
Monotonicity Calculus:
What is for,

and How it is Formulated

Larry Moss

Indiana University

Nordic Logic School
August 7-11, 2017

1/69

This class, and next

What I plan to do is re-do the material on the ↑ and ↓ notation
that you just on Monday,
but very slowly,
and to aim for the formal work.

2/69

We have already, in effect, seen this

Assume that
waltz ≤ dance ≤ move

and
grizzly ≤ bear ≤ animal

We also have:

1 Some bears↑ dance↑.

2 No bears↓ dance↓.

3 Not every bear↑ dances↓.

4 John sees every bear↓.

5 Mary sees no bear↓.

6 Most bears dance↑. (No arrow goes on bears in this one.)

7 Any bear↓ in Hawaii would prefer to live in Alaska.

8 If any bear↓ dances↓, Harry will be happy.

9 If you play loud enough music, any bear↓ will start to dance↑.

10 Doreen didn’t see any bears↓ dance↓ in her dorm room.
3/69

Monotonicity Phenomena in Language

So far, our treatment of the ↑and ↓notation has been purely
suggestive:

◮ We didn’t really explain why any of it worked.

◮ We didn’t even say how it worked.

◮ We didn’t explain where the assumptions came from.

The primary sources on this topics are a paper and book chapter
by Johan van Benthem (1986)
and the dissertation of Victor Sanchez Valencia (1991).

4/69

Any

1 Phil didn’t dream of any monsters.

2 ∗Phil dreamt of any monsters.

3 Daisy wondered whether Phil dreamt of any monsters.

4 Daisy doubted that Phil dreamt of any monsters.

5 ∗Daisy believed that Phil dreamt of any monsters.

5/69

Any

1 Phil didn’t dream of any monsters.

2 ∗Phil dreamt of any monsters.

3 Daisy wondered whether Phil dreamt of any monsters.

4 Daisy doubted that Phil dreamt of any monsters.

5 ∗Daisy believed that Phil dreamt of any monsters.

Facts about the distribution and meaning of any
and other negative polarity arguments
are partly syntactic, partly semantic, and partly
pragmatic.

(So the whole study is very complicated!)

We only will touch on the semantic side of things.

5/69

Semantic problem

What do the various ↑ and ↓

judgments have in common?

Can we automatically determine the ↑ and ↓ notations
(in parse trees according to some grammar)?

How does inference connect to ↑ and ↓ ?

What can we say about negative polarity items?

6/69

Where we’re going in this talk

◮ A parallel: elementary mathematics

◮ Categorial grammar and semantics

◮ Mathematical inference as grammatical inference

◮ Back to natural language grammars

◮ Monotonicity calculus

◮ A completeness theorem

7/69

Monotone and antitone functions

Definition

A function f (x) is monotone if

x ≤ y implies f (x) ≤ f (y)

We also indicate this by writing

x ≤ y

f (x) ≤ f (y)
f(x)↑

Definition

A function f (x) is antitone if

x ≤ y implies f (y) ≤ f (x)

We also indicate this by writing

x ≤ y

f (y) ≤ f (x)
f(x)↓

8/69

f (x) = x
2 is increasing on [0,∞]

Bigger inputs give bigger outputs

1 1.5 2 3

1

2

3

4

5

x2

•

•

•

9/69

f (x) = x
2 is increasing on [0,∞]

Bigger inputs give bigger outputs

1 1.5 2 3

1

2

3

4

5

x2

•

•

•

Since 1 < 1.5, 12 ≤ (1.5)2.

9/69

f (x) = x
2 is increasing on [0,∞]

Bigger inputs give bigger outputs

1 1.5 2 3

1

2

3

4

5

x2

•

•

•

Since 1 < 1.5, 12 ≤ (1.5)2.
Since 1.5 < 2, (1.5)2 ≤ 4.

9/69

Let’s make a chart

Use ↑ for increasing and ↓ for decreasing.

f (x) ↑ or ↓ on [0,∞]

x

−x

7 + x

x2

1/x

2x

2−x

10/69

Let’s make a chart

Use ↑ for increasing and ↓ for decreasing.

f (x) ↑ or ↓ on [0,∞]

x ↑

−x ↓

7 + x ↑

x2 ↑

1/x ↓

2x ↑

2−x ↓

10/69

Example of reasoning with increasing and
decreasing functions

Here’s a harder problem.

Tell which is bigger without a calculator:

(

29

4

)−3

or

(

7 +
1

π2

)−3

This will be a little easier if we write 29/4 as an improper fraction:

(

7 +
1

4

)−3

vs.

(

7 +
1

π2

)−3

11/69

Example of reasoning with increasing and
decreasing functions

Here’s a harder problem.

This will be a little easier if we write 29/4 as an improper fraction:

(

7 +
1

4

)−3

vs.

(

7 +
1

π2

)−3

2 ≤ π
1
π
≤ 1

2

1/x ↓

1
π2 ≤ 1

4

x2 ↑

7 + 1
π2 ≤ 7 + 1

4

7 + x ↑

(7 + 1
4)
−3 ≤ (7 + 1

π2)
−3 x−3 ↓

11/69

Try one yourself

Tell which is bigger without a calculator:

(

−
7

4

)−3

or

(

−
7

π

)−3

12/69

Compositions

Do you remember composition of functions?

Suppose that

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3

What is v ◦ u?
What is s ◦ t?
What is s ◦ (t ◦ v)?

13/69

Compositions

Do you remember composition of functions?

Suppose that

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3

Let’s write
(

7 +
1

x2

)−3

as a composition of these four functions?

13/69

Compositions

Do you remember composition of functions?

Suppose that

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3

Let’s write
(

7 +
1

x2

)−3

as a composition of these four functions?

It is either one of the following

s ◦ t ◦ u ◦ v
s ◦ t ◦ v ◦ u

13/69

Composition of functions and
increasing/decreasing functions

If f is increasing and g is increasing, then g ◦ f is increasing.

If f is increasing and g is decreasing, then g ◦ f is decreasing.

If f is decreasing and g is increasing, then g ◦ f is decreasing.

If f is decreasing and g is decreasing, then g ◦ f is increasing.

14/69

This reminds me of something

If x is positive and y is positive, then xy is positive.

If x is positive and y is negative, then xy is negative.

If x is negative and y is positive, then xy is negative.

If x is negative and y is negative, then xy is positive.

The analogy is

increasing ≈ positive
decreasing ≈ negative

15/69

Our example again
f (x) = (7 + (1/x2))−3

Another way to see that

(

7 +
1

4

)−3

≤

(

7 +
1

π2

)−3

Consider the function s ◦ t ◦ u ◦ v , where

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3

16/69

Our example again
f (x) = (7 + (1/x2))−3

Another way to see that

(

7 +
1

4

)−3

≤

(

7 +
1

π2

)−3

We just saw that f (x) can be written as s ◦ t ◦ u ◦ v , where

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3
↓ ↑ ↑ ↓

16/69

Our example again
f (x) = (7 + (1/x2))−3

Another way to see that

(

7 +
1

4

)−3

≤

(

7 +
1

π2

)−3

We just saw that f (x) can be written as s ◦ t ◦ u ◦ v , where

v(x) = 1/x u(x) = x2 t(x) = 7 + x s(x) = x−3
↓ ↑ ↑ ↓

Since the number of ↓s is even, our function f (x) is ↑, increasing.

So since 2 ≤ π, we have f (2) ≤ f (π).

This is what we want to show.

16/69

Monotonicity in algebra

Consider

f (v ,w , x , y , z) =
x − y

2z−(v+w)
.

Suppose we fix numerical values for the variables v , w , x , y , z ,
and then suppose we also increase x a bit to some number x ′ ≥ x .

Does the value of f go up or down?

That is, which is true:

if x ≤ x ′, then f (v ,w , x , y , z) ≤ f (v ,w , x ′, y , z)
if x ≤ x ′, then f (v ,w , x ′, y , z) ≤ f (v ,w , x , y , z)

A moment’s though shows that the first line is correct.

17/69

Monotonicity in algebra

f (v ,w , x , y , z) =
x − y

2z−(v+w)
.

Next, suppose we fix values but this time move y up to some
number y ′.

Which is true now?

if x ≤ x ′, then f (v ,w , x , y , z) ≤ f (v ,w , x ′, y , z)
if x ≤ x ′, then f (v ,w , x ′, y , z) ≤ f (v ,w , x , y , z)

This time, it’s the second one.

We also can study z , v , and w the same way.

We would summarize all of the observations by writing

f (v↑,w↑, x↑, y↓, z↓).

18/69

Monotonicity as grammatical inference

Here is how we can think about this in terms close to the way
formal semantics works with the simply typed Lambda Calculus.

We take a single type r , and then we have function symbols

plus : r → (r → r) minus : r → (r → r)
times : r → (r → r) div2 : r → (r → r)

The variables v, w, . . ., z may be taken as constants of type r .

19/69

Monotonicity as grammatical inference

Here is how we can think about this in terms close to the way
formal semantics works with the simply typed Lambda Calculus.

We take a single type r , and then we have function symbols

plus : r → (r → r) minus : r → (r → r)
times : r → (r → r) div2 : r → (r → r)

The variables v, w, . . ., z may be taken as constants of type r .

NB. The semantics will use higher-order (one-place) functions.

19/69

We get terms in Polish notation

minus : r → (r → r) z : r

minus z : r → r

plus : r → (r → r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w : r

This would correspond to the term usually written z − (v + w).

20/69

We get terms in Polish notation

We are interested in a term corresponding to

f (v ,w , x , y , z) =
x − y

2z−(v+w)
.

To fit it all on the screen, let’s drop the types:

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w

div2(t)(u) is supposed to mean 2t÷u .

21/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

The rule for propagating colors is:

the right branches of “completed” nodes for
div2 and minus flip colors.
Otherwise, we keep colors as we go up the tree.

22/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

The rule for propagating colors is:

the right branches of “completed” nodes for
div2 and minus flip colors.
Otherwise, we keep colors as we go up the tree.

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w
22/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

The rule for propagating colors is:

the right branches of “completed” nodes for
div2 and minus flip colors.
Otherwise, we keep colors as we go up the tree.

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w
22/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

The rule for propagating colors is:

the right branches of “completed” nodes for
div2 and minus flip colors.
Otherwise, we keep colors as we go up the tree.

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w
22/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

The rule for propagating colors is:

the right branches of “completed” nodes for
div2 and minus flip colors.
Otherwise, we keep colors as we go up the tree.

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w
22/69

Can we determine the polarities of the
variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w

This agrees with what we saw before:

f (v↑,w↑, x↑, y↓, z↓).

22/69

This algorithm has a history

It was first proposed in CG by van Benthem in the 1990’s
to formalize the ↑, ↓ notation.

His proposal was then worked out by Sanchez-Valencia.

(Older versions exists: e.g., Sommers.)

Versions of it are even implemented in
real-world CL systems:

Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. Computing
relative polarity for textual inference.
In Proceedings of ICoS-5 (Inference in Computational Semantics),
Buxton, UK, 2006.

23/69

However

This makes the determination of polarities an external
feature of the syntax tree,
something determined by an algorithm.

Instead of complicating the architecture of grammar.
let’s complicating the particular grammar that we use.

But before we do that,
I want to go over how simple types work,
and how we can re-work them.

24/69

Review of the architecture of types and
lexicons

We begin with a set T0 of basic types.

Then if σ and τ are types, so is (σ, τ).
(Today I’ll write often this as σ → τ .)

The set of all types is written T .

25/69

Review of the architecture of types and
lexicons

We begin with a set T0 of basic types.

Then if σ and τ are types, so is (σ, τ).
(Today I’ll write often this as σ → τ .)

The set of all types is written T .

Let D be a function which assigns sets to the basic types.

Frequently, the basic types in NL semantics are e and t,
so we would have D(e) and D(t).

We would write these as De and Dt , since this is what everyone
does.

25/69

Review of the architecture of types and
lexicons

We begin with a set T0 of basic types.

Then if σ and τ are types, so is (σ, τ).
(Today I’ll write often this as σ → τ .)

The set of all types is written T .

But in our arithmetic example,
there is only one basic type: r .

And our natural choice for Dr is the set of real numbers.

25/69

Review of the architecture of types and
lexicons

We begin with a set T0 of basic types.

Then if σ and τ are types, so is (σ, τ).
(Today I’ll write often this as σ → τ .)

The set of all types is written T .

Let D be a function which assigns sets to the basic types.

This function D can be extended to all types by the rule

D(σ→τ) = (Dσ → Dτ)

This is the set of all functions from Dσ to Dτ .

D

25/69

More general background/review

Given a syntactic item in a lexicon like

(word , σ)

our semantics must assign to w some interpretation

[[word]] ∈ Dσ

It then follows that if T is a all parse tree over the given lexicon
and the root of T is (junk , σ),
then [[junk]] will belong to Dσ.

26/69

From sets to preorders

We said that each Dσ was a set,
and now we want it to be a preorder.

So we’ll usually write it as Pσ.

We previously said

D(στ) = (Dσ → Dτ)

This is the set of all functions from Dσ to Dτ .

But now we have to re-think this because we want
preorders, not just sets.

27/69

From sets to preorders

The natural thing to do is to use the pointwise order

P(σ→τ) = (Pσ → Pτ)

This is the set of all functions from Pσ to Pτ ,
ordered by

f ≤ g iff for all x ∈ Pσ, f (x) ≤ g(x) in Pτ .

But here we have a problem: we sometimes want antitone
functions to handle all the ↓ stuff.

28/69

Two choices: here’s the first

One way would be to change our type system:

◮ If σ and τ are types, so are (σ, τ)+ and (σ, τ)−.

Then define

P(σ,τ)+ = (Pσ → Pτ)
+

This is the set of all monotone functions from Pσ to Pτ ,
ordered by

f ≤ g iff for all x ∈ Pσ, f (x) ≤ g(x) in Pτ .

P(σ,τ)− = (Pσ → Pτ)
−

This is the set of all antitone functions from Pσ to Pτ ,
ordered by (presumably)

f ≤ g iff for all x ∈ Pσ, f (x) ≤ g(x) in Pτ .

29/69

Two choices: here’s the second

◮ If σ and τ are types, so are −σ and also (σ, τ).

Then define

P−σ = −Pσ

This is the opposite order of Pσ.

And
Pσ→τ = (Pσ → Pτ)

This is the set of all monotone functions from Pσ to Pτ ,

30/69

Variation: externalized

Let us expand on that type assignment by incorporating the
monotonicity information into the types.

plus : r
+
→ (r

+
→ r) minus : r

+
→ (r

−
→ r)

times : r
+
→ (r

+
→ r) div2 : r

+
→ (r

−
→ r)

Here is how it will work when we do the details:

Dr = R, the real numbers with the usual order ≤
D

r
+
→r

= the monotone functions from Dr to Dr

D

r
−

→r
= the antitone functions from Dr to Dr

D

r
+
→(r

+
→r)

= the monotone functions from Dr to D
r
+
→r

D

r
+
→(r

−

→r)
= the monotone functions from Dr to D

r
−

→r

31/69

Variation: externalized

Old

minus : r → (r → r) z : r

minus z : r → r

plus : r → (r → r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w : r

New

minus : r
+
→ (r

−
→ r) z : r

minus z : r
−
→ r

plus : r
+
→ (r

+
→ r) v : r

plus v : r
+
→ r w : r

plus v w : r

minus z plus v w : r

32/69

Polarity determination again

Old Algorithm

◮ Label the root with ↑.

◮ Propagate notations up the tree.
The right branches of nodes for div2 and minus of type r flip
notations.
Otherwise, we maintain the notations as we go up the tree.

New Algorithm

◮ Label the root with ↑.

◮ Propagate notations up the tree.

◮ If a node is labeled ℓ and its left parent is of type σ
+
→ τ , then

both parents are labeled ℓ.

◮ If a node is labeled ℓ and its left parent is of type σ
−

→ τ , then
the left parent is to be labeled ℓ and the right parent is to be
labeled with ℓ turned upside-down.

33/69

van Eijck’s top-down variation

Top-down version of the algorithm

◮ Label one of the leaves with ↑.

◮ Propagate notations down the tree.

◮ If a node is labeled ℓ and it is a functor node, then its child
down the tree gets the same label ℓ.

◮ If a node n is labeled ℓ and n is an argument node,

then: if the type of the functor node m is σ
+
→ τ ,

again the child of n gets the label ℓ.

But if the type of the functor node m is σ
−

→ τ , then the child
of n gets the label ℓ turned upside-down.

34/69

The internalized variation
suggested by David Dowty’s paper

Lexicon

v : r
w : r
x : r
y : r
z : r
plus : r → (r → r)
minus : r → (−r → r)
times : r → (r → r)
div2 : r → (−r → r)

v : −r
w : −r
x : −r
y : −r
z : −r
plus : −r → (−r → −r)
minus : −r → (r → −r)
times : −r → (−r → −r)
div2 : −r → (r → −r)

The left side comes from the raw facts of arithmetic,
the right side from a formal duality based on

−(s → t) = −s → −t
−(−s) = s

.
35/69

The internalized variation
suggested by David Dowty’s paper

Lexicon

plus : r → (r → r)
minus : r → (−r → r)
times : r → (r → r)
div2 : r → (−r → r)

plus : −r → (−r → −r)
minus : −r → (r → −r)
times : −r → (−r → −r)
div2 : −r → (r → −r)

Now a term corresponding to

z

2x−y

parses as

div2 : r → (−r → r) z : r

div2 z : −r → r

minus : −r → (r → −r) x : −r

minus x : r → −r y : r

minus x y : −r

div2 z minus x y : r

The parse tree automatically indicates the polarities.
35/69

Now let’s do the semantics

It will be much simpler if we replace “variables” in our syntax
by actual numbers:

Lexicon

1 : r
2 : r
3 : r
plus : r → (r → r)
minus : r → (−r → r)
times : r → (r → r)
div2 : r → (−r → r)

1 : −r
2 : −r
3 : −r
plus : −r → (−r → −r)
minus : −r → (r → −r)
times : −r → (−r → −r)
div2 : −r → (r → −r)

Our only basic type is r .
Take Pr = usual real numbers with the usual order.

Then P−r = −Pr = usual real numbers with the opposite order.

36/69

More on the semantics

Pr→r = monotone functions from R to R
P−r→r = monotone functions from −R to R
Pr→−r = monotone functions from R to −R
P−r→−r = monotone functions from −R to −R

We need interpretations for plus, minus, times, div2.
Actually, we need two interpretations for each.

For plus : r → (r → r), we take

[[plus]] : R → RR

which takes each real number a to:
the function which takes each real number b to a+ b.

For example, [[plus]](67)(−3) = 64.

37/69

More on the semantics

We have to check that [[plus]] really belongs to Dr→(r→r).

◮ This means: For each a, [[plus]](a) is a monotone function:
If b ≤ b′, then a + b ≤ a + b′.

◮ The function from R to (R → R) taking a to [[plus]](a)
is itself monotone.
This means that if a ≤ a′, then for all b, a + b ≤ a′ + b.

We also have to interpret plus : −r → (−r → −r).

Fact

−(P,Q) = (−P,−Q).

Using this,

P(−r→(−r→−r)) = −P(r→(r→r)).

Fact

A preorder and its opposite have the same set of points.

So we automatically see that [[plus]] belongs to P(−r→(−r→−r)).
38/69

More on the semantics

We similarly use

[[plus]](a)(b) = a + b
[[minus]](a)(b) = a − b
[[times]](a)(b) = a × b
[[div2]](a)(b) = a ÷ 2b

It is now a “hard fact of arithmetic” that our semantics is
appropriate.

39/69

A silly example

div2 : r → (−r → r) 3 : r

div2 3 : −r → r

minus : −r → (r → −r) 1 : −r

minus 1 : r → −r 3 : r
minus 1 3 : −r

div2 3 minus 1 3 : r

[[div2 3 minus 1 3: r]] = 3÷ 2(1−3) = 3÷
1

4
= 12.

We don’t need all this machinery to do this!

40/69

More interestingly

Let’s introduce “variables” of type r .

div2 : r → (−r → r) 3 : r

div2 3 : −r → r

minus : −r → (r → −r) 1 : −r

minus 1 : r → −r x : r
minus 1 x : −r

div2 3 minus 1 x : r

[[div2 3 minus 1 x]] = the function taking a to 3/2(1−a).

The point now is that we can see from the type x : r
that this function is monotone (increasing) in x

(If the type were x : −r , it would be antitone in this occurrence.)
41/69

How we know this
We go down the tree

div2 : r → (−r → r) 3 : r

div2 3 : −r → r

minus : −r → (r → −r) 1 : −r

minus 1 : r → −r x : r
minus 1 x : −r

div2 3 minus 1 x : r

[[x]] : R → R

is monotone.

[[minus 1 x]] : R → −R

is monotone,
since it is the function taking a to [[minus 1]](a),
and [[minus 1]] : R → −R .

42/69

How we know this
We go down the tree

div2 : r → (−r → r) 3 : r

div2 3 : −r → r

minus : −r → (r → −r) 1 : −r

minus 1 : r → −r x : r
minus 1 x : −r

div2 3 minus 1 x : r

[[div2 3 minus 1 x: r]] : R → R

is monotone,
since it is the composition

[[div2 3 x]] ◦ [[minus 1 x: -r]],

and the composition of two anitone functions is monotone.

42/69

Review of the simply typed Lambda Calculus
This is just the syntax; the semantics comes later

Definition

Let B be a set of base types.
The full set of types T is defined as the smallest superset of B,
such that whenever σ, τ ∈ T , so is σ → τ .

To define the syntax of the calculus, we start with a set of
typed constants c : σ,
and also a set of typed variables x : σ.

Definition

We define typed terms in the following way:

c : σ
f : σ → τ t : σ

f(t) : τ
x : σ t : τ
λx .t : σ → τ

43/69

Formal details on the Monotonicity Calculus

Definition

Let M = {+,−, ·}.
We call M the set of markings,
and we use m to denote an element of M.

Definition

Let B be a set of base types.
The full set of types T is defined as the smallest superset of B,
such that whenever σ, τ ∈ T , so is σ

m
→ τ , for m ∈ M.

Example

In standard Montague semantics, we take B to be {e, t}.
In our example from algebra, we could take it to be {r}.

44/69

Examples of types

Example

We return to the linguistic example, using base types e and t.
We abbreviate e

·
→ t by p (for “property”).

every : p
−
→ (p

+
→ t).

This reflects the facts that every is antitone in its first argument
and monotone in its second.

This is the most specific type we could assign to every.
But we could also say

every : p
−
→ (p

·
→ t),

or even
every : p

·
→ (p

·
→ t).

45/69

The order � on types

Definition (⊑ on markings over arrows)

+

·

−
s

Down ⊑ is more specific. Up ⊑ is more general.

Definition (� on types)

σ � σ

σ′ � σ τ � τ ′ m ⊑ m′

σ
m
→ τ � σ′

m′

→ τ ′

Down � is more specific. Up � is more general.

Example

Concerning every:

p
−
→ (p

+
→ t) � p

·
→ (p

·
→ t).

46/69

↑ and ∨ on types

Definition (Information order on markings)

m1 ∨m2 =

{

m1 if m1 = m2

· otherwise

Definition

The compatibility relation ↑
and the least upper bound function ∨ on compatible types
are defined by recursion so that

◮ σ ↑ σ, and σ ∨ σ = σ.

◮ If τ1 ↑ τ2, then
(σ

m1→ τ1) ↑ (σ
m2→ τ2)

for all markings m1,m2 ∈ M, and

(σ
m1→ τ1) ∨ (σ

m2→ τ2) = σ
m1∨m2−→ (τ1 ∨ τ2).

47/69

Review of the semantics of the typed lambda
calculus

Definition

A standard structure is a system S = {Xτ}τ∈T of sets,
one for each type τ ∈ T .

For the base types β ∈ B there is no requirement on Xβ.

For complex types σ → τ ,
Xσ→τ is the set of all functions from Xσ to Xτ .

The semantics begins with interpretations of the constants,
requiring that [[c]] ∈ Xσ whenever c : σ.

The rest of the semantics is fairly natural, and it need not concern
us here.

48/69

Our semantic models

Definition

A standard structure is a system S = {Dτ}τ∈T of preorders,
one for each type τ ∈ T .

For the base types β ∈ B there is no requirement on Dβ.

For complex types σ
m
→ τ , we have several requirements:

◮ D
σ

+
→τ

is the set of all monotone functions from Dσ to Dτ .

◮ D
σ

−

→τ
is the set of all antitone functions from Dσ to Dτ .

◮ D
σ

·

→τ
is the set of all functions from Dσ to Dτ .

◮ For all markings m ∈ M, all types σ, τ ∈ T , and all
f , g ∈ D

σ
m
→τ

, we have

f ≤
σ

m
→τ

g if and only if f (a) ≤τ g(a) for all a ∈ Dσ.

This is called the pointwise order.

49/69

An example of the type domains

Example

With B = {e, t},
usually one takes De to be an arbitrary set, made into a
discrete preorder: x ≤ y iff x = y .
Dt is usually taken to be the two-element order 0 ≤ 1.

Then we get a standard structure by defining Dσ by recursion on
complex types σ:

D

e
·

→t
will be the set of all functions from De to Dt ,

D

e
+
→t

will be the set of monotone functions, and
D

e
−

→t
will be the set of antitone functions.

In all cases, these are taken to be preorders using the pointwise
order.

Example

Continuing the algebra example, we take Dr to be R = (R ,≤),
the real numbers with the usual order.

50/69

The syntax of our term language

The syntax of the calculus starts with typed constants c : σ.

Definition

We define typed terms in the following way:

c : σ

f : σ → τ t : σ′ σ′ � σ

f(t) : τ

This ability to apply a function symbol of type σ → τ
to an argument of more specific type σ′ � σ
is a design feature of our approach.

51/69

The syntax of our term language, example

Example

For an example pertaining to algebra, we take

plus : r
+
→ (r

+
→ r) minus : r

+
→ (r

−
→ r)

times : r
+
→ (r

+
→ r) div2 : r

+
→ (r

−
→ r)

and we might as well add several more symbols

abs : r
·
→ r

0, 1, 2 : r

52/69

Typed constants: example pertinent to
natural language.

Example

We take plural nouns like cat, person, . . . : p.
Also, we take determiners

every : p
−
→ (p

+
→ t)

not every : p
+
→ (p

−
→ t)

some : p
+
→ (p

+
→ t)

no : p
−
→ (p

−
→ t)

most : p
·
→ (p

+
→ t)

exactly n : p
·
→ (p

·
→ t)

These types are
related by ↑ pairwise.

This is another design
feature of our approach!

Intransitive and transitive verbs (e.g. vomits, see)

vomits : p see : (p
+
→ t)

+
→ t.

53/69

Denotation of terms in a standard structure

Definition

For each term t : τ , and for each τ ′ � τ , we define [[t]]τ ′ :

◮ The semantics begins with values [[c]]τ .

We require that [[c]]τ belong to Dτ .

◮ If t : σ
m
→ τ and u : σ′ with σ′ � σ, then

[[t(u)]]τ = [[t]]
σ

m
→τ

(

[[u]]σ′

)

.

In all cases, where t : τ � τ ′, we let [[t]]τ ′ = [[t]]τ .

Frequently we omit the subscripts on the types.

54/69

Denotation of terms

Example

Let B = {r}, and S be the standard structure defined as follows.
We take Dr to be (R,≤).
We take

[[plus]] = λa.λb.a + b
[[minus]] = λa.λb.a − b
[[times]] = λa.λb.a × b
[[div2]] = λa.λb.a ÷ 2b

[[abs]] = λa.|a|

[[0]] = 0
[[1]] = 1
[[2]] = 2

[[c]] ∈ Dσ for constants c : σ.
That is, we have a bona fide semantics of all constants.

We then may work out the semantics of all terms.
For example,

[[plus 1 1]] = [[plus]]([[1]])([[1]]) = [[plus]](1)(1) = 2.

55/69

Semantics of inequalities in structures

Definition (Satisfaction in a standard structure)

S |= s ≤ t means that [[s]] ≤ [[t]] in Dσ∨τ

We only use this notation
when the types of s and t are compatible (↑),
and we are comparing their values inside Dσ∨τ .

Definition (Semantic consequence)

We always use Γ to denote a set of inequalities of the form u ≤ v.

We write Γ � s ≤ t to mean

whenever S � u ≤ v for all inequalities u ≤ v ∈ Γ,
also S � s ≤ t.

56/69

Labeling subterms inside of terms

Suppose u is a subterm occurrence in t.
We define l ∈ M which indicates the polarity of u inside t,
and call it the label of the occurrence of u in t.
We shall write this as t[ul].

The definition is by recursion on terms:

◮ If u = t, then u[u↑];

◮ If s[ul], then s(v)[ul];

◮ If v[ul] and s : τ
m
→ σ, then s(v)[um·l].

You can use your favorite algorithm.

57/69

Examples

Example

see every [cat↓]
see some [cat↑]
see most [cat·]

Example

As we have seen

div2 minus [x↑] [y↓] minus [z↓] plus [v↑] [w↑].

58/69

Soundness of Labeling Scheme

Suppose t[s l] is a term with subterm s labeled by l ∈ {+,−}.

Let S be a standard structure.
Assume that [[s]]σ̂ ≤σ̂ [[s’]]σ̂.

Then

1 If l = +, then [[t]]τ̂ ≤τ̂ [[ts
′←s]]τ̂

2 If l = −, then [[ts
′←s]]τ̂ ≤τ̂ [[t]]τ̂ .

59/69

The Monotonicity Calculus
I have omitted the types

t ≤ t
(Reflexive)

t ≤ u u ≤ v
t ≤ v

(Transitive)

f ≤ g

f(t) ≤ g(t)
(Pointwise)

u ≤ v

t[u↑] ≤ tv←u
(Monotone)

u ≤ v

t[v↓] ≤ tu←v
(Antitone)

60/69

The Monotonicity Calculus
I have omitted the types

t ≤ t
(Reflexive)

t ≤ u u ≤ v
t ≤ v

(Transitive)

f ≤ g

f(t) ≤ g(t)
(Pointwise)

u ≤ v

t[u↑] ≤ tv←u
(Monotone)

u ≤ v

t[v↓] ≤ tu←v
(Antitone)

Soundness/Completeness Theorem

Γ ⊢ t ≤ u iff Γ |= t ≤ u.

60/69

Example: 1− 1 ≤ 2− 0

Example

{0 ≤ 1, 1 ≤ 2} ⊢ minus 1 1 ≤ minus 2 0.

1 ≤ 2

minus [1↑] ≤ minus 2
(Mono)

minus 1 1 ≤ minus 2 1
(Point)

0 ≤ 1

minus 2 [1↓] ≤ minus 2 0
(Anti)

minus 1 1 ≤ minus 2 0
(Trans)

61/69

Linguistic example

Example

Let Γ contain the following inequalities

cat : p ≤ animal : p

every : p
−
→ (p

+
→ t) ≤ most : p

·
→ (p

+
→ t)

Recall that the types of every and most are related by ↑.
So it makes sense for us to write every ≤ most.
It would not be sensible to write every ≤ cat.

Part of our contribution is exactly settling this kind of issue.

62/69

Linguistic example

Example

Let Γ contain the following inequalities

cat : p ≤ animal : p

every : p
−
→ (p

+
→ t) ≤ most : p

·
→ (p

+
→ t)

Below is a derivation from Γ:

cat ≤ animal

every [animal↓] ≤ every cat
(Anti) every ≤ most

every cat ≤ most cat
(Point)

every animal ≤ most cat
(Trans)

every animal vomits ≤ most cat vomits
(Point)

62/69

Combining the arithmetic and linguistic
examples

Example

We take the set B of base types to be {e, t, r}.
We use all the syntax which we have already seen, and also

at least : r
−
→ (p

+
→ (p

+
→ t))

at most : r
+
→ (p

−
→ (p

−
→ t))

more than : r
−
→ (p

+
→ (p

+
→ t))

less than : r
+
→ (p

−
→ (p

−
→ t))

Then the natural set Γ of assumptions would include

0 ≤ 1, 1 ≤ 2, . . . ,more than ≤ at least,
less than ≤ at most, some ≤ at least 1, at least 1 ≤ some

For example, we could prove

more than three people walk ≤ at least two people walk

63/69

The Monotonicity Calculus
I have omitted the types

t ≤ t
(Reflexive)

t ≤ u u ≤ v
t ≤ v

(Transitive)

f ≤ g

f(t) ≤ g(t)
(Pointwise)

u ≤ v

t[u↑] ≤ tv←u
(Monotone)

u ≤ v

t[v↓] ≤ tu←v
(Antitone)

64/69

The Monotonicity Calculus
I have omitted the types

Soundness/Completeness Theorem

Γ ⊢ t ≤ u iff Γ |= t ≤ u.

Actually, I’m cheating here.

Our current proof needs to assume that our preorders are
weakly complete:
every two elements have an upper bound and a lower bound.

This restriction leads to two extra rules in the calculus,
unfortunately.

f ↓ ≤ g↑

f ↓(a) ≤ g↑(b)
(WC1)

f ↑≤ g↓

f ↑(a) ≤ g↓(b)
(WC2)

64/69

The real result

Soundness/Completeness Theorem

The following are equivalent:

◮ Γ |= t ≤ u on all models where the base types are interpreted
as weakly complete orders.

◮ Γ ⊢ t ≤ u in the proof system below.

t ≤ t
(Reflexive)

t ≤ u u ≤ v
t ≤ v

(Transitive)

f ≤ g

f(t) ≤ g(t)
(Pointwise)

u ≤ v

f↑(u) ≤ f↑(v)
(Monotone)

u ≤ v

f↓(v) ≤ f↓(u)
(Antitone)

f↓ ≤ g↑

f↓(u) ≤ g↑(v)
(WC1)

f↑≤ g↓

f↑(u) ≤ g↓(v)
(WC2)

65/69

Some key derivations for the completeness
proof

Suppose that f : σ
+
→ τ , g : σ

−
→ τ , and a, b : σ.

If
Γ = {f ≤ g , a ≤ b} or Γ = {f ≤ g , b ≤ a},

then Γ ⊢ f (a) ≤ g(b).

a ≤ b

f(a) ≤ f(b)
(Mono)

f ≤ g

f(b) ≤ g(b)
(Point)

f(a) ≤ g(b)
(Trans)

f ≤ g

f(a) ≤ g(a)
(Point)

b ≤ a

g(a) ≤ g(b)
(Anti)

f(a) ≤ g(b)
(Trans)

66/69

Outline of the completeness proof

1 Γ is a set of inequalities over some vocabulary V = (Con,T).
Let V+ be a rich extension of V. We consider Γ as a set of
inequalities over V+. We also consider the preorders Cσ given
by provability from Γ. The elements of each Cσ is the set of
terms t : σ′ � σ, where t is a term over V+.

2 We find preorders Dβ for all base types β. Unlike Cβ, Dβ will
be a CPL.

3 We automatically obtain the semantic domains Dσ when σ is
a function type. We use our work in Section ?? to define
maps kσ : Cσ → Dσ. Each kσ is a one-to-one order
embedding: it preserves and reflects equality and order.

4 We then define interpretations
[[c:σ]] ∈ Dσ for all constants c, when σ = T (c). This gives a model M, and

67/69

Why is the completeness work so hard?

The most natural strategy is to assume that

Γ 6⊢ s ≤ t

and to build a model of Γ where the inequality fails.

And the time-honored strategy is to build a model from the syntax.

This is hard here, because the orderings are so complicated.

Another option is to go for weaker results, via Henkin-type models.

This is the way things go in tomorrow’s lecture,
where we still lack a “real” completeness result.

68/69

Tomorrow: next steps in this line of work

We are going to add λ-abstraction
and to incorporate the α, β, and η rules of the Lambda Calculus.

What we have done already is like the Lambda Calculus
but with constants only, no abstraction.

In the typed Lambda Calculus, we study equational reasoning
concerning equalities t = u between terms of the same type.

Work on the constants is more interesting for the
Monotonicity Calculus than the simply-typed Lambda Calculus.

69/69

The Monotonicity Calculus vs. the
equational logic of function application

t ≤ t
(Reflexive)

t ≤ u u ≤ v
t ≤ v

(Transitive)

f ≤ g

f(t) ≤ g(t)
(Pointwise)

u ≤ v

t[u↑] ≤ tv←u
(Monotone)

u ≤ v

t[v↓] ≤ tu←v
(Antitone)

t = t
(Reflexive) t = u u = v

t = v
(Transitive)

t = u
u = t

(Symmetric)
f = g t = u

f(t) = g(u)
(Application)

70/69

