
Syllogistic Logic with Complements

Lawrence S. Moss
Department of Mathematics

Indiana University
Bloomington, IN 47405 USA

Abstract

This paper continues the development of complete fragments of natural language begun
in [7] by adding a noun-level complement operator to the basic syllogistic language of All
X are Y and Some X are Y : in the fragment of this paper we can also say, for example,
Some non-X are Y . The main result is an axiomatization of this logic. Our main system
uses ex falso quodlibet (EFQ) to infer an arbitrary sentence from a contradiction. It is also
possible to consider a stronger system, one which uses reductio ad absurdum (RAA). It turns
out that the weaker system is already complete. Our work on this uses a representation
theorem from orthoposets and also a semantic lemma due to Ian Pratt-Hartmann [9]. We
also provide a proof-theoretic reduction of the system with (RAA) to the one with (EFQ).

Contents

1 Introduction 1
1.1 Syllogistic logic with complement . 2
1.2 The (RAA) System . 5
1.3 Comparison with previous work . 5

2 Completeness via representation of orthoposets 6
2.1 Completeness . 8

3 Going Further: Boolean Connectives Inside and Out 10

4 Ex Falso Quodlibet versus Reductio ad Absurdum 12
4.1 Injective proofs and normal forms . 13
4.2 Proofs with and without contradiction . 15

1 Introduction

This paper presents a logic for statements of the form All X are Y and Some X are Y , where
the X and Y are intended as (plural) nouns or other expressions whose natural denotation is
as subsets of an underlying universe. Languages like this have been studied previously, and the
novelty here is to add an explicit complement operator to the syntax. So we now can say, for
example, All X ′ are Y , or Some non-X are Y . The point of the paper is to present a sound and

1

complete proof system for the associated entailment relation. In its details, the work is rather
different from previous work in the area (for example, [1, 3, 5, 6, 7] and references therein). Our
particular system seems new. In addition, the work here builds models using a representation
theorem coming from quantum logic.

1.1 Syllogistic logic with complement

We start with the syntax and semantics of a language which we call L(all, some, ′). Let V be an
arbitrary set whose members will be called variables. We use X, Y , . . ., for variables. The idea
is that they represent plural common nouns. We also assume that there is a complementation
operation ′ : V → V on the variables such that X ′′ = X for all X. This involutive property
implies that complementation is a bijection on V. In addition, to avoid some uninteresting
technicalities, we shall always assume that X 6= X ′. Then we consider sentences All X are Y
and Some X are Y . Here X and Y are any variables, including the case when they are the
same. We call this language L(all, some, ′). We shall use letters like S to denote sentences.

Semantics One starts with a set M and a subset [[X]] ⊆ M for each variable X, subject to
the requirement that [[X ′]] = M \ [[X]] for all X. This gives a model M = (M, [[]]). We then
define

M |= All X are Y iff [[X]] ⊆ [[Y]]
M |= Some X are Y iff [[X]] ∩ [[Y]] 6= ∅

We say M satisfies S iff M |= S. We allow [[X]] to be empty, and in this case, recall that
M |= All X are Y vacuously. (For that matter, we also allow a model to have an empty
universe.) And if Γ is a set of sentences, then we write M |= Γ to mean that M |= S for all
S ∈ Γ. Γ |= S means that every model which satisfies all sentences in Γ also satisfies S.

Example 1 We claim that Γ |= All A are C, where

Γ = {All B′ are X,All X are Y ,All Y are B,All B are X,All Y are C}.

Here is an informal explanation. Since all B and all B′ are X, everything whatsoever is an X.
And since all X are Y , and all Y are B, we see that everything is a B. In particular, all A are
B. But the last two premises and the fact that all X are Y also imply that all B are C. So all
A are C.

No In previous work, we took No X are Y as a basic sentence in the syntax. There is no
need to do this here: we may regard No X are Y as a variant notation for All X are Y ′. So
the semantics would be

M |= No X are Y iff [[X]] ∩ [[Y]] = ∅

In other words, if one wants to add No as a basic sentence forming-operation, on a par with
Some and All, it would be easy to do so.

2

All X are X
Axiom Some X are Y

Some X are X
Some1

Some X are Y
Some Y are X

Some2

All X are Z All Z are Y
All X are Y

Barbara All Y are Z Some X are Y
Some X are Z

Darii

All Y are Y ′

All Y are X
Zero All Y ′ are Y

All X are Y
One

All Y are X ′

All X are Y ′ Antitone All X are Y Some X are Y ′

S
Contrad

Figure 1: Syllogistic logic with complement.

Proof trees We have discussed the meager syntax of L(all, some, ′) and its semantics. We
next turn to the proof theory. A proof tree over Γ is a finite tree T whose nodes are labeled with
sentences in our fragment, with the additional property that each node is either an element of
Γ or comes from its parent(s) by an application of one of the rules for the fragment listed in
Figure 1. Γ ` S means that there is a proof tree T for over Γ whose root is labeled S.

We attached names to the rules in Figure 1 so that we can refer to them later. We usually
do not display the names of rules in our proof trees except when to emphasize some point or
other. The only purpose of the axioms All X are X is to derive these sentences from all sets;
otherwise, the axioms are invisible. The names “Barbara” and “Darii” are traditional from
Aristotelian syllogisms. But the (Antitone) rule is not part of traditional syllogistic reasoning.
It is possible to drop (Some2) if one changes the conclusion of (Darii) to Some Z are X. But
at one point it will be convenient to have (Some2), and so this guides the formulation. The
rules (Zero) and (One) are concerned with what is often called vacuous universal quantification.
That is, if Y ′ ⊆ Y , then Y is the whole universe and Y ′ is empty; so Y is a superset of every set
and Y ′ a subset. It would also be possible to use binary rules instead; in the case of (Zero), for
example, we would infer All X are Z from All X are Y and All X are Y ′. The (Contrad) rule
is ex falso quodlibet ; it permits inference of any sentence S whatsoever from a contradiction.
See also Section 1.2 for a different formulation, and Proposition 1.3 and Theorem 4.8 for their
equivalence.

Example 2 Returning to Example 1, here is a proof tree showing Γ ` All A are C:

All B′ are X
All X are Y All Y are B

All X are B
All B′ are B
All A are B

All B are X
All X are Y All Y are C

All X are C
All B are C

All A are C

Example 3 Readers who desire an exercise might wish to show that

{All B are X,All B′ are X,All Y are C,Some A are C ′} ` Some X are Y ′.

3

A solution is displayed in the proof of Lemma 4.7.

Lemma 1.1 The following are derivable:

1. Some X are X ′ ` S (a contradiction fact)

2. All X are Z, No Z are Y ` No Y are X (Celarent)

3. No X are Y ` No Y are X (E-conversion)

4. Some X are Y ,No Y are Z ` Some X are Z ′ (Ferio)

5. All Y are Z, All Y are Z ′ ` No Y are Y (complement inconsistency)

Proof For the assertion on contradictions,

All X are X
Axiom Some X are X ′

S
Contrad

(Celarent) in this formulation is just a re-phrasing of (Barbara), using complements:

All X are Z All Z are Y ′

All Y are Z ′ Barbara

(E-conversion) is similarly related to (Antitone), and (Ferio) to (Darii). For complement
inconsistency, use (Antitone) and (Barbara). a

The logic is easily seen to be sound: if Γ ` S, then Γ |= S. The main contribution of this
paper is the completeness of this system.

Some syntactic abbreviations The language lacks boolean connectives, but it is convenient
to use an informal notation for it. It is also worthwhile specifying an operation of duals.

¬(All X are Y) = Some X are Y ′

¬(Some X are Y) = All X are Y ′
(All X are Y)d = All Y ′ are X ′

(Some X are Y)d = Some Y are X

Here are some uses of this notation. We say that Γ is inconsistent if for some S, Γ ` S and
Γ ` ¬S. The first part of Lemma 1.1 tells us that if Γ ` Some X is X ′, then Γ is inconsistent.
Also, we have the following result:

Proposition 1.2 If S ` T , then ¬T ` ¬S.

This fact is not needed below, but we recommend thinking about it as a way of getting
familiar with the rules.

4

1.2 The (RAA) System

Frequently the logic of syllogisms is set up as an indirect system, where one in effect takes
Reductio Ad Absurdum to be part of the system instead of (Contrad). We formulate a notion
Γ `RAA S of indirect proof in this section. It is easy to check that the (RAA) system is stronger
than the one with (Contrad). It will turn out that the weaker system is complete, and then
since the stronger one is sound, it is thus complete as well. In the final section of the paper, we
even provide a proof-theoretic reduction.

We define Γ `RAA S as follows:

1. If S ∈ Γ or S is All X are X, then Γ `RAA S

2. For all rules in Figure 1 except the contradiction rule, if S1 and S2 are the premises of
some instance of the rule, and T the conclusion, if Γ `RAA S1 and Γ `RAA S2, then also
Γ `RAA T .

3. If Γ ∪ {S} `RAA T and Γ ∪ {S} `RAA ¬T , then Γ `RAA ¬S.

In effect, one is adding hypothetical reasoning in the manner of the sequent calculus.

Proposition 1.3 If Γ ` S, then Γ `RAA S.

Proof By induction on the heights of proof trees for `. The only interesting step is when
Γ ` S via application of the contradiction rule. So for some T , Γ ` T and Γ ` ¬T . Using the
induction hypothesis, Γ `RAA T and Γ `RAA ¬T . Clearly we also have Γ ∪ {¬S} `RAA T and
Γ ∪ {¬S} `RAA ¬T . Hence Γ `RAA S. a

It is natural to ask whether the converse holds. We show that it does in Section 4. using
proof theory, and before this via a semantic argument using completeness.

1.3 Comparison with previous work

The proof system in this paper, the one presented by the rules in Figure 1, appears to be
new. However, the indirect system appears to be close to the earlier work of Corcoran [3] and
Martin [6]. Thus, the fact that the systems turn out to be equivalent is of some interest. In any
case, these papers are mostly concerned with modern reconstruction of Aristotleian syllogisms,
as is the pioneering work in this area, Lukasiewicz’s book [5]. We are not so concerned with
this project, but rather our interest lies in logical completeness results for fragments of natural
language. The fragment in this paper is obviously quite small, but we believe that the techniques
used in studying it may help with larger fragments. This is the main reason for this work.

We write L(all, some) for the fragment of L(all, some, ′) without the complement. That
is, one drops the complementation from the syntax, treating V as a set (simpliciter) rather
than a set with an operation. One also drops the requirement that [[X ′]] be the complement
of [[X]], since this now makes no sense. For the proof theory, use the rules on the top half
of Figure 1. In [7] we checked the completeness of this fragment. We also considered the
extension L(all, some,no) of L(all, some) with sentences No X are Y . For that, one needs the
(Contrad) rule and also some additional axioms: the equivalence of No X are Y and All X are
Y ′ cannot be stated without complements. Indeed, the language L(all, some, ′) of this paper is

5

more expressive than L(all, some,no) in the following precise sense: Consider the two models
M and N shown below:

M

*

*

*

*

X

Y Z

..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

...

..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

... ..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

...

N

*

*

*

X

Y Z

..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

...

..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

... ..
.................

.............
............
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
.............

................
.............................

...

They satisfy the same sentences in L(all, some,no). (They also satisfy the same sentences of
the form Some A are B′.) But let S be Some X ′ are Y ′ so that ¬S is All X ′ are Y . M |= S
but N |= ¬S. We conclude from this example is that a logical system for the language with
complements cannot simply be a translation into the smaller language.

The work in Section 2 is not new, though after I obtained the results and looked a little, I
first thought so. Later I found the paper of Calude, Hertling, and Svozil [2], and this contains
Theorem 2.2. It, too, was not the first work to explore the area, mentioning the papers by
N. Zierler and M. Schlessinger [11] and F. Katrnoška [4] as having results which seem to be
variations on the same representation theorem. We have included the proofs, mainly because
we need to know in Theorem 2.2 that the map m preserves the order in both directions: the
statement in [2] only has m preserving the order and being one-to-one. Still the proof is
essentially the same as in [2].

2 Completeness via representation of orthoposets

An important step in our work is to develop an algebraic semantics for L(all, some, ′). There
are several definitions, and then a representation theorem. As with other uses of algebra in
logic, the point is that the representation theorem is also a model construction technique.

An orthoposet is a tuple (P,≤, 0, ′) such that

1. (P,≤) is a partial order: ≤ is a reflexive, transitive, and antisymmetric relation on the
set P .

2. 0 is a minimum element: 0 ≤ p for all p ∈ P .

3. x 7→ x′ is an antitone map in both directions: x ≤ y iff y′ ≤ x′.

4. x 7→ x′ is involutive: x′′ = x.

5. complement inconsistency: If x ≤ y and x ≤ y′, then x = 0.

The notion of an orthoposet mainly appears in papers on quantum logic. (In fact, the
stronger notion of an orthomodular poset appears to be more central there. However, I do not
see any application of this notion to logics of the type considered in this paper.)

6

Example 4 For example, for all sets X we have an orthoposet (P(X),⊆, ∅, ′), where ⊆ is the
inclusion relation, ∅ is the empty set, and a′ = X \ a for all subsets a of X.

Example 5 Let Γ be any set of sentences in L(all, some, ′). Γ need not be consistent. We
define a relation ≤Γ on the set V of variables of our logical system by

X ≤Γ Y iff Γ ` All X are Y .

We always drop the subscript Γ because it will be clear from the context which set Γ is used.
We have an induced equivalence relation ≡, and we take VΓ to be the quotient V/≡. It is a
partial order under the induced relation. If there is some X such that X ≤ X ′, then for all Y
we have [X] ≤ [Y] in V/≡. In this case, set 0 to be [X] for any such X. (If such X exists, its
equivalence class is unique.) We finally define [X]′ = [X ′]. If there is no X such that X ≤ X ′,
we add fresh elements 0 and 1 to V/≡. We then stipulate that 0′ = 1, and that for all x ∈ VΓ,
0 ≤ x ≤ 1.

It is not hard to check that we have an orthoposet VΓ = (VΓ,≤, 0, ′). The antitone property
comes from the axiom with the same name, and the complement inconsistency is verified using
the similarly-named part of Lemma 1.1.

A morphism of orthoposets is a map m preserving the order (if x ≤ y, then mx ≤ my),
the complement m(x′) = (mx)′, and minimum elements (m0 = 0). We say m is strict if the
following extra condition holds: x ≤ y iff mx ≤ my.

A point of a orthoposet P = (P,≤, 0, ′) is a subset S ⊆ P with the following properties:

1. If p ∈ S and p ≤ q, then q ∈ S (S is up-closed).

2. For all p, either p ∈ S or p′ ∈ S (S is complete), but not both (S is consistent).

Example 6 Let X = {1, 2, 3}, and let P(X) be the power set orthoposet from Example 4.
Then S is a point, where

S = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

(More generally, if X is any finite set, then the collection of subsets of X containing more than
half of the elements of X is a point of P(X).) Also, it is easy to check that the points on this
P(X) are exactly S as above and the three principal ultrafilters. S shows that a point of a
boolean algebras need not be an ultrafilter or even a filter. Also, the lemma just below shows
that for P(X), a collection of elements is included in a point iff every pair of elements has a
non-empty intersection.

Lemma 2.1 For a subset S0 of an orthoposet P = (P,≤, ′), the following are equivalent:

1. S0 is a subset of a point S in P .

2. For all x, y ∈ S0, x 6≤ y′.

Proof Clearly (1) =⇒ (2). For the more important direction, use Zorn’s Lemma to get a

7

⊆-maximal superset S1 of S0 with the consistency property. Let S = {q : (∃p ∈ S1)q ≥ p}. So
S is up-closed. We check that consistency is not lost: suppose that r, r′ ∈ S. Then there are
q1, q2 ∈ S1 such that r ≥ q1 and r′ ≥ q2. But then q′2 ≥ r ≥ q1. Since q1 ∈ S1, so too q′2 ∈ S1.
Thus we see that S1 is not consistent, and this is a contradiction. To conclude, we only need to
see that for all r ∈ P , either r or r′ belongs to S. If r /∈ S, then r /∈ S1. By maximality, there
is q ∈ S1 such that q1 ≤ r′. (For otherwise, S1 ∪ {r} would be a consistent proper superset of
S1.) And as r′ /∈ S, there is q2 ∈ S1 such that q2 ≤ r. Then as above q1 ≤ q′2, leading to the
same contradiction. a

We now present a representation theorem that implies the completeness of the logic. It is
due to Calude, Hertling, and Svozil [2]. We also state an additional technical point.

Theorem 2.2 ([2]; see also [4, 11]) Let P = (P,≤, ′) be an orthoposet. There is a set
points(P) and a strict morphism of orthoposets m : P → P(points(P)).

Moreover, if S ∪ {p} ⊆ P has the following two properties, then m(p) \
⋃

q∈S m(q) is non-
empty:

1. For all q ∈ S, p 6≤ q.

2. For all q, r ∈ S, q 6≥ r′.

Proof Let points(P) be the collection of points of P . The map m is defined by m(p) =
{S : p ∈ S}. The preservation of complement comes from the completeness and consistency
requirement on points, and the preservation of order from the up-closedness. Clearly m0 = ∅.
We must check that if q 6≥ p, then there is some point S such that p ∈ S and q /∈ S. For this,
take S = {q} in the “moreover” part. And for that, let T = {p} ∪ {q′ : q ∈ S}. Lemma 2.1
applies, and so there is some point U ⊇ T . Such U belongs to m(p). But if q ∈ S, then
q′ ∈ T ⊆ U ; so U does not belong to m(q). a

2.1 Completeness

The completeness theorem is based on algebraic machinery that we have just seen.

Lemma 2.3 Let Γ ⊆ L(all, some, ′). There is a model M = (M, [[]]) such that

1. M |= Γall.

2. If T is a sentence in All and M |= T , then Γ ` T .

3. If Γ is consistent, then also M |= Γsome.

Proof Let V = VΓ be the orthoposet from Example 5 for Γ. Let n be the natural map of

8

V into VΓ, taking a variable X to its equivalence class [X]. If X ≤ Y , then [X] ≤ [Y] by
definition of the structure. In addition, n preserves the order in both directions. We also apply
Theorem 2.2, to obtain a strict morphism of orthoposets m as shown below:

V
n // VΓ

m // points(VΓ)

Let M = points(VΓ), and let [[]] : V → P(M) be the composition n ◦m. We thus have a model
M = (points(VΓ), [[]]).

We check that M |= Γ. Note that n and m are strict monotone functions. So the semantics
has the property that the All sentences holding in M are exactly the consequences of Γ. We
turn to a sentence in Γsome such as Some U are V . Assuming the consistency of Γ, U 6≤ V ′.
Thus [[U]] 6⊆ ([[V]])′. That is, [[U]] ∩ [[V]] 6= ∅. a

Unfortunately, the last step in this proof is not reversible, in the following precise sense.
U 6≤ V ′ does not imply that Γ ` Some U are V . (For example, if Γ is the empty set we have
U 6≤ V ′, and indeed M(Γ) |= Some U are V . But Γ only derives valid sentences.

Lemma 2.4 (Pratt-Hartmann [9]) Suppose that Γ |= Some X are Y . Then there is some
existential sentence in Γ, say Some A are B, such that

Γall ∪ {Some A are B} |= Some X are Y .

Proof If not, then for every T ∈ Γsome, there is a model MT |= Γall ∪ {T} and M |=
All X are Y ′. Take the disjoint union of the models MT to get a model of Γall ∪ Γsome = Γ
where S fails. a

Theorem 2.5 Γ ` S iff Γ |= S.

Proof As always, the soundness half is trivial. Suppose that Γ |= S; we show that Γ ` S. We
may assume that Γ is consistent.

If S is a sentence in All, consider M(Γ) from Lemma 2.3. It is a model of Γ, hence of S;
and then by the property the second part of the lemma, Γ ` S.

For the rest of this proof, let S be Some X are Y . From Γ and S, we find A and B satisfying
the conclusion of Lemma 2.4.

We again use Lemma 2.3 and consider the model M = M(VΓall
) of points on VΓall

. M |= Γall.
Consider {[A], [B], [X ′]}. If this set were a subset of a point x, then consider {x} as a

one-point submodel of M. In the submodel, Γall ∪ {Some A are B} would hold, and yet Some
X are Y would fail since [[X]] = ∅.

We use Lemma 2.1 to divide into cases:

1. A ≤ A′.

2. A ≤ B′.

3. A ≤ X.

9

1. All substitution instances of propositional tautologies.

2. All X are X

3. (All X are Z) ∧ (All Z are Y) → All X are Y

4. (All Y are Z) ∧ (Some X are Y) → Some Z are X

5. Some X are Y → Some X are X

6. ¬(Some X are X) → All X are Y

7. Some X are Y ′ ↔ ¬(All X are Y)

Figure 2: Axioims for a system which adds sentential boolean connectives

4. B ≤ B′.

5. B ≤ X.

6. X ′ ≤ X.

(More precisely, the first case would be [A] ≤ [A′]. By strictness of the natural map, this means
that A ≤ A′; that is, Γall ` All A are A′.) In cases (1), (2), and (4), we easily see that Γ is
inconsistent, contrary to the assumption at the outset. Case (6) implies that both (3) and (5)
hold. Thus we may restrict attention to (3) and (5).

Next, consider {A,B, Y ′}. The same analysis gives two other cases, independently: A ≤ Y ,
and B ≤ Y . Putting these together with the other two gives four pairs. The following are
representative:

A ≤ X and B ≤ Y : Using Some A are B, we see that Γ ` Some X are Y .
A ≤ X and A ≤ Y : We first derive Some A are A, and then again we see Γ ` Some X are Y .
This completes the proof. a

3 Going Further: Boolean Connectives Inside and Out

The main work of this paper has been completed. However, we wish to continue a little further,
mentioning a larger system whose completeness can be obtained by using our the results which
we have seen.

We have in mind the language of boolean compounds of L(all, some, ′) sentences. This
language is just propositional logic built over L(all, some, ′) as the set of atomic propositions.
We call this larger language L(all, some, ′, bc). For the semantics, we use the same kind of
structures M = (M, [[]]) as we have been doing in this paper. The semantics treats the boolean
connectives classically. So we have notions like M |= S and Γ |= S.

The system is a Hilbert-style one, with axioms listed in Figure 2. The only rule is modus
ponens.

We define `bc S in the usual way, and then we say that Γ `bc S if there are T1, . . . , Tn from
Γ such that `bc (T1 ∧ · · · ∧ Tn) → S.

10

Rules 1–6 are essentially the system SYLL from [5]. Lukasiewicz and S lupecki proved a
completeness and decidability result for SYLL, and different versions of this result may be
found in Westerst̊ahl [10] and in [7].

Proposition 3.1 `bc All X are Y → All Y ′ are X ′.

Lemma 3.2 Let Γ ⊆ L(all, some, ′). If Γ ` S, then Γ `bc S.

Proof By induction on the relation Γ ` S. (Some2) comes from axioms 2 and 4. For
(Antitone), use the point about (Some2) and also axiom 7 twice. For (One), use axiom 7 to
see that All X ′ are X ↔ ¬(Some X are X ′). This along with axiom 6 gives All X ′ are X ↔
All X ′ are Y ′. Now we use our point about (Antitone) to see that All X ′ are X ↔ All Y are X.
For (Contrad), use the Deduction Theorem and a propositional tautology. a

Theorem 3.3 The logical system above is sound and complete for L(all, some, ′, bc): Γ |= S iff
Γ `bc S.

Proof The soundness being easy, here is a sketch of the completeness. We use compactness
and disjunctive normal forms to reduce completeness to the verification that every consistent
conjunction of L(all, some, ′) sentences and their negations has a model. But L(all, some, ′)
essentially has a negation, so we need only consider consistent conjunctions. Now consistency
here is in the propositional sense (`bc). But by Lemma 3.2, this implies consistency in the sense
of our earlier logic (`). And here we use Lemma 2.3. a

A second proof We have another proof of this result, one which uses the completeness of
SYLL and also the algebraic work from earlier in this paper.

The completeness of a system with classical negation reduces to the matter of showing that
consistent sets Γ in L(all, some, ′, bc) are satisfiable. Fix such a set Γ. We assume that Γ is
maximal consistent. This implies first of all that Γ is closed under deduction in our logic, and
so it contains all instances of the sentence in Proposition 3.1. It also implies that we need only
build a model of Γ ∩ L(all, some, ′).

In our setting, we need a model in the style of this paper; in particular, we need the
interpretation of complementary variables to be complementary sets. However, let us forget
about this requirement for a moment, and pretend that U and U ′ are unrelated variables, except
for what is dictated by the logic. That is, we consider Γ to be set of sentences in the boolean
closure of syllogistic logic taken over a set of variables which is two copies of ours set V. By
completeness of that logic, Γ ∩ L(all, some, ′) has a model. Call it M.

The problem is that since we forgot a key requirement, it probably will not hold in M.
So [[U]]M and [[U ′]]M need not be complementary sets: the best we can say is that these sets
are disjoint by axiom 7. In other words, M is not the kind of model which we use to define
the semantic notions of the language, and thus we cannot use it is not directly of use in the
completeness result. We must adjust the model in such a way as to (1) put each point in either
[[U]] or [[U ′]], and at the same time (2) not changing the truth value of any sentence in the
language L(all, some, ′). The key is to use some of the algebraic work from earlier in the paper.

11

Consider the following orthoposet which we call VM. Let V be the variables, let ≤ be defined
by U ≤ V iff [[U]]M ⊆ [[V]]M. The points of VM are the equivalences classes of variables under
the associated equivalence relation, and the order is the inherited one. Proposition 3.1 implies
that if U ≤ V , then also V ′ ≤ U ′. So we can define the complementation on VM by [U]′ = [U ′].
Further, Proposition 3.1 also implies that the order is antitone. The complement inconsistency
property comes from the fact that [[V]] and [[V ′]] are disjoint sets. (We may also need to add a
0 and 1 to VM if the structure so far has no minimum element. This is as in Example 5.)

For each x ∈ M , let
S0(x) = {[U] : x ∈ [[U]]M}.

This set is well-defined. We wish to apply Lemma 2.1 to each set S0(x). To be sure that the
lemma applies, we must check that for [U], [V] ∈ S0(x), [U] 6≤ [V ′]. The point x itself belongs
to [[U]]M ∩ [[V]]M, and as [[V]] ∩ [[V ′]] = ∅, we have [[U]] 6⊆ [[V ′]].

For each x, let S(x) be a point of VM including S0(x). Define a model N = (M, [[]]) by
using the same universe M as underlies M, and then

[[U]]N = {x ∈ M : U ∈ S(x)}.

Since each S(x) is a point, N is a bona fide structure for the language; that is, the semantic
evaluation map preserves complements.

We claim that M and N satisfy the same sentences. Let M |= All U are V . Thus U ≤ V in
VM. Then since points are closed upwards, [[U]]N ⊆ [[V]]N.

Finally, suppose that M |= Some U are V . Let x ∈ [[U]]M ∩ [[V]]M. Then {U, V } ⊆ S0(x) ⊆
S(x), so x ∈ [[U]]N ∩ [[V]]N.

We now know that M and N satisfy the same sentences. Since N is the kind of model we
consider in the semantics, Γ ∩ L(all, some, ′) is satisfiable.

It is possible to add boolean compounds of the NPs in this fragment. Once one does this, the
axiomatization and completeness result become quite a bit simpler, since the system becomes
a variant of boolean algebra.

4 Ex Falso Quodlibet versus Reductio ad Absurdum

Our proof system employs the (Contrad) rule, also known as Ex Falso Quodlibet. We also
formulated the stronger system using Reductio ad Absurdum in Section 1.2. It follows trivially
from the completeness of the (EFQ) system and the fact that it is stronger than the (RAA)
system that the latter is complete. The argument is semantic. It might be of interest to those
working on proof-theoretic semantics (see Ben Avi and Francez [1] and other papers by Nissim
Francez) to see the explicit reduction.1

Until the very end of this section, the only proof system used is for `RAA, and all trees
shown are for that system.

1And then again, perhaps it would not be of any interest. As I submit this paper in November 2007, I am
undecided about whether to drop this entire section.

12

G....
All B′ are B
All A are B

One

H....
All B are C

All A are C

G1....
All B′ are B
All A are B

One

G0....
All B are B′

All B are C
Zero

All A are C

H....
All A are B

G....
All B are B′

All B are C
Zero

All A are C

Figure 3: Normal forms. The principal subtrees must be simple and injective, but we allow
degenerate cases where one of these is absent.

4.1 Injective proofs and normal forms

Let T be a proof tree over a set Γ, that is, a finite tree whose nodes are labeled with sentences
according to the rules of our logic.

T is injective if different nodes have different labels.
T is simple if it is either an axiom alone, or if the leaves are labeled with sentences from Γ

and the only rules used are (Antitone) at the leaves, and (Barbara).
Injectivity is a natural condition on proof trees. Unfortunately, the system does not have

the property that all deductions have injective proofs. The simplest counterexample that I
could find is the one in Example 2: there is no injective tree for the assertion shown there.

However, the system does admit normal forms which are basically two injective and simple
trees put side-by-side. We say that T is a normal form if it is of one of the three forms shown
in Figure 3. In the first form the root of G is labeled All A are B, and the root of H is labeled
All A are D; G and H are the principal subtrees. Similar definitions apply to the other two
forms. We require/permit that

1. The principal subtrees must be injective and simple.

2. One of the principal subtrees in each form might be missing. So any injective, simple tree
is automatically a normal form.

3. The label on the root of T does not occur as the label of any other node. In the first and
third forms, we require that the label on the root of G not label anywhere on H.

As a consequence of the second point, an injective and simple tree counts as normal, as does
an injective tree that uses (Zero) or (One) at the root and is otherwise simple. A normal form
tree need not be injective, because it might contain two principal subtrees which (though each
is injective) have node labels in common.

The main advantage of working with simple trees is that the following results holds for
them. Adding rules like (Zero) and (One) destroys Lemma 4.1, as easy counterexamples show.

Lemma 4.1 Let Γ ∪ {All X are Y } `RAA All U are V via a simple proof tree T. Then one of
the following holds:

13

1. Γ `RAA All U are X, and Γ `RAA All Y are V .

2. Γ `RAA All U are Y ′, and Γ `RAA All X ′ are V .

Proof By induction on T. If T is a one-point tree, then U = X, and Y = V , and the
statements in (1) are axioms. If T is one point followed by an application of the (Antitone)
rule, we use (2). The induction step for (Barbara) is easy. a

In the next two lemmas, we consider a graph G = (V,→) related to Γ and to the overall
logic. Here as before, V is the set of variables, and U → V iff Γ contains either All U are V
or All V are U . Then to say that “Γ `RAA All U are V via a proof tree which is simple” is
exactly to say that Y is reachable from X in this graph, or that X = Y .

Lemma 4.2 Let Γ `RAA All U are V via a proof tree which is simple.

1. There is a injective, simple proof tree for Γ `RAA All U are V .

2. Moreover, there is a tree in which (for all T) none of the nodes are labeled All T are U .

Proof If X = Y , then a one-node tree is injective. Otherwise, take a path p of minimal
length in G from X to Y . This path p contains no repeated edges, and if A → B is on p, then
B → A is not on p. Moreover, X is not the target of any edge on p; this takes care of the second
point in our lemma. There are several ways to turn p into an injective simple proof tree, using
induction on the length of the path p. a

Lemma 4.3 Let V be such that Γ `RAA All V are V ′ and Γ `RAA All V ′ are V via simple proof
trees. Then for all variables A and B, there is a normal form proof tree for Γ `RAA All A are B.

Proof Again we consider the graph G = (V,→). The hypothesis tells us that there is a cycle
V → · · · → V ′ → · · · → V . Consider the following proof tree:

....
All V ′ are V
All A are V

One

....
All V are V ′

All V are B
Zero

All A are B

For the unshown parts, we use injective simple trees from the last lemma. We can also arrange
that the tree overall be injective, by starting with a node V which minimizes the length of the
cycle.) a

In the lemma below, and also in the next section, we again use U ≤ V to mean that
Γ `RAA All U are V . Γ should be clear from context when we do so.

Lemma 4.4 Let Γ `RAA All X are Y via a proof tree without contradiction nodes. Then there
is a normal form proof tree T for this deduction.

Proof One way to show this would be to use induction on proof trees. This is not how we

14

proceed, but the details would not be substantially different. Our method is to modify a proof
tree T without contradictions to obtain a normal tree. First, push all applications of (Antitone)
to the leaves, out of the way. This is not hard, and we leave the details to the reader. Next,
prune T so that all applications of (Zero) are on the right branch as we go up from the root,
and all applications of (One) are on the left branch. This is accomplished by transformations
such as

All A are C

All B′ are B
All C are B

One All B are D
All C are D

All A are D =⇒

All B′ are B
All A are B

One All B are D
All A are D

Once this is done, we now eliminate multiple applications of (Zero) on the right branch and
(One) on the left. For example, we transform a tree whose root is as on the left to the tree
whose root is as on the right.

All B′ are B
All A are B

One All B are D
All A are D All D are A′

All A are A′

All E are A′ One

All B′ are B
All E are B

All B are D All D are A′

All B are A′

All E are A′

We may then arrange all subtrees without (Zero) or (One) to be injective, using Lemma 4.2.
Now we either have a tree as in Figure 3, or else we have a tree such as

G....
All B′ are B
All A are B

One

H....
All B are C

All A are C

I....
All C are C ′

All C are D
Zero

All A are D

This tree uses (One) and (Zero) and also a subsidiary derivation in the middle. In the notation
of the figure, we would then have proofs from Γ of B′ ≤ B, B ≤ C, and C ≤ C ′. These
proofs only use (Antitone) and (Barbara). Then we put these together to get a similar proof
of C ′ ≤ B′ ≤ B ≤ C. So at this point we may forget about our current tree altogether and use
Lemma 4.3. This shows that we may assume that only two of G, H, and I are present.

Finally, we need to arrange the last requirement on normal trees. If this fails, then we
replace H by a simple, normal proof tree of the same assertion with the “moreover” condition
of Lemma 4.2. This automatically insures that All A are B does not occur in H. a

4.2 Proofs with and without contradiction

Lemma 4.5 Let Γ `RAA Some C are D without the contradiction rule. Then there is a proof
tree T for this deduction such that T has exactly one use of (Darii), and this is preceded and
followed by zero or one applications of (Some1) or (Some2).

Proof We eliminate successive applications of (Darii) at the root, using (Barbara):

15

All B are C
All A are B Some C are A

Some C are B
Some C are D =⇒

All A are B All B are C
All A are C Some C are A

Some C are D

The only other rules that involve Some sentences are (Some1) and (Some2). If more than one
is used in either place, the series of uses may be collapsed to just one. a

Recall Γ is inconsistent if for some S, Γ ` S and Γ ` ¬S. (That is, this notion is defined
using ` and not `RAA.)

Lemma 4.6 Let Γ be inconsistent. Then for some sentence Some U are V in Γ, Γall `RAA

All U are V ′.

Proof There is a tree T for a derivation of an inconsistency that itself does not use the
contradiction rule. By using Lemma 4.5, we have a tree such as

G....
All U are W

H....
All V are W ′ Some U are V

Some U are W ′ Darii

S
Contrad

where G and H consist entirely of All sentences, so they are trees over Γall. This tree shows
the general situation, except that Some U are V might be the result of one or two applications
of Some rules from a Some sentence in Γ, and below Some U are W ′ we might similarly find
one or two steps leading to Some W ′ are U , Some W ′ are W ′, or Some U are U . These extra
possibilities are easy to handle. So we assume that Some U are V belongs to Γ. Using G and
H, we see that Γall `RAA All U are V ′. In the case of these “extra possibilities”, we might need
to add one or two steps afterwards. a

Lemma 4.7 If Γ ∪ {All X are Y } is inconsistent, then Γ `RAA Some X are Y ′.

Proof By what we have seen, there is a normal form proof tree T over Γall ∪ {All X are Y }
to the negation of a sentence in Γ of the form Some U are V . We may assume that All X are
Y labels a leaf; for if not, Γ is inconsistent. We argue by induction on the length n of a path
from a leaf labeled All X are Y to the root of such a tree.

If the length is 0, then the leaf All X are Y is the root of T. Therefore X = U and Y = V ′.
So since Γ contains Some U are V = Some X are Y ′, we are done.

This is the base case of the induction. Assume our lemma for n (for all sets and all sentences
as in the statement of our theorem, of course). There are two overall cases: (a) All X are Y
labels one leaf of either G or H (but not both); (b)All X are Y labels one leaf of G and one leaf
of H. (Recall that G and H are injective, so All X are Y labels at most one leaf in each.)

Here is the argument in case (a). Suppose that All X are Y labels a leaf in T as in

All X are Y All Y are Z
All X are Z

...

16

so that the length of the path from All X are Y to the root is n. Drop All X are Y and All Y
are Z from T to get a tree T′. So All X are Z is a leaf of T′, and the length of the path in T′ from
this leaf to the root is n−1, and T′ is a normal form tree over Γall∪{All X are Z}. By induction
hypothesis, Γ `RAA Some X are Z ′. But All Y are Z belongs to Γ, as only one node of T is
labeled with All X are Y . (We are using the hypothesis of case (a).) So Γ `RAA Some X are Y ′.
The case when All X are Y labels a leaf of T participating in (Barbara) on the right is similar.

There are other subcases: All X are Y might label a leaf on T that participates in (One),
(Zero), or the (Antitone) rule. We shall go into details on (One); (Zero) is basically the same,
and (Antitone) is the easiest since it only occurs at the leaves. For (One), the tree T is

All B′ are B
All A are B

One

H....
All B are C

All A are C

So X = B′ and Y = B. By our third requirement on normal proof trees, H is a proof tree
over Γ, and it does not contain All A are B anywhere. If we remove All B′ are B, the tree
is normal, but not because it matches the first type in Figure 3 (it does not match it, since it
lacks an application of (One)); instead, it is a simple, injective tree. So by what we just did
for (Barbara), we see that Γ `RAA Some A are B′. Hence Γ `RAA Some B′ are B′; that is,
Γ `RAA Some X are Y ′.

This concludes our work in case (a). Things are more interesting in case (b). There are
three subcases, corresponding to which of the normal form trees in Figure 3 T exemplifies.

Subcase (i): T has an instance of (One) but not of (Zero) as on the top left in Figure 3.
Its root All A are C is the negation of a sentence in Γ. Therefore, Γ contains Some A are C ′.
Recall that G and H are simple. Now since both G and H have leaves labeled All X are Y , we
have four possibilities:

(i.a) B′ ≤ X, Y ≤ B, B ≤ X, Y ≤ C.

(i.b) B′ ≤ X, Y ≤ B, B ≤ Y ′, X ′ ≤ C.

(i.c) B′ ≤ Y ′, X ′ ≤ B, B ≤ X, Y ≤ C.

(i.d) B′ ≤ Y ′, X ′ ≤ B′, B ≤ Y ′, X ′ ≤ C.

Note that (i.a) and (i.c) are the same: the first two assertions in (i.a) are the duals of those in
(i.c). Similar results apply to (i.b) and (i.d). So we only go into details on the (i.a) and (i.b).

For (i.a), we have proofs from Γ of the three subtrees indicated by
... below:

....
All B are X
All X ′ are B′

....
All B′ are X

All X ′ are X
All Y ′ are X

....
All Y are C
All C ′ are Y ′

Some A are C ′

Some C ′ are C ′

Some C ′ are Y ′

Some Y ′ are Y ′

Some Y ′ are X
Some X are Y ′

Thus, the tree above is a tree over Γ, with the desired conclusion.

17

(The displayed tree (without the three omitted subproofs) is the solution to the exercise
mentioned in Example 3 in Section 1.1.)

In possibility (i.b), one gets Y ≤ B ≤ Y ′, so informally, there are no Y . Also, X ≤ C ′, so
C ′ ≤ X. Since some A are C ′, some X are Y ′.

For (ii), Γ contains Some A are C ′. We again have four possibilities, similar to what we saw
in (i) above. We’ll only go into brief details on the first and third possibilities. The first would
be when Γ derives B′ ≤ X, Y ≤ B, B ≤ X, and Y ≤ B′. In this case, we have All B′ are B
and All B are B′. Hence we also get All A are X and All C ′ are Y ′ (see Lemma 4.3). Hence
we have Some X are Y ′. The third possibility finds Y ≤ B′ ≤ Y ′ and X ′ ≤ B ≤ X. So we get
All A are X and All C are Y ′ again.

Subcase (iii) is entirely parallel to (i).
This concludes our proof. a

Theorem 4.8 If Γ `RAA S, then Γ ` S.

Proof By induction on the indirect proof relation `RAA. The key step is when Γ `RAA S
via proofs of Γ ∪ {¬S} `RAA T and Γ ∪ {¬S} `RAA ¬T . By induction hypothesis, Γ ∪ {¬S}
is inconsistent in the direct logic. When S is a Some sentence, Lemma 4.7 tells us that Γ ` S.
When S is an All sentence, we use Lemma 4.6. a

Acknowledgment

My thanks to Ian Pratt-Hartmann for many very useful conversations on this topic.

References

[1] Gilad Ben Avi and Nissim Francez. Proof-theoretic semantics for a syllogistic frag-
ment. In Paul Dekker and Michael Franke (eds.), Proceedings of the Fifteenth Amsterdam
Colloquium, http://www.illc.uva.nl/AC05/uploaded files/AC05Proceedings.pdf,
ILLC/Department of Philosophy, University of Amsterdam, 2005, 9–15.

[2] C. S. Calude, P. H. Hertling, K. Svozil. Embedding quantum universes into classical ones,
Foundations of Physics, 29, 3 (1999), 349-379.

[3] John Corcoran. Completeness of an ancient logic. Journal of Symbolic Logic 37 (1972),
696–702.

[4] F. Katrnoška. On the representation of orthocomplemented posets. Comment. Math. Univ.
Carolinae 23 (1982), 489–498.

[5] Jan Lukasiewicz. Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic.
Clarendon Press, Oxford, 1951.

[6] John N. Martin. Aristotle’s natural deduction reconsidered. Hist. Philos. Logic 18 (1997),
no. 1, 1–15.

18

[7] Lawrence S. Moss. Completeness theorems for syllogistic fragments. ms, 2006.

[8] Ian Pratt-Hartmann. Fragments of language. Journal of Logic, Language, and Information
vol. 13 (2004), 207–223.

[9] Ian Pratt-Hartmann. A natural deduction system for the syllogistic. Ms., University of
Manchester, 2007.

[10] Dag Westerst̊ahl. Aristotelian syllogisms and generalized quantifiers. Studia Logica
XLVIII:4 (1989), 577–585.

[11] N. Zierler and M. Schlessinger. Boolean embeddings of orthomodular sets and quantum
logic. Duke Mathematical Journal 32 (1965), 251–262.

19

