PV for the set of subsets of V .

Now every set is a set of sets, and vice-versa.
So PV = V .

X
e //

e†
��

PX

Pe†
��

V id
// PV

16/64

The raw and the cooked

The reason for all these diagrams is that
they enable us see the same kind of pattern
coming up again and again.
We want an overall language to talk about it.

We have seen:

streams e : X → A × X
sets e : X → PX

Let’s think of A × X and PX as cooked versions of X .

So the kind of systems that we have seen are

functions from a raw object to a cooked version of it

Later we’ll call this a coalgebra.

17/64

Deterministic automata

Here is a deterministic automaton

sa

t u
c

a,b

a,b c

b c

The set of states is S = {s, t ,u}.
We have one accepting state (in green).
The input alphabet is A = {a,b , c}.

We have a transition function t : S × A → S,
and also an output function o : S → 2.
(Here 2 = {0,1}, and o(s) = 1 iff s is accepting.)

18/64

Automata: the language of a state

sa

t u
c

a,b

a,b c

b c

For all states s, the empty word ε is accepted at s
if acc(s) = 1.

If w is a word and a an alphabet symbol, then

aw is accepted at s iff w is accepted at t(s,a)

19/64

Automata: the cooked form

So far a deterministic automaton on {a,b , c} is

(S , s,acc),

where S is a set,
s : S × A → S ,

and
acc : S → 2.

20/64

Automata: the cooked form
So far a deterministic automaton on {a,b , c} is

(S , s,acc),

where S is a set,
s : S × A → S ,

and
acc : S → 2.

We can curry s to get ŝ : S → SA .

We also use pairing

〈̂s × acc〉 : S → 2 × SA .

To match our earlier usage, we write e for 〈̂s × acc〉.

We have another instance of

raw→ cooked

namely
e : S → 2 × SA .

20/64

In full glory

sa

t u
c

a,b

a,b c

b c

We have re-packaged the picture into a function

e : S → 2 × SA

It is
e(s) = (1, {(a, s), (b , t), (c,u)})
e(t) = (0, {(a, t), (b , t), (c,u)})
e(u) = (0, {(a, t), (b , t), (c,u)})

21/64

An important example: (L, `)

A ∗ is the set of finite words on A , including the empty word ε.

L = P(A ∗) is the set of languages X on A .

22/64

Language acceptance

We want to think of language acceptance in the same way
as we have seen for streams and sets.

syntax

��

S
e //

e†

��

2 × SA

id2×(e†)A

��
semantics languages

`
// 2 × languagesA

But this needs an explanation!

23/64

Language acceptance

We want to think of language acceptance in the same way
as we have seen for streams and sets.

syntax

��

S
e //

e†

��

2 × SA

id2×(e†)A

��
semantics languages

`
// 2 × languagesA

But this needs an explanation!
Let’s write L for the set of all languages on A .
(This is just P(A ∗).)
We make L into an automaton (!) in our cooked sense by

` : L → 2 × LA .

where
`(X) = (1 iff ε ∈ X ,a 7→ {w : aw ∈ X })

23/64

Taking f : X → Y to fA : XA
→ YA

To explain the map (e†)A ,
here is a general definition.

If f : X → Y , then fA : XA
→ YA is given by

g : A → X 7→ f · g.

24/64

Taking f : X → Y to fA : XA
→ YA

To explain the map (e†)A ,
here is a general definition.

If f : X → Y , then fA : XA
→ YA is given by

g : A → X 7→ f · g.

Now we understand

syntax

language acceptance
��

S
e //

e†
��

2 × SA

id2×(e†)A

��
semantics L

`
// 2 × LA

24/64

In words

syntax

language acceptance
��

S
e //

e†
��

2 × SA

id2×(e†)A

��
semantics L

`
// 2 × LA

For all states s, language accepted at s has two
features:
I it contains the empty word iff s is an accepting state;

that is, if π2(e(s)) = 1.
I for all words w and all a, it contains aw iff w is in the

language accepted at πSA (e(s))(a).

25/64

Categories

A category C consists of
1 objects c, d, . . .

The collection of objects might be a proper class.
2 For each two objects c and d, a collection of

morphisms f , g,
with emphdomain c and codomain d.
We write f : c → d to say that f is such a morphism.

3 identity morphisms ida for all objects.
4 a composition operation:

if f : a → b and g : b → c, then g · f : a → c.
subject to the requirements that
I Composition is associative.
I If f : a → b, then idb · f = f = f · ida .

26/64

First example: the category Set

The objects of Set are sets (all of them).

A morphism from X to Y is a function from X to Y .

The identity morphism ida for a set a is the identity function on
a.

The composition operation of morphisms
is the one we know from sets.

27/64

Second example: the category Pos of posets

The objects of Pos are posets (P,≤).
(That is, ≤ is reflexive, transitive, and anti-symmetric.)

A morphism from P to Q is a monotone function f from X to Y .
(If p ≤ p′ in P, then f(p) ≤ f(p′) in Q .

The identity morphism ida for a poset P is the identity function
on the underlying set P.

The composition operation of morphisms
is the one we know from sets.

28/64

Third example: every poset is itself a category

Let (P,≤) be a poset.

We consider P to be a poset by taking its elements as the
objects.
The morphisms f : p → q are just the pairs (p,q) with p ≤ q.

Unlike sets, between any two objects there is either 0 or 1
morphisms.

The morphism idp is (p,p).

(q, r) · (p,q) = (p, r).

29/64

The categories MS and CMS

MS is the category of metric spaces (X ,d),
with d : X × X → [0,1] satisfying the metric properties:
I d(x , x) = 0
I If d(x , y) = 0, then x = y.
I d(x , y) = d(y , x).
I d(x , z) ≤ d(x , y) + d(y , z).

A morphisms from (X ,d) to (Y ,d′) is a non-expanding function
f : X → Y .
This means that

d′(f(x), f(y)) ≤ d(x , y)

The category CMS is the same, but we use complete metric
spaces.

30/64

The category BiP of bi-pointed sets

Objects are (X ,>,⊥), where X is a set and > and ⊥
are elements of X .
We require ⊥ , >.

A morphism f : (X ,>,⊥)→ (Y ,>,⊥) is a function
f : X → Y such that
f(>) = > and f(⊥) = ⊥.

The rest of the structure is as in Set, or any other
concrete category.

31/64

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

32/64

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In Set, ∅ is initial, and every singleton {x} is final.

(Recall that the empty function is a function from ∅ to any set.
Also, there is no function from {x} to ∅.
Finally, if Y is non-empty, there is a unique function f : Y → {x}.

Note that there is more than one final object, but they are
all “isomorphic” in a sense that we’ll explicate.

32/64

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In Pos, the empty poset is initial, and the one-point poset {x} is
final.

The same basically works for MS.

32/64

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In a poset P, an initial object would be a minimal element,
and a final object would be a maximal element.

(These may or may not exist.)

32/64

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In BiP, the initial object is any object
based on a two-element set: ({>,⊥},>,⊥).

This is also a final object.

We often write 0 for an initial object and 1 for a final one.

So in BiP, 0 = 1.
32/64

Functors

Let C and D be categories.
A functor from C to D consists of
I An object mapping a 7→ Fa, taking objects of C to objects

of D.
I A morphism mapping f 7→ Ff , taking morphisms of C to

morphisms of D.
such that
I If f : a → b, then Ff : Fa → Fb.
I Fida = idFa .
I F(f · g) = Ff · Fg.

A functor from C to itself is an endofunctor.
(In our terminology, an endofunctor is a “recipe for cooking”.

33/64

Examples which we have seen

On Set, we have seen some endofunctors already:
I For any set A , FX = A × X .

If f : X → Y , then Ff : A × X → A × Y is

Ff(a, x) = (a, fx).

Aother way to say this:

Ff(w) = 〈fst(w), f(snd(w)〉.

for all w ∈ A × X .
I The power set functor P.

Here P(X) is the set of subsets of X .
If f : X → Y , then Pf : P(X)→ P(Y) works by taking direct
images.

I F(X) = 2 × XA , where 2 = {0,1}, and A is a fixed set.
If f : X → Y , then Ff : 2 × XA

→ 2 × YA is given by

Ff(i,g) = (i,h 7→ h · g).

34/64

Other examples of functors and endofunctors

I upclosed : Pos→ Pos
taking a poset P to the set of upward closed subsets,
under ⊆.

If f : (P,≤)to(Q ,≤), you might like to think about how Ff
should work.

I U : Pos→ Set taking a poset to its underlying set.

I On a particular poset P, a functor F : P → P is the same
thing as a monotone function F : P → P.

In fact the monotonicity property of an endofunction
corresponds to the functoriality property F(f · g) = Ff · Fg

35/64

A functor on BiP

Let (X ,>,⊥) be a bipointed set.
We define X ⊕ X to be
I two separate copies of X which I’ll write as X1 and X2.
I The ⊥ of X ⊕ X is the ⊥ of X1.
I The > of X ⊕ X is the > of X2.
I The > of X1 is identified with the ⊥ of X2.

(This is called the midpoint of X ⊕ X .)

We get a functor F : BiP→ BiP by

FX = X ⊕ X

If f : X → Y is a BiP morphism, then Ff : X ⊕ X → Y ⊕ Y
works in the obvious way, preserving the midpoint.

36/64

Constant functors

Let d be an object of D.
We get F : C → D, the constant functor d by:
Fc = d,
Ff = idd .

The composition of functors is again a functor.

37/64

Algebras for an endofunctor

Let F : C → C be an endofunctor.
An algebra for F is a pair (A ,a), where a : FA → A in C.
The leading example is when F is a signature functor, say FΣ.
Then an F-algebra is a set A together with interpretations of
the symbols in Σ.
A morphism from (A ,a) to (B ,b) is h : A → B such that

FA
a //

Fh
��

A

h
��

FB b
// B

commutes.

So now we have a category of algebras for an endofunctor.

38/64

Coalgebras for an endofunctor

Let F : C → C be an endofunctor.
A coalgebra for F is a pair (A ,a), where a : A → FA in C.
We have already seen many examples!

A morphism from (A ,a) to (B ,b) is h : A → B such that

A
a //

h
��

FA

Fh
��

B b
// FB

commutes.

So now we have a category of coalgebras for an endofunctor.

39/64

Review: algebras and coalgebras
Let (A ,a : FA → A) and (B ,b : FB → B) be algebras.
A morphism in the algebra category of F is f : A → B in the same
underlying category so that

FA
a //

Ff
��

A

f
��

FB b
// B

commutes.

Let (A ,a : A → FA) and (B ,b : B → FB) be coalgebras.
A morphism in the coalgebra category of F is f : A → B in the same
underlying category so that

A
a //

f
��

FA

Ff
��

B b
// FB

commutes.
40/64

Initial algebras and final coalgebras

An initial algebra is an initial object of the algebra category.
A final coalgebra is a final object of the coalgebra category.

initial algebra FA
a //

Ff
��

A

f
��

FB b
// B

A
a //

f
��

FA

Ff
��

B b
// FB final coalgebra

(One could also consider final algebras and initial coalgebras,
but they turn out to be much less interesting.)

41/64

In a poset category

Recall that an endofunctor on a poset (P,≤)
is a monotone function f : P → P.
An algebra for f is some p such that f(p) ≤ p.

A coalgebra for f is some p such that p ≤ f(p).

An initial algebra for f is some p such that
I f(p) ≤ p.
I If f(q) ≤ q, then p ≤ q.

An final algebra for f is some p such that
I p ≤ f(p).
I If q ≤ f(q) ≤ q, then q ≤ p.

It’s good to check that these correspond to
least fixed points and greatest fixed points,
respectively.

42/64

An initial algebra on Set: the natural numbers

Let F(X) = 1 + X be the disjoint union
of a singleton set 1 = {∗} and X .

F is a functor in the following way:
If f : X → Y , then Ff(∗) = ∗, and for x ∈ X , Ff(x) = f(x).

43/64

An initial algebra on Set: the natural numbers

Let F(X) = 1 + X be the disjoint union
of a singleton set 1 = {∗} and X .

F is a functor in the following way:
If f : X → Y , then Ff(∗) = ∗, and for x ∈ X , Ff(x) = f(x).

Let N be the set of natural numbers.

We have an algebra structure t : F(N)→ N given by

t(∗) = 0
t(n) = n + 1

43/64

An initial algebra on Set: the natural numbers

Let F(X) = 1 + X be the disjoint union
of a singleton set 1 = {∗} and X .

F is a functor in the following way:
If f : X → Y , then Ff(∗) = ∗, and for x ∈ X , Ff(x) = f(x).

Recursion Principle for N
For all sets X , all x ∈ X , all f : X → X ,
there is a unique ϕ : N → X so that

ϕ(0) = x
ϕ(n + 1) = f(ϕ(x))

43/64

An initial algebra on Set: the natural numbers

Let F(X) = 1 + X be the disjoint union
of a singleton set 1 = {∗} and X .

F is a functor in the following way:
If f : X → Y , then Ff(∗) = ∗, and for x ∈ X , Ff(x) = f(x).

Recursion Principle for N
For all sets X , all x ∈ X , all f : X → X ,
there is a unique ϕ : N → X so that

1 + N t //

1+ϕ
��

N
ϕ

��
1 + X

f
// X

commutes.
43/64

Recursion on N is tantamount to Initiality
This important observation is due to Lawvere

Initiality of N as an algebra for 1 + X
For all sets A , all a ∈ A , and all f : A → A ,
there is a unique ϕ : N → A so that
ϕ(0) = a, and ϕ(n + 1) = f(ϕ(n)) for all n.

The two principles are equivalent in set theory without
Infinity.

44/64

Stream systems and their solutions

Let FX = N × X .
Stream systems are coalgebras of F , maps of the form
e : X → FX .
Even more, the solution e† : X → N∞ would be a coalgebra
morphism:

X
e //

e†
��

FX

Fe†
��

N∞ id
// FN∞

The point is that for x ∈ X ,

Fe†(e(x)) = Fe†〈fst(e(x)), snd(e(x))〉
= 〈fst(e(x)),e†(snd(e(x)))〉

We have seen this formulation before.

45/64

The power set endofunctor P

For any set X , PX is the set of subsets of X .
P extends to an endofunctor, taking

f : X → Y

to
Pf : PX → PY

given by direct images: for a ⊆ X , Pf(a) = f [a] = {f(x) : x ∈ a}.
We similarly have functors such as the finite power set functor
Pfin.

By the way, a transitive set is a set X ⊆ PX .
This is the same thing as a subcoalgebra X → V

X
i //

inclusion
��

pow(X)

P(inclusion)
��

V =
// P(V)

46/64

Set systems and their solutions

Let FX = PX .
Set systems are coalgebras of F , maps of the form
e : X → PX .
Even more, the solution e† : X → V is practically a coalgebra
morphism:

X
e //

e†
��

PX

Pe†
��

V id
// PV

The point is that for x ∈ X ,

Pe†(e(x)) = e†[e(x)]
= {e†(a) : a ∈ e(x)}

So e† satisfies the same equation as a decoration from before.

47/64

Where we are

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
useful in syntax useful in semantics

48/64

Lambek’s Lemma

Lemma (Lambek’s Lemma)

Let C be a category, let F : C → C be a functor,
and let (a, f) be an initial algebra for F.
Then f is an isomorphism:
there is a morphism g : Fa → a such that
g · f = ida and f · g = idFa .

The same statement holds for final coalgebras of F .

49/64

Proof of Lambek’s Lemma

Note first that (Fa,Ff) is an algebra for F . The square below
commutes:

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

By initiality, there is a morphism g : a → Fa so that the square
on the top commutes:

Fa

Fg
��

f // a

g
��

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

The bottom is obvious, the outside of the figure thus commutes.
50/64

Proof of Lambek’s Lemma, continued

By initiality, there is a morphism g : a → Fa so that the square
on the top commutes:

Fa

Fg
��

f //

F(f ·g)

��

a

g
��

f ·g

~~

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

By initiality, we see that f · g = ida .
And then from that top square again,

g · f = Ff · Fg = F(f · g) = Fida = idFa .

This completes the proof.
51/64

There are no initial algebras or final coalgebras of
P

An isomorphism in Set is a bijection.
And there are no maps from any set onto its power set
(Cantor’s Theorem).
Together with Lambek’s Lemma, we see that P on Set has no
initial algebra and no final coalgebra.
To get around this, one either

1 moves from Set to the category Class.
2 moves from P to Pκ, the functor giving the subsets of a set

of size < κ.
We’ll generally go the second route, and in particular consider
Pfin.
It turns out that (Hκ, id) is an initial algebra of Pκ.
We’ll see the final coalgebra later.

For κ = ω, we have the finite power set functor,
and the final coalgebra can be described using
modal logic/bisimulation.

52/64

Coproducts

Let C be a category.
A coproduct of objects x and y, is an object x + y
with morphisms inl : x → x + y and inr : y → x + y meeting the
following condition:
if f : x → z and g : y → z, then there is a unique
[f ,g] : x + y → z such that [f ,g] · inl = f and [f ,g] · inr = g.
Technically, the coproduct of x and y is the triple (x + y , inl, inr).
Usually there’s no need to add the names of the objects to the
coproduct maps inl and inr.
But if we would need to, we could write

inla,a+b : a → a + b ,

and similarly for inrb ,a+b .

53/64

Using coproducts

If f : a → b and g : c → d, then we have

f + g : a + c → b + d

given by
f + g = [inl · f , inr · g].

In pictures,

a f // c
inl

''NNNNNNNNNNNN

a + b
[inl·f ,inr·g] // c + d

b g
// d

inr

88pppppppppppp

54/64

Categories with coproducts

C has coproducts if every two objects have a coproduct.
A category with coproducts is a tuple (C ,+), where C is a
category and + is a coproduct operation on C, giving for each x
and y the triple (x + y , inlx ,x+y , inry ,x+y).
Set has coproducts in the following way: let

x + y = (x × {0}) ∪ (y × {1}),

let inl(a) = (a,0) for a ∈ x, and let inr(b) = (b ,1) for b ∈ y.

55/64

Coproducts of functors

Let C be a category and (D,+) be a category with coproducts.
If F : C → D and G : C → D, we define

F + G : C → D

by (F + G)a = Fa + Ga,
and if f : a → b, then

(F + G)f : Fa + Ga → Fb + Gb

is given by
(F + G)f = Ff + Gf

56/64

The discrete measure functorD

A discrete measure on a set A is a function µ : A → [0,1] such
that

1 µ has finite support: {a ∈ A |µ(a) > 0} is finite.
2
∑

a∈A µ(a) = 1.
D(A) is the set of discrete measures on A .
We make D into a functor by setting,
for f : A → B, Df(µ)(b) = µ(f−1(b));
this is

∑
{µ(a) : f(a) = b}.

(As usual, we extend discrete measures on A to functions on
P(A) by summing.)

57/64

Initial and Final Objects

In a category C, an object c is called initial
if for every object a, there is a unique ! : c → a.
c is terminal, or final
if for every object a, there is a unique ! : a → c.
In Set, the final objects are exactly the singletons.

58/64

Initial and Final Objects

In a category C, an object c is called initial
if for every object a, there is a unique ! : c → a.
In Set, ∅ is initial.
For every a, the empty function is the unique function from ∅ to
a.
c is terminal, or final
if for every object a, there is a unique ! : a → c.
In Set, the final objects are exactly the singletons.

58/64

Initial and Final Objects

In a category C, an object c is called initial
if for every object a, there is a unique ! : c → a.

c is terminal, or final
if for every object a, there is a unique ! : a → c.
In Set, the final objects are exactly the singletons.

58/64

Examples of coalgebras for different functors

59/64

Natural transformations

Let F : C → D be a functor between two categories,
and let G : C → D also be a functor between the same two.
Then a natural transformation from F to G is a family
η of morphisms of D indexed by objects of C, in particular each
ηx is a morphism in D from Fx to Gx.
The requirement on η is that for each morphism in C of the
form f : x → y, the square below commutes:

x

f
��

Fx
ηx //

Ff
��

Gx

Gf
��

y Fy ηy
// Gy

In symbols, Gf · ηx = ηy · Ff .
One writes η : F → G.
For each object x of C, ηx is called the component of η at x.

60/64

Constructions on natural transformations

Suppose first that η : F → G, and let H : B → C be another
functor.
Then F · H : B → D and G · H : B → D.
We get a natural transformation called ηH from F ·H to G ·H by

ηHb = ηHb .

Now let H : D → E. So now H · F and H ·G are functors from C
to E.
We get a natural transformation from H · F to H ·G, this time
called Hη, by

(Hη)x = Hηx .

That is, we apply the functor H to the morphism ηx . The
verification of naturality is a little different: we apply H
throughout.

61/64

Constructions on natural transformations

Suppose first that η : F → G, and let H : B → C be another
functor.
Then F · H : B → D and G · H : B → D.
We get a natural transformation called ηH from F ·H to G ·H by

ηHb = ηHb .

To check that this is indeed natural, let f : x → y be a
morphism in B. Then for each x in B
(ηH)x : (F · H)x → G · H)x. And we have the diagram

(F · H)x
(ηH)x //

(F ·H)f
��

(G · H)x

(G·H)f
��

(F · H)y
(ηH)y

// (G · H)y

This is literally the same as

F(Hx)
ηHx //

F(Hf)
��

G(Hx)

G(Hf)
��

F(Hy) ηHy
// G(Hy)

This last diagram is just an instance of naturality of η.
So it commutes.
And thus the diagram in (??) commutes, verifying that indeed
ηH is natural.
Now let H : D → E. So now H · F and H ·G are functors from C
to E.
We get a natural transformation from H · F to H ·G, this time
called Hη, by

(Hη)x = Hηx .

That is, we apply the functor H to the morphism ηx . The
verification of naturality is a little different: we apply H
throughout.

61/64

Constructions on natural transformations

If η : F → G and µ : F → H, then we get a natural
transformation µ · η : F → H by (µ · η)x = µx · ηx . The
verification of naturality is easy.
Finally, suppose that F ,G : D → E and H,K : C → D, and let
η : F → G and µ : H → K . We get a natural transformation
µ ∗ η : F · H → K ·G by

F · H
Fµ //

ηH
��

µ∗η
III

I

$$III
I

F · K
ηK

��
G · H

Gµ
// G · K

That is, we claim that the outside of the figure commutes, and
then we define µ ∗ η to be the composite in either direction; this
will be a natural transformation by the three constructions which
we have already seen. But for each object x of C the square
above is a naturality square for η, applied to the morphsim
µx : Hx → Kx. 62/64

Functors preserving (weak) pullbacks

Definition
A functor F : C → D preserves pullbacks if the image of every
pullback square is a pullback square.

Lemma
Concerning preservation of pullbacks:

1 Constant functors preserve pullbacks.
2 If F and G preserve pullbacks, so do F + G, F ×G, and

F ·G.
3 P, Pfin, and D do not preserve pullbacks.

63/64

Set-functors and surjective maps

Lemma
Every functor F on Set preserves all surjective maps.

Proof.
Suppose g : X → Y is surjective.
Let h : Y → X be such that g · h = idY .
Then Fg · Fh = idFY , and so Fg must be surjective. �

Proposition
If FX = ∅ for some X , ∅, then F is the constant functor ∅.

Proof.
Let Y be any set. Then there is f : Y → X ; f could be a
constant, for example. And now Ff : FY → ∅. So FY must be
empty also, since there are no maps from a non-empty set to
∅. �

64/64

