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Abstract. The goal of natural logic is to present and study logical sys-
tems for reasoning with sentences of (or which are reasonably close to)
ordinary language. This paper explores simple systems of natural logic
which make use of intersecting adjectives; these are adjectives whose in-
terpretation does not vary with the noun they modify. Our project in
this paper is to take one of the simplest syllogistic fragments, that of
all and some, and to add intersecting adjectives. There are two ways to
do this, depending on whether one allows iteration or prefers a “flat”
structure of at most one adjective. We present rules of inference for both
types of syntax, and these differ. The main results are four completeness
theorems: for each of the two types of syntax we have completeness for
the all fragment and for the full language of this paper.

keywords: syllogistic logic,completeness, adjectives, transitive relations.

1 Introduction: Intersecting Adjectives

By “natural logic” 1 mean the study of logical systems designed to model lin-
guistic inference in a manner which is as “close to the surface” as possible. The
idea is to study inference in language on its own terms, and hopefully to obtain
sound and complete systems for linguistic inference which are also decidable.
This contrasts with approaches that go via translation to first-order logic be-
cause first-order logic is undecidable, and because work done via translation
does not yield logical systems in the first place.

Among the simplest kind of logical systems of the type studied in this paper
are ones derived from the classical syllogistic. These are extremely small logical
systems, containing as sentences only expressions of the form all p and g and
some p are q. The classical syllogistic can be viewed as a logical system, and then
one could study its properties. The earliest work on this topic may be found in
Lukasiewicz [2], and the goal there was to propose a modern reconstruction of
the ancient sources of logic. In contrast, most of the contemporary interest in the
topic is aimed at other matters: decidable fragments of language; alternatives to
model-theoretic semantics based on proof theory; and logical systems for human
reasoning. For examples, see Nishihara et. al [5] as well as [3, 4, 6].

The main new point in this paper concerns a class of adjectives call intersect-
ing adjectives. This class includes the color adjectives, also male and female, and
frequently also nationality adjectives such as Xhosa and Yoruba. Intersecting ad-
jectives have two defining features, and as we shall see these features are closely
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related. The first is a proof-theoretic feature noted by Keenan and Faltz [1],
p- 123:

The sense in which an intersecting adjective determines a property
can be described as follows: If Dana is a female student and Dana (1)
is also an athlete, then Dana is a female athlete.

The second feature of the intersecting adjectives is more semantic: in a stan-
dard model-theoretic semantics, the interpretation of a phrase such as female
shopkeeper would be the intersection of the interpretation of shopkeeper (some
subset of the underlying universe of discourse) with a set of “female individu-
als”. In this respect, the intersecting adjectives differ from the larger class of
adjectives. To recall an oft-made point, consider a (non-intersecting) adjective
such as tall. It may well be that a person could simultaneously be a tall student
but not a tall basketball player. And this would mean that tall lacks both the
proof-theoretic and model-theoretic features of the intersecting adjectives. That
is, the statement of Keenan and Faltz above would be false with tall replacing
female, and it also would not be sensible to interpret tall student in a model by
intersecting the interpretation of student with a fixed set interpreting tall.

We are interested in syllogistic inferences using the intersecting adjectives in
addition to the determiners all and some. To make things precise, we must settle
on a formal syntax and semantics. However, though the fragment of interest is
very small indeed, the syntax already gives us pause. For intersecting adjectives
can iterate, as in The driver was a gay Albanian with a brown-spotted partly-
grey white dog. In fact, although color adjectives do not usually iterate on their
own, if one adds words like “partly”, then we do get iteration: The partly blue,
partly red, partly green ball was lost in the attic. For this reason, we propose
two versions of the syntax. First, a flat syntax where nouns are either basic or
contain an iterating adjective (Section 2). We call the languages of that section
L(V, adj) and L(V, 3, adj). We give a proof theory and completeness theorem for
this language before turning to our second syntax, the languages L,.(V, adj) and
L,(¥,3, adj) (Section 3).

It might be interesting to mention that the rules of inference of our systems
are indirectly based on the formulation of Keenan and Faltz from (1). (We say
“indirectly” because our logical languages do not have proper nouns.) In a sense,
one could state the basic issue of this paper: is (1) all that one could generally
say about intersecting adjectives with the standard semantics? Does everything
else follow from (1), together with more general facts about all and some? Or
are there yet other logical principles waiting to be discovered? We shall return
to this point at the end of the paper.

2 L(V,adj) and L(V, 3, adj): Non-productive Syntax

Our syntax begins with basic nouns x1, x2, ... and then adds intersecting adjec-
tives a1, as, ... We then define the set of nouns, and denote nouns by letters like
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n, p, and ¢, by saying that the basic nouns are nouns, and if  is a noun and a an
intersecting adjective, then a x is a noun. We call nouns of the form a = complex
nouns. This is a very simple model of predication. It is also non-productive in
the sense that nouns may contain only zero or one adjective, not more. Later
in the paper we shall explore the possibility of re-working the syntax so that
predication is productive (see Section 3).

In what follows, we usually “abbreviate” the intersecting adjectives with color
adjectives red, blue, and green. This helps to avoid subscripts, and it seems to
improve readability.

At first, the only sentences which we consider are those of the form V(p, q),
read as all p are q. The collection of these sentences is called L(V, adj). Later,
we’'ll expand this to a language L£(V,3, adj) by adding sentences some p are q.

Our semantics for £(V, adj) is based on models M for the fragment. A model
consists of a set M, subsets [2] C M for each basic noun z, and sets [a] for the
intersecting adjectives. Then we define the semantics of a noun a x by [a z] =
[a] N [x].

We define the relation of truth between models and sentences in the obvious
way: M | V(p,q) iff [p] C [¢]. Then we say that M = I' if M = S for all
sentences S € I'. The main semantic definition is given by I' = S if for all
models M, if M | I'; then also M |= S. The first logical question about this
semantic notion is whether there is a matching proof-theoretic counterpart.

2.1 L(VY, adj): All and Intersecting Adjectives

The simplest syllogistic fragment “of all” is simply the collection of sentences
of the form All n are p, where n and p are nouns. We shall call this language
L(V, adj), and later we shall expand it to L(V,3, adj). Previous work studied
the case of nouns without modifiers, and in this paper we allow nouns to be
modified by intersecting adjectives. A logical system for L(V, adyj) is presented in
Figure 1. The rules (T) and (B) are standard in syllogistic logic. (T) reflects our
decision to let all p are p statements be valid (i.e., true in all models), regardless
of whether a given model has p or not. The rule (B) gets its name from the
classical syllogism Barbara.

We shall not give a precise definition of a proof tree in a syllogistic logic, but
the idea is that it should be a tree labeled with sentences, all of whose internal
nodes match one of the rules of the logic. For a more precise definition, see
Pratt-Hartmann and Moss [6]. The examples throughout this paper should help
make this clear. If I"U{S} is a set of sentences in this fragment, we write I" - S
to mean that there is a proof tree whose root is labeled S and whose leaves are
labeled with sentences in the set I.

This same definition works for all our fragments and all logics. All of our
systems are sound: if I' = S, then I' = S. This easy point is shown by induction
on derivations.
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V(n,p) V(p,q)
Vm Vg
. V(n,red ) V(n,y) .
Y(red x,x) (Adjy) Y(n, red y) (Adj2)

Fig. 1. The logic for the fragment L(V, adj) of sentences V(n,p), read as all n are p.
Note that = and y denote basic nouns, and n, p, and g denote noun which are either
basic or complex.

Ezample 2.1. ¥(z, red y) F V(z, red x). In words, if all x are red y, then all = are
red = (hence red objects). Here is a derivation:

(T)

V(x,red y) Y(x,x) (Adi)

V(z, red x)

Perhaps the most interesting single-premise inference available in this system
is the following monotonicity fact.

Ezample 2.2. ¥(z,y) F Y(red x,red y).

The derivation is indicated below:

— (Adj
V(red x,x) (Adjr)
Y(red x,y)

T
Y(red x,red x) ™
V(red x,red y)

(Adj2)

Theorem 2.3. The logic of Figure 1 is complete for L(V,adj): if I' E V(n,p),
then I' = ¥(n,p).

Proof. Suppose that I' = V(n,p); we show that I' F V(n,p). Consider a model
M whose universe M is a singleton {*}, and whose structure is given by

{x}if I'FV¥(n,z)
.1 = {(Z) if I't/Y(n, )

[red]

{*} if for some basic noun z, I" + ¥(n, red x)
() otherwise

These definitions are made using the specific noun n from our overall statement
of the theorem.

We first claim that M = I'. Take a sentence in I" such as V(I1,l2). We have
four cases, depending on whether [; and Iy are basic or complex nouns. The
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most interesting is when [y is red x and [y is blue y. Again, we must show that
[red x] C [blue y]. For this, we may assume that [red z] # 0; otherwise, we
trivially have the desired conclusion. Hence [z] = {*}, so I F V(n,z). Also,
[red] must be {*}, so for some z, I' - V(n, red z). Using (Adj2), I' - V(n, red x).
Thus I' F V(n,blue y). Using (Adj:) and (B), we have I' F V(n,y). So x €
[blue] N [y] = [blue y]. This completes the proof of our claim.

We have verified that M |= I'. Recalling that I" = V(n,p), we have M =
V(n,p). We again have four cases, and we only mention two of them. First, in
case m is a basic noun z, we have * € [n] by (T). Then * € [p] as well, and this
means that I F V(n, p). Second, assume that n is of the form red z also. Then
using (Adj1), * € [n]. Hence again € [p]. We only deal with the case that p is
of the form blue w. So I' |= V(n, w); also, for some basic noun z, I" F V(n, blue z).
By (Adj2), I' F V(n, blue w). That is, I" - V(n, p). This completes the proof.

2.2 Proof Rules for some and Intersecting Adjectives

Next, we add sentences 3(p, q) to our fragment. We call the resulting language
L(V, 3, adj). The obvious semantics is to say that in a model M we have M |=
3(p, q) just in case [p] N [g] # 0. We aim to study the semantic consequence
relation I' = S, and especially to associate with it a sound and complete proof
system. Figure 2 provides some sound inference rules, and the system that we
study has as its rules the rules in Figures 1 and 2.

The first two rules in Figure 2 come from syllogistic logic. Forgetting the
adjectives for a moment, the rules (T), (B), (I), and (D) are complete for the
language of sentences all p are ¢ and some p are g; see [3], Theorem 4. There are
related results in Lukasiewicz [2] and Westerstahl [7]. The name (D) comes from
its name in classical syllogistics, Darii. The “twisted” form our formulation of
(D) implies that the conversion property of some is derivable: 3(n,p) - I(p, n).
(For this, take p = ¢ in (D).)

In the remainder of this paper, we use conversion frequently, and usually
without mention.

Ezample 2.4. 3(red x, blue y) F I(blue x, red y). Use (Adjs), taking green to be
red, and z to be z.

Ezample 2.5. 3(x,red y) b I(y, red x). On the left is a derivation of this reci-
procity rule:
d(x, red
D))
A(red x, red y)
A(red z,y)

(Adj1)

V(red y,y) D)

Ezample 2.6. J(red x, blue y) - I(blue x, red x). Use (Adjs), taking green to be
red, and z to be z.
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3(n, p) A(n,q) V(g:p) A(z, red y)
I(red x, red y)

(Adjs)

A(red z, blue y) V(red x, green z)
I(red z, blue z)

(Adjs)

A(red z, blue y) V(red x, green z)

Adj
I(blue x, green y) (Adjs)

Fig. 2. Additions to Figure 1 for the larger language L(V, 3, adj) which contains sen-
tences 3(p, q).

Ezample 2.7. 3(z,y),¥(x, red z) F I(x, red y). Here is a derivation:
Az,y) V(x,red z)
Ny, z) Y(z,red x)
I(y, red x)

I(x, red y)

Example 2.1
(D)
Example 2.5

In what follows, a sequent is a pair o = (I, S) consisting of a set of sentences
(of some fragment under discussion) and a sentence S of it. The set I is the set of
premises of the sequent o. The sequent is valid if I' = S. Note that completeness
of a logical system is just the statement that every valid sequent is provable in
the system.

Proposition 2.8. Let o be a sequent in L(V, 3, adj) with one or two premises.
If o is valid, then it is provable.

For the verification, we begin with the one-premise sequents. The only valid
ones are listed below, along with reasons for why they are provable:

1. Y(z,y) = V(z,z): use (Adj1).

2. Y(x,red y) E V(x, red z): use (Adj2) as in Example 2.7.

3. I=,y) E Iy, z): use (D) withn=x and p=y = q.

4. J(red x,n) E I(x,x): use (1) to get I(red x,red x), and then use (D) and
(Adj1) to get 3(red x,x). Then use conversion and (I).

5. A(x, red y) E Iy, red x): see Example 2.5.

6. I(red x, blue y) = I(blue z, red y): see Example 2.4.

7. A(red x, blue y) = I(blue z, red x): see Example 2.6.

We mentioned that these are the “only valid” sequents. To show that a given
sequent is not valid, one may use a semantic argument. We shall see some of
these below.

There are a few others, and they are all minor modifications on the list above.
For example, one can conclude V(z, x) from any premise.
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We next turn to the rules with two premises. For rules with two univer-
sal premises, the only sound ones are instances of (B), perhaps also involving
monotonicity. For example,

V(z,y),V(red y, blue z) = V(red x, blue z).

And in our system we have a corresponding proof: use monotonicity (Exam-
ple 2.2) and the first premise to see ¥(red z,red y), and then use (B) with this
and the other premise.

Concerning two existential premises, it is easy to see that if S, T, and U are
existential and S, T |= U, then either S |= U or T' = U. For if not, take a model
M of S but not U, and a model N of T" but not U, and then take the disjoint
union. This would satisfy S and T but not U, a contradiction.

The main work concerns the case when one premise is existential and the
other is universal. In what follows, we are only going to consider existential
consequences.

The first two premise forms are as follows:

1. Iz, y),V(red z,n).
2. 3(z,y),¥Y(z, blue z).

There are no sound conclusions of form (1) beyond what one can infer
from the existential premise J(x,y). The second form has as sound conclusions
(x, blue y), and this was treated in Example 2.7. The other sound conclusions
are 3(x, blue z) (this is easy), and 3(y, blue z) (this comes from (D)).

The next forms would involve an existential sentence with one adjective, say
I(red x,y). But this has the same models as I(red x, red y), and it is interderiv-
able with it. So we may proceed to forms with premises containing a sentence of
the form 3(red x, blue y). The relevant forms continue thus:

3. I(red x, blue y),V(z, green z).
4. J(red x, blue y),V(red x, z).
5. 3(red x, blue y),V(red x, green z).

In form (3), one shows that for all existential sentences S,
(red x, blue y),V(z, green z) =S iff I(red x, blue y),V(red x, green z) E S.

Here again, the argument is semantic. The implication from right to left is triv-
ial, so assume the assertion on the right. Let M satisfy 3(red z, blue y) and
V(red z, green z). Consider the submodel M,.q of M induced by [red]. Then
M, pq satisfies I(red x, blue y) and V(z, green z). So Mycq f= S. Since S is exis-
tential, we also have M = S, as desired.

The upshot is that form (3) is subsumed by form (5). Form (4) is easier, since
V(red x,z) and ¥(red x,red z) are inter-derivable.

We consider in full detail the premise form 3(red z, blue y),V(red x, green z).
Here are all of the sound conclusions of the form 3(a u,b v), but omitting ones
which are related by a use of Example 2.4. We list all the sound conclusions,
together with an accounting of how each is proved in our system:
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A(red x, blue y): this is the first premise.

A(red x, blue z): use (Adja).

A(red y, blue z): First use the second premise to get V(red x, red z). Then from
this and the first premise and (D) get 3(blue y, red z). Then use Example 2.4.

I(red x, green y): Use the first premise to get I(red y, red x), and the second
premise to get V(red x, green x). Then use (D) to get 3(red y, green x). Finally,
use Example 2.4.

(red x, green z): use the second premise, with 3(red x, red x) from the first.

(red y, green z): First use the first premise to get I(red y, red x). Then from
this and the first premise and (D) get 3(red y, green z).

A(blue x, green y): from (Adjs).

A(blue x, green z): Use the first premise to get I(blue x,red x); see Exam-
ple 2.6. Now use (D).

3(blue y, green z): use (D) after inferring I(blue y,red z) from the first
premise.

This concludes our discussion of valid two-premise sequents and Proposi-
tion 2.8.

2.3 The Completeness Theorem

At this point, we have examined the proof system and know that it is strong
enough to prove all of the valid two-premise sequents. We are ready to prove
that the system is complete.

Notation If I' is a set of sentences, we write Iy for the subset of I' containing
only sentences of the form V(n,p). We do this for I's, mutatis mutandis.

Theorem 2.9. The logic of Figures 1 and 2 is complete for L(V,3,adj): if I' |=
S, then ' S.

Proof. Suppose that I = S. There are two overall cases, depending on whether
S is of the form V(n,m) or of the form 3(n,m). In the first case, we claim that
Iy = S. To see this, let M = Iy. We get a new model M' = M U {x} via
[«]" = [z] U {*}. The model M’ so obtained satisfies Iy and all 3 sentences
whatsoever in the fragment. Hence M’ = I'. So M’ = S. And since S is a
universal sentence, M = S as well. This proves our claim that I, = S. By
Theorem 2.3, I'y = S. Hence ' S.

The second case, where S is an existential sentence, is more interesting.
Consider the following model M = M(I"). Let M be the set of all unordered
pairs {p, ¢} such that p and ¢ are nouns, and I" - 3(p,q). (We may well have
p = ¢ in such a pair.) For each basic nouns x and each intersecting adjective red
we define sets [z]; and [red]; for i = 0,1,...; then sets we are after are (J,[x];
and (J,[red];; we take these to be [z] and [red]. The sets are defined by:

1. If {p,q} € M and p is basic, then {p, ¢} € [p]o.
2. If {p,q} € M and p is red x, then {p,q} € [z]o N [red]o.
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If {p,q} € [z]; and I'" - V(z,y), then {p,q} € [y]i+1-

If {p,q} € [z]; N [red]; and I'" - V(red z,y), then {p,q} € [y]it1-

If {p,q} € [z]; and I - V(z, blue y), then {p,q} € [y]i+1 N [blue];t1.

If {p,q} € [z]; N [red]; and I" = V(red z,blue y), then {p,q} € [y]it1 N
[blue];t1-

AR e

An easy induction shows that if I" F V(z,y), then [z] C [y]. Moreover,
this same fact is true for nouns containing adjectives. These facts imply that
if a universal sentence V(p,q) belongs to I" (so that I' F V(p,q)), then indeed
[pl € [¢]. We also want to check the analogous fact for sentences 3(p,q). As
usual, we have a number of cases, and we’ll only mention the one when p is
red x and ¢ is blue y. Then {x,y} belongs to [z] N [red] N [y] N [blue]. Hence
M E 3(p,9)-

As aresult of these observations, M |= I'. Since we began with the assumption
that I' = S, we see that M = 5. Now S is an existential sentence, say 3(n,m),
and our goal is to show that I' F 3(n, m). In fact, we show the following facts:

1. If {u,v} € [xz] N [y], then I' F 3(x,y).
2. If {u,v} € [z] N [y] N [red] N [blue], then I' = I(red x, blue y).

It is at this point that we use the fact that our semantics of nouns and intersecting
adjectives was the least fixed point of a monotone inductive definition, so that
we can argue by induction it. That is, we show by induction on ¢ that (a) if
{u,v} € [z]; N [y]:, then I - I(z, y); and similarly for the other assertion.

The first base cases of this induction is when [u,v] € [z]o N [y]o via clause
(1) in the definition. Then we have a number of subcases. To mention one, it
might be that u = z and v = y. Since {u,v} € M, we have I' + J(u,v). And
thus I' F 3(z, y). For another subcase, it might be that v = x and also u = y.
Now as we have seen, I' F 3(u,v), and by our logic, we also have I" - J(u, u). So
in this case, we again have I' - 3(z, y).

Another base case in the induction is when [u,v] € [z]o N [y]o N [red]o via
clauses (1) and (2) in the definition of the semantics. For example, we might have
u = red y so that [u,v] € [yJoN[red]o, and also v = x. Then I' - I(z, red y). And
by the reciprocity fact noted in Example 2.5 we see that indeed I" - 3(red z,y).

The last base case in the induction is when [u, v] € [z]oN]yJoN[red]oN[blue]o
via clauses (1) and (2) in the definition of the semantics. The arguments would
be similar, and Example 2.4 would also be used.

Next, we turn to the induction steps proper. Here is an example. Suppose
that

{u, v} € [2]iv1 O [yliss N [red]iva N [blue]ita

because

{u,v} € [z]; N [w]; N [red]; N [green]it+1
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and also I' F V(green z,blue z) and I' + V(w,y). By induction hypothesis,
I' - 3(green x,red w). We have the following derivation from I:

I(green i‘, red w) V(green 3.3, blue z) .
(Adjs)
A(red x, blue w)
I(red x, blue y)

V(w,y)

Proposition 2.8

(We are quoting Proposition 2.8 mostly because we did all the work to ob-
tain that result.) There are, of course, many more induction steps. These all go
through, and the main reason was mentioned before we started in on the proof
of this theorem: we have included in the rules all of the sound two-premise rules
that are expressible in the language. This fact is not directly used, but all of the
reasoning that we have already seen would be used in the full verification here.

This completes the proof.

2.4 A Note on (Adjs) and (Adjs)

At this point, we digress from our main line and make a comment on (Adjs+) and
(Adjs). We shall check that they are not derivable from the other rules in our
system.

To see this, take the premises 3(red x, blue y) and V(red x, green z), and call
them I'. An easy induction on derivations shows that if .S is universal and "+ S
without (Adj4) or (Adjs), then S must be of one of the following three forms:
V(u,u) for some u, V(red u,u) for some wu, or V(red x, green z).

Now assume that I' - 3(red x, blue z), or that I'  3(blue z,red x); again
without (Adjs) or (Adjs). Take a derivation of minimal height. The last step in
the derivation must be an application of (D). There are two cases, depending
on the conclusion. They are similar, and we only go into details concerning
3(blue z, red x). For some noun ¢, we must have I - 3(red x,q) and V(q, blue z).
By our observation in the last paragraph, ¢ must be blue z or red z. If ¢ is
blue z, we contradict the minimality assertion. And if ¢ is red x, have I' +
V(red x, blue z), contradicting what we showed in the last paragraph.

This shows that without (Adj4) or (Adjs), we cannot derive 3(red z, blue z)
from our premises. Similar work shows the same thing about 3(blue z, green y).
The upshot is that neither 3(red x, blue y) nor V(red x, green z) can be proved
on the basis of (T), (B), (I), (D), (Adj1), (Adj2), and (Adjs).
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Y(n,p) Y(p,q) 3(n,p) 3(n,q) V(a,p)
Y(n,n) (T) Y(n,q (B) 3(n,n) M I(p,n (D)

. V(n,redp) V(n,q) 3(p, red q) .
V(red n,n) (Adjr) V(n, red q) (Adjz) (red p, red q) (Adjs)

Fig. 3. The logical system for L,(V, 3, adj). Note that the x and y denote basic nouns,
and n, p, and ¢ denote complex nouns in the sense of this section.

3 L,.(V,3, adj): Productive Predication

We start with basic nouns z, y, ..., and (intersecting) adjectives a1, as, ..., and
then say that basic nouns are nouns, and if n is a noun and red an adjective,
then red n is a noun.

The semantics of nouns in then is given by recursion, using the main clause

[an] = [dnl]n].

Then we define M =S, M |= I', and I' = S as earlier. (See the end of Sec-
tion 1.) Our main goal again is to provide a proof system, thereby defining a
relation I' . S in a syntactic way, and then to show the connection in a sound-
ness/completeness theorem.

The proof system itself is listed in Figure 3. To keep straight the distinction
between the proof system for L£(V, 3, adj) and the one for L,.(V, 3, adj), we write
I' k. S for the derivation relation in this section.

Our first examples concern iterated adjectives. Example 3.1 shows that ap-
plying the same adjective twice gives nothing new; perhaps this is a justification
for why we never see phrases like red red ball in natural language. The two ad-
jectives in Example 3.2 are likewise odd, but we encourage the reader to read
red and blue as partly red and partly blue, or to remember our semantics.

Ezample 3.1. For all n, k.V(red n,red red n) and k. V(red red n,red n). For
the first point, we have the following derivation:

T
Y(red n,red n) ™ Y(red n,red n)
V(red n,red red m)

(T)
(Adj2)

The second point is an instance of (Adji).

Ezample 3.2. 5.V(red blue n, blue red n). Here is the derivation:

(T) :
Y(red blue n,red blue n) Y(red blue n,n)
V(red blue n,red n)
V(red blue n, blue red n)

(Adj1)

Adj
V(red bl n,bl n) (Adj2)

(Adj2)
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The point at the top which is not shown consists of two applications of (Adj1)
and also (B).

4 Models M(I")

Let I be a set of sentences in this language. We define a model M = M(I") as
follows. The universe of the model is

M = {{n,m}:I'F3(n,m)}.

The semantics of the nouns and adjectives is given in stages. We’ll arrange that
for each basic noun z,

[zlo € [z]p <€ [z]: < ---,

and then we define [z] = J,;[z];. We do the same thing for each color c. In
addition, if p is the noun cjcs - - - ¢z, then we write

[Pl = [adlinfedin:-- o]
The definition is as follows:
[x]o = {{n,m}:T'EV(n,z)or I'FVY(m,z)}
[*]i+1 = [=]: U{{n,m} : for some noun p, I - V(p, z) and {n,m} € [p];}
I<]o = {{n,m} : for some noun p, I - V(n, cp) or I' - ¥(m,cp)}
[cliva = [c]i U{{n,m} : for some nouns p and z, I' - ¥(p, cx) and {n,m} € [p];}

Lemma 4.1. For all nouns p, [p] = U,[p]:-

Proof. By induction on p. If p is a basic noun x, then we just have the definition
of [x] as |J;[x];. Assume for a noun p that [p] = |J,[p]i;- We show the same

thing for ¢p.
[er]l = ldnlpl
= ldnUlpl
= Ui nlplo)
So clearly J;[ep]i = U, ([clinlp]i) € U;([elN[pli) = [ep]. In the other direction,
let {n,m} € [ep] = [c] N [p]. We may find ¢ and j so that {n,m} € [c]; N [p];.
Without loss of generality, j < ¢. Since [p]; C [p];. Hence

{n,m} € [in[pli = [erli C U[[Cp]]z'~

This completes the proof.
Lemma 4.2. If I' - V(n,m), then [n]; C [m];.

Proof. Write m as ¢1 - - - cyx. Let {p, ¢} € [n];. First, for 1 < j <k, I' - V(n,c;x).
So {p, q} € [¢;li+1 N [z]i+1. This for all j between 1 and k implies that

{p,q} € [ea]iva N e2]ivr 0O [er]iva N [z]iva = [m]iga-
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Lemma 4.3. For all ¢ and n, and all i, [en]); C [];.
Proof. This is obvious from the fact that [en]; = [¢]; N [n];-
Lemma 4.4. If {n,m} € M, then {n,m} € [n] N [m].

Proof. One only has to check that {n,m} € [n], of course. Let n be ¢icz - - - cxz.
(It is possible that & = 0, and in this case the argument simplifies.) Then the
proof system has

I'Y(cieo - - ez, ciz)

for all ¢, and thus n = c¢yca - - - ez belongs to [¢;]o. Further,
I'EV(cieo -+ e, x),
and so n € [z]o as well. Thus n € [n]o C [n].
Lemma 4.5. If {n,m} € M and {n,m} € [plo N [¢]o, then I - A(p,q).

Proof. Write p as ¢1 ---cpx and q as d; - - - d;y. To make the notation more man-
ageable, we shall assume that &k = 2 = [ here. So we have p = cjcox and
q = dy1dsy. We assume that

{n,m} € [e1]o N [e2]o N [z]o N [di]o N [d2]o N [y]o-

Now we have 2° cases here, and so we shall only give one of them. Suppose that
we have nouns u, v, u’, and v’ such that the following are all provable from I’
in our system:

A S
<

Facts 1, 3, and 5 together with (Adjz) show that I F V(n, ¢1dax). Similarly, facts
2, 4, and 6 together with (Adj2) show that I' - V(m, dicay). Since I' - 3(n, m),
we easily get

'+ H(Cldgl‘,dlcgy) .

And then we can rearrange things as in Example 3.2, to see that
I+ E(Clch,dldgy) .
This shows that I' - 3(p, q), just as desired.

Lemma 4.6. If {n,m} € M and {n,m} € [p] N [q], then I+ 3(p,q).
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Proof. In view of Lemma 4.1, we need only show that if {n,m} € M and
{n,m} € [p]i N [q]i, then I F 3(p, ¢). We argue by induction on i.

The case ¢ = 0 is Lemma 4.5.

Assume this lemma for ¢, and also suppose that {n,m} € M and {n,m} €
[P)i+1 N [g]i+1- To avoid a lot of messy details, we shall assume that p is a noun
of the form cicox, and q is d1dsy. So we know that

{n,m} € [e1]it1 N [ea]it1 N [z]isa
{n,m} € [di]it1 N [d2]i+1 N [ylia

We can find nouns pi, ui, p2, us, pP3, q1, V1, G2, V2, and g3 so that all of the
following facts are provable in our system from I

V(Pl, C1U1)
(p2, caus)
(p3; )
(q1,dyv1)
(g2, d2v2)

V(g3 y)

and also so that

v
N
v
v

S Tt N

{n,m} € [p1]i 0 [p2]i 0 [ps]i N [au]i N [g2]i N [g3]i -
In view of the lemmas above and the facts that we just saw, we have
{n,m} € [er]i N [ea]s N [ps]i N [da]i N [d2]i N [g3]: -

That is,
{n,m} € [eicaps]i N [didags]s

By induction hypothesis, we have
I' = 3(cic2ps, didags).
Since also I' - V(ps, ) and I' F ¥(g3,y), we see that
I'+ 3(creoz, diday),

and this is to say that I" - 3(p, q).
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Theorem 4.7. The rules (T), (B), (Adji), and (Adj2) give a complete proof sys-
tem for L(V,adj),: if I' =V(n,p), then I' k. ¥(n,p)S.

Proof. Suppose that I' = V(n,p); we show that I' k. V(n,p). Consider a model
M whose universe M is a singleton {}, and whose structure is given by

B {x}if ' K. ¥(n,z)
[=] N {@ if 't V(n,x)

[red] = {x} if for some basic noun z, I' k. ¥(n, red x)
e B 0 otherwise

These definitions are made using the specific noun n from our overall assumption
in this proof.

Claim. For all nouns p,

{x}if ' k. VY(n,p)

] = {(Z) if I't4V(n,p) (2)
The proof is by induction on p. For p a basic noun, the result is immediate.
Assume (2) for p; we show (2) for red p. If x € [red p] = [red] N [p], then
I' F.Y(n,p) and for some z, I' k. ¥(n,red x) By (Adj2), I" F-V(n,red p), as
desired.

We now argue the converse. If I' F,.V(n,red p), then I' F,V(n,p) using
(B) and (Adj1). We write p as a; --- a; x, so that red p is red a,---a; =z,
and then we argue by induction on j that . V(red p,red x). If n = 0, this
is immediate. If n > 1, we show that . V(red a1 as---a, x,red as---a, x),
using (Adji) and (B). (See Example 3.2.) And then by induction hypothesis,
we have b.V(red ag - --a, x,red x). This concludes the induction showing that
k- V(red p, red x), and from this we see that I' k. V(n, red ). Therefore x € [red].
Overall, * € [red p].

This completes the induction on p, hence the proof of this claim.

Continuing with the proof of Theorem 4.7, we next observe that M = I
Take a sentence in I" such as V(l1,l2). We must show that [I;] C [l2]. For this,
we may assume that [I;] # 0. Hence [I1] = {*}, so I' F.V(n,l;). Using (B),
I' 5. Y(n,l3), so again * € [l2].

We have verified that M = I'. Recalling that I = V(n,p), we have M |
Y(n,p). So by our claim, we have the desired conclusion that I' . V(n,p). This
completes the proof.

4.1 Simulation of £(V, 3, adj) in £,(V, 3, ady)

Our goal in the next section is to prove the completeness of L,.(V, 3, adj) using
the proof system defined in Figure 3. Here are two ways that one could go about
this. First, one could basically repeat the proof of Theorem 2.9. This would be a
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fairly direct modification. At the same time, it would be uninteresting to read.
Instead, we shall present a different approach.

For each of the rules in Figure 2, except possibly (Adjs) and (Adjs), the
corresponding sequent is provable in the logic for L£,.(V, 3, adj). In fact, this holds
with the basic nouns in Figure 2 replaced by arbitrary nouns.

Proposition 4.8. Fvery instance of (Adjs) and (Adjs) in Figure 2 is provable
in the logical system for L.(V,3,adj). Moreover, this holds with the basic nouns
replaced by arbitrary nouns.

Proof. Here is the derivation for (Adjs), omitting some routine conversion steps:

o (Adj1)
I(red n, blue p) Y(red n, green q) Y(green q,q)
———— =~ Ezample 2.6 (B)
A(red n, blue n) ) Y(red n,q)
(Adjs) FExample 2.2

A(red n, blue red n) V(blue red n, blue q)

D
I(red n, blue q) ®)
What we mean by Examples 2.6 and 2.2 are the obvious versions of those results
for the language L,.(V, 3, adj): a look back at both derivations shows that they
did not use (Adjs) or (Adjs).
For (Adjs), we have

— (Adj
V(red n, green q) Y(red n,n) EAdj'li
]2

(D)

A(red n, blue p) V(red n, green n)

3(blue p, green n)

(Adjs)
using Erxample 3.2
(Adjs)

3(blue p, blue green n)

(blue p, green blue n)

I(green blue p, green blue n)

I(green b, blue n)

We have left out some routine steps at the bottom.

4.2 Completeness of L,.(V, 3, adj)

Our final result is the completeness of L, (V, 3, adj). We aim to reduce this fact
to our earlier completeness result for £(V, 3, adj). Some of the work was done in
Proposition 4.8, but there are a few steps to go.

Throughout this paper, we have been working with fixed sets of basic nouns
and intersecting adjectives. That is, the languages in the paper have been defined
in terms of those sets, but we suppressed the sets in our notation. At this time,
we must be a little more explicit. Let N be our set of basic nouns and A our
set of adjectives. We'll call our languages L(V, 3, adj)n 4. Let N* be the set all
adjectives, allowing for recursion. Let X be a new set, and assume that X is
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in bijective correspondence with N*. Write NV 4+ X for the disjoint union of NV
and X. The language L(V,3, adj)n+x 4 then has as basic nouns the elements
of N together with new basic nouns in X. To be explicit, for every noun n of
L,(Y,3, adj) N, 4, we have a basic noun v, of L(V, 3, adj)N+x,A-
We translate £,.(V, 3, adj) n, 4 into L(V, 3, adj)n+x,4 via a map S — S*. For
example, if S is
I(red blue green x,y),

then S* is I(Vyeq plye green 2 VY)-

Theorem 2.9, the completeness theorem from earlier in this paper, holds for
L(V, 3, adj) N+ x, 4, since it holds for the flat syntax language built from any set
of basic nouns.

The translation also works in the other direction, taking each v, to the
corresponding n, and also each red v,, to the corresponding red n.

Theorem 4.9. The logic of Figures 8 is complete for L.(V,3,adj): if I = S,
then I' = S.

Proof. Assume that I'+S. Let I'™* = {S*: S € I'}. Let

A = {Y(vpeq pyred vn) :n € NYU{V(red vp, Vg ) : 1 € N
again, N is the set of nouns with which we started.

We claim that I'™* U A = S*. To see this, let M = I U A. Then an induction
on nouns n in the recursive language shows that [v,,] (the interpretation of v,,) is
the same as [n]. This is where we use the clauses in A. As a result, truth values of
sentences in M are preserved under translation in both directions. Hence M |= I'.
Since I' = S, we have M |= S also. And then M = S*.

Having shown the claim, we see that by completeness, I'* U A F S*. Let D
be a derivation for this in the sense of Section 2. D is in L(V, 3, adj) n+x,4, and
therefore we must translate it back to a derivation in £,.(V, 3, adj)n, 4. For this,
replace each v,, with the corresponding noun n. Most instances of the proof rules
in D translate to the same steps in £,.(V, 3, adj). This is true for (T), (B), (Adj1),
(Adj2), (I), (D), and (Adjs). For example,

V(Upeq 1 red Upeq z)  V(Upeq 1y Uhlue )
V(Uyeq Y red Uplye )

(Adj2)

translates to
V(red y,red red ) V(red y, blue )

V(red y, red blue x)

(Adjz)

However, some of the steps in D might use (Adjs) or (Adjs). Take these, and
replace them with derivations which do not use them, following Proposition 4.8.
Finally, the leaves of D which happen to belong to A translate to instances of
(T). The conclusion is that we have a derivation in L,.(V, 3, adj), as desired.
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Conclusion

The results in this paper are complete logical systems for some very simple
syllogistic systems, those extending the basic syllogistic logic of all and some
with intersecting adjectives. These are some of the simplest logical systems of
all, all of the work has been completely elementary. This is not to say that it was
obvious: I have found that it is easy in this kind of work to omit “obvious” cases
and thereby fail to have a complete system, and on the other hand it is also easy
to state redundant rules. My point is that the results here do not depend on any
facts from other papers.

At the end of the Introduction, we raised the question of whether the principle
in (1) was essentially the only new one concerning intersecting adjectives. That
is, if one adds it to the logic of all and some, is the resulting system complete?
For the purposes of this point, we take (1) to be formalized as (Adj2) and (Adjs).
We also assume the extensionality of adjectives, and this is (Adji). Our results
in Section 2.4 indicate that if one adheres to a flat syntax, then two more logical
principles are needed to prove completeness: (Adjs) and (Adjs). On the other
hand, moving to the larger language that admits recursive modification using
intersecting adjectives allows us to prove (Adjs) and (Adjs). So in this sense,
Keenan and Faltz’ (1) is indeed all that there is to the logic of intersecting
adjectives.

My feeling is that the results here should extend to many other syllogistic
systems without much change. For example, they should extend to all of the
systems in Pratt-Hartmann and Moss [6]. The details on this have yet to be
worked out. Another worthwhile project would be to investigate what natural
logic would look like for adjectives which are not intersecting.
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