
Non-wellfounded sets
This is Draft: check back tonight for more

Larry Moss
Indiana University, Bloomington

ESSLLI 2012, Opole

1/38



Infinite trees

We want to move from streams to a more complicated example,
infinite trees.

Some of the points that we make will be closely related to what
we have seen for streams, and some will raise new issues.

Here is a class of objects which we shall call trees.

1 The variables x and y alone are trees.
2 If t is a tree, then adding a single node labeled • as a new

root
with t as its only subtree gives a tree.

3 If s and t are trees, then adding a single node labeled ∗ as
a new root, with s as the left subtree and t as the right, is a
tree.

4 Trees may go on forever.

2/38



Examples

Trees may be specified by tree systems.
Here is one such system:

s ≈
∗

t u
����

////
t ≈
•

s
u ≈

∗

v w
����

////
v ≈ x w ≈ y

3/38



Examples

Trees may be specified by tree systems.
Here is one such system:

s ≈
∗

t u
����

////
t ≈
•

s
u ≈

∗

v w
����

////
v ≈ x w ≈ y

s† =

∗

• ∗

∗ x y

• ∗

x y

����
////

����
////

����

����
////

����
////

t† =

•

s†�������

/////// u† =

∗

x y
����

////

3/38



The definition, again

1 The symbols x and y alone are trees.
2 If t is a tree, then 〈•, t〉 is a tree.
3 If s and t are trees, then 〈∗, s, t〉 is a tree.
4 Trees may be “infinitely deep”.

4/38



Two notations for the same thing

s ≈
∗

t u
����

////
t ≈
•

s
u ≈

∗

v w
����

////
v ≈ x w ≈ y

s ≈ 〈∗, t ,u〉
t ≈ 〈•, s〉
u ≈ 〈∗, v ,w〉
v ≈ x
w ≈ y

5/38



An exercise

Here is an infinite tree

∗

∗ ∗

∗ x y x

∗ ∗

∗ x y x
...

ooooo OOOOO

����
////

����
////

������
??????

����
////

����
////

Find a system of tree equations that has this tree as the
solution to one of the variables. Find your system in terms of
pictures, and then translate it to a system in terms of tuples.

6/38



A Question

With streams we had an unraveled form,
a function from Nat to Nat.

What is the unraveled form in the case of trees?

7/38



Cheating

Let Tr be the set of trees that we have been discussing.
Then our definition in terms of Tr would have

Tr = {x , y} ∪ ({•} × Tr) ∪ ({∗} × Tr × Tr).

The standard modeling in set theory gives us a problem:

one can prove in ZF set theory that Tr only contains the finite
trees;

but this runs afoul of our pictures and intuition.

The standard way out is to change the equals sign = above to
something else.

But again, how can we understand what is going on here?

8/38



Hypersets

Let us turn from streams and trees to sets.
Before presenting some analogs to what we have just seen, at
pictures of sets.
To make the discussion concrete, consider the set

x = {∅, {{∅}, ∅}}

Let us call this set x. We want to draw a picture of this set, so
we start with a point which we think of as x itself. Since x has
two elements, we draw add two children:

x
��>>>>

������

y z

9/38



x = {∅, {{∅}, ∅}}

x
��>>>>

������

y z

We take y to be ∅ and z to be {{∅}, ∅}.
We do not add any children of y because it is empty.

But we want to add two children to z,
one for w = {∅} and one for ∅.

So we have
x

��@@@@
������

y zoo

��
w

10/38



x = {∅, {{∅}, ∅}}

x
��@@@@

������

y zoo

��
w

x for {∅, {{∅}, ∅}}
y for ∅
z for {{∅}, ∅}
w for {∅}

We conclude by putting an arrow from w to y, since ∅ ∈ {∅}.

x
��@@@@

������

y zoo

��
w

ggOOOOOOOOO

11/38



What are the nodes?

x
��@@@@

������

y zoo

��
w

ggOOOOOOOOO

Now we want to forget the identity of the nodes.

We could either trade in the four sets that we used for numbers
(to mention just one way), or else finesse the issue entirely.

We would get one of the pictures below:

1
��====

������

2 3oo

��
4

ffNNNNNNNNN

·

��>>>>
������

· ·oo

��
·

ggNNNNNNNN

·

��>>>>
������

· ·

������
��>>>>

·

��

·

·

12/38



Graphs

A graph is a pair (G,→), where→ is a relation on G (a set of
ordred pairs from G).

The idea is that we want to think of a graphs as notations for
sets, just as systems of equations were notation for streams.

This is explained by the concept of a decoration:

A decoration d of a graph G is a function whose domain is G
and with the property that

d(g) = {d(h) : g → h}.

13/38



Graphs: decorations

For example, let us introduce names for the nodes in the
tree-like graph and then find its decoration:

1
��====

������

2 3
������

��====

4
��

5

6

Since 6 has no children, d(6) must be ∅.
Similarly, d(5) and d(2) are also ∅.

d(4) = {d(6)} = {∅}

d(3) = {d(4),d(5)} = {{∅}, ∅}
d(1) = {d(2),d(3)} = {∅, {{∅}, ∅}}

Note this is the set x with which we started.
Why is this true?

14/38



Another example

However, things get more interesting with an example like the
loop graph

x
��

Let d be a decoration of this graph.

Then we would have d(x) = {d(x)}.

So writing Ω for d(x), we have

Ω = {Ω}

This set Ω is the most conspicuous example of object
circularity:
a set that is a member of itself.

(Indeed, Ω is its own only member.)
15/38



Streams and sets
Finally, we want to consider an example that harks back to

x ≈ 〈0, y〉
y ≈ 〈1, z〉
z ≈ 〈2, x〉

x3

��

��

y3

��

���������������������������������
z3

��

���������������������������������

x2

��

::vvvvvvvvvvvvvv
y2

��

::vvvvvvvvvvvvvv
z2

��

ll

x1

��

y1

��

z1

��
x0@AOO BCy0oo z0oo

16/38



Streams and sets

x3

��

��

y3

��

���������������������������������
z3

��

���������������������������������

x2

��

::vvvvvvvvvvvvvv
y2

��

::vvvvvvvvvvvvvv
z2

��

ll

x1

��

y1

��

z1

��
x0@AOO BCy0oo z0oo

Let us try to understand what a decoration d of this graph would be.
Remember from set theory that the standard rendering of the first few
natural numbers is by

0 = ∅, 1 = {∅}, 2 = {0,1} = {∅, {∅}}

and also that the standard definition of the ordered pair 〈x , y〉 is
as {{x}, {x , y}}.

17/38



Streams and sets

x3

��

��

y3

��

�����������������������������
z3

��

�����������������������������

x2

��

99sssssssssssss
y2

��

99sssssssssssss
z2

��

ll

x1

��

y1

��

z1

��
x0@AOO BCy0oo z0oo

Since x0 has no children, d(x0) must be ∅.
Then it follows that d(y0) = {d(x0)} = {∅} = 1.
And now d(z0) = {d(x0),d(y0)} = {0,1} = 2.

18/38



Streams and sets

Furthermore, d(z1) = {2}. It follows now that

d(x1) = {0}, d(y1) = {1}, d(z1) = {2}.

And then

d(x2) = {d(y3),d(x1)} = {{0,d(y2)}, {0}} = 〈0,d(y2)〉
d(y2) = {d(z3),d(y1)} = {{1,d(z2)}, {1}} = 〈1,d(z2)〉
d(z2) = {d(x3),d(z1)} = {{2,d(x2)}, {2}} = 〈2,d(x2)〉

The upshot is that we can go back to our original stream system
and then “solve it” by putting down our big graph and
decorating it.
The solution would be

x† = d(x2) y† = d(y2) z† = d(z2).

19/38



The problem

How do we know that our big graph actually has a decoration?

A hyperset or non-wellfounded set is a set that is obtained by
decorating an arbitrary graph.

20/38



Systems of set equations

By such a system we mean a pair (X ,e), where
X is a set which we think of as “variables” (any set will do),
and e : X → PX .
That is, the value of e on each variable is again a set of
variables.
Set systems and related concepts correspond to ones for
graphs in the following way:

the graph (G,→) the system of set equations (X ,e)
the nodes of G the set X of variables
the relation→ on the nodes the function e : X → PX
the children of x in G the set e(x) ∈ PX
a decoration d of the graph a solution e† of the system

21/38



Systems of set equations

Every graph corresponds to a system of set equations,
and vice-versa.
An example, corresponding to the big picture from earlier:

X = {x0, y0, z0, x1, y1, z1, x2, y2, z2, x3, y3, z3}

e(x0) = ∅ e(x1) = {x0} e(x2) = {x1, y3} e(x3) = {z0, x2}

e(y0) = {x0} e(y1) = {y0} e(y2) = {y1, z3} e(y3) = {x0, y2}

e(z0) = {x0, y0} e(z1) = {z0} e(z2) = {z1, x3} e(z3) = {y0, z2}

So the way to go from the picture to the function is that
for all variables v, e(v) is the set of children of v.
Our preferred notation elides e:

x0 ≈ ∅ x1 ≈ {x0} x2 ≈ {x1, y3} x3 ≈ {z0, x2}

y0 ≈ {x0} y1 ≈ {y0} y2 ≈ {y1, z3} y3 ≈ {x0, y2}

z0 ≈ {x0, y0} z1 ≈ {z0} z2 ≈ {z1, x3} z3 ≈ {y0, z2}

22/38



Review

x ≈ 〈0, y〉
stream system y ≈ 〈1, z〉

z ≈ 〈2, x〉

s ≈ 〈∗, t ,u〉
t ≈ 〈•, s〉

tree system u ≈ 〈∗, v ,w〉
v ≈ x
w ≈ y

a ≈ {b , c}
set system b ≈ ∅

c ≈ {c,a}

23/38



More abstractly

stream system
e : X → Nat × X

tree system
e : X → {x , y} ∪ ({•} × X) ∪ ({∗} × X × X)

set system
e : X → PX

24/38



More abstractly

stream system
e : X → Nat × X
solutions are maps from X to in Nat∞ = Nat × Nat∞

tree system
e : X → {x , y} ∪ ({•} × X) ∪ ({∗} × X × X)
solutions map to Tr = {x , y} ∪ ({•} × Tr) ∪ ({∗} × Tr × Tr)

set system
e : X → PX
solutions map to V = PV

All of the equalities are problematic.

24/38



Equations satisfied by solutions

stream system
e : X → Nat × X
solutions e† in Nat∞ = Nat × Nat∞

e†(x) = 〈fst(e(x)),e†(snd(e(x)))〉

tree system
e : X → {x , y} ∪ ({•} × X) ∪ ({∗} × X × X)
solutions e† in Tr = {x , y} ∪ ({•} × Tr) ∪ ({∗} × Tr × Tr)

set system
e : X → PX
solutions (decorations) in V = PV
e†(x) = {e†(y) : y ∈ e(x)}

25/38



More details on the stream setting, from our
earlier example

x ≈ 〈0, y〉
y ≈ 〈1, z〉
z ≈ 〈2, x〉

x† = 〈0, y†〉
y† = 〈1, z†〉
z† = 〈2, x†〉

Re-packaged in terms of X = {x , y , z} and e : X → Nat × X as

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

e†(x) = 〈0,e†(y)〉
e†(y) = 〈1,e†(z)〉
e†(z) = 〈2,e†(x)〉

e† : X → Nat∞ = Nat × Nat∞

e†(x) = 〈fst(e(x)),e†(snd(e(x)))〉

26/38



An exercise on the basic notion of tree systems

For a stream system e : X → Nat × X , we have

e†(x) = 〈fst(e(x)),e†(snd(e(x)))〉

What is the analog for a tree system?

27/38



More on the set setting, from a new example

x ≈ {y , z}
y ≈ ∅

z ≈ {x}

e(x) = {y , z}
e(y) = ∅

e(z) = {x}

d(x) = {d(y),d(z)}
d(y) = ∅

d(z) = {d(x)}

e†(x) = {e†(y),e†(z)}
e†(y) = ∅

e†(z) = {e†(x)}

28/38



More on set systems, from a new example

The point here is that it makes sense to think of a set system
as a function of the form e : X → PX
and as its solution as one of the form e† : X → V
(that is, as a function defined on X with some sets or others as
its values).

However, two more points deserve comment.
First, unlike the case of streams and trees, it is not clear that
every system “should” have a unique solution.

Second, we wrote V = PV for the solution space.

This was mainly in analogy to what we saw with streams and
trees.
But what is the analogy?

29/38



Equals vs. isomorphism

For streams we also may use the unraveled form, working via
isomorphism:

(Nat→ Nat)

i

((
Nat × (Nat→ Nat)

j

hh

Here i(f) = 〈f(0), λm.f(m + 1)〉
and j(n, f) = λm.if m = 0, then n, otherwise f(n − 1).

30/38



Equals vs. isomorphism

For streams we also may use the unraveled form, working via
isomorphism:

(Nat→ Nat)

i

((
Nat × (Nat→ Nat)

j

hh

And then the solution condition for a stream system would be

e†(x) = j(fst(e(x)),e†(snd(e(x))))

Can isomorphism help with the other examples?

30/38



Where we are

At this point, we have seen three examples of
1 Objects presented as the solution of systems of various

kinds.
2 The solution spaces themselves giving rise to problematic

forms of circularity.
The goal of the course is to make sense of this phenomenon in
a general, and mathematically insightful manner.

31/38



Where we are

At this point, we have seen three examples of
1 Objects presented as the solution of systems of various

kinds.
2 The solution spaces themselves giving rise to problematic

forms of circularity.
The goal of the course is to make sense of this phenomenon in
a general, and mathematically insightful manner.
The way it will work:

system of some sort coalgebra of some functor F
solution space for those systems final coalgebra for F

31/38



The remaining part of this set of slides

I want to broaden the scope of our discussion by presenting
examples/questions
which at first glance might be unrelated to what we have seen.

1 A different kind of example of a circularly-defined object
(function)

2 A case where the solution space was originally an open
question.

32/38



The Cantor set

The Cantor set c ⊆ [0,1] has several equivalent
definitions/characterizations:

1 Take the unit interval [0,1], then remove the open middle
third (1

3 ,
2
3), leaving two disconnected pieces.

For each of those, remove the open middle third.
Keep going for infinitely many steps.
Then c is what remains “at the end”.

2 c is the set of numbers possessing a ternary (base 3)
decimal expansion with no 1’s.

3 c is the unique non-empty compact subset of the unit
interval [0,1] such that

c =
1
3

c ∪
(2
3

+
1
3

c
)
,

where 1
3c denotes the set { 1

3x | x ∈ c }, and the second set
is interpreted similarly, by also adding 2

3 to each point.
The equation defines c in terms of itself.

33/38



Even more

Let C be the set of non-empty compact subsets of [0,1].
Let g : C × C → C be

g(x , y) =
1
3

x ∪
(2
3

+
1
3

y
)

Then, it turns out that there is a unique function f : C → C so
that

f(x) = g(f(x), x).

Compare this with a function defined by recursion on Nat, such
as

factorial(n) = ifzero(n,one, factorial(pred(n)) ∗ n))

Here we define the factorial function n 7→ n! in terms of ifzero,
one, pred and ∗.

34/38



Another property of [0,1]

Every set of equations like

x0 ≈
1
2x3 + 1

2

x1 ≈
1
2x2 + 1

2

x2 ≈
1
2x15

x3 ≈
1
2x19 + 1

2

x4 ≈
1
2x2

...
...

has a unique solution in [0,1].

35/38



Harsanyi Type Spaces

My presentation here omits details of importance in the
economics/game theory literature.
If M is a measurable space, then ∆(M) is the set of
probability measures on M, made into a measurable space in a
canonical way (next lecture).
Can we solve

M � ∆([0,1] ×M)

and similar equations? Can we get the “biggest” solutions?

36/38



Where it comes from

Let S be a measurable space intended as a model of “the state
of the world.”
A two player beliefs space over S is a tuple (M, σ,N, τ), where
M and N are measurable spaces, and

σ : M → ∆(S × N)
τ : N → ∆(S ×M)

Can we find a single beliefs space (M∗, σ∗,N∗, τ∗)
such that every belief space mapped uniquely into it
via a map that respects “beliefs”?

The question about M � ∆([0,1] ×M) contains most of the
mathematical details but is missing some features coming from
having two players.

37/38



Something to leave you with

38/38


