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Abstract

This paper is concerned with the equational logic of corecursion, that is of defini-
tions involving final coalgebra maps. The framework for our study is iteration theories
(cf. e.g. Bloom and Ésik [?, ?]), recently re-introduced as models of the FLR0 fragment of
the Formal Language of Recursion [?, ?, ?]. We present a new class of iteration theories
derived from final coalgebras. This allows us to reason with a number of types of fixed-point
equations which heretofore seemed to require to metric or order-theoretic ideas. All of the
work can be done using finality properties and equational reasoning.

Having a semantics, we obtain the following completeness result: the equations involving
fixed-point terms which are valid for final coalgebra interpretations are exactly those valid in
a number of contexts pertaining to recursion. For example, they coincide with the equations
valid for least-fixed point recursion on dcpo’s. We also present a new version of the proof
of the well-known completeness result for iteration theories (see Ésik [?] and Hurkens et
al [?]). Our work brings out a connection between coalgebraic reasoning and recursion.

1 Introduction

This paper studies fixed-point definitions pertaining to final coalgebras. To get quickly to the
issues, here is an example of the kind of phenomenon which interests us. Consider infinite
binary trees labeled with letters of the Roman alphabet. We can define trees by fixed-point
terms, e.g.,

x where {x = 〈g, x, y〉, y = 〈h, y, y〉} (1)

This term is intended to denote an infinite binary tree x labeled by g whose left subtree is the
same tree x, and whose right subtree is labeled by h throughout. We also allow the “where”
construct to appear inside terms, as in

x where {x = 〈g, x, y〉, y = 〈h, y, z where {z = 〈i, z, z〉} 〉} (2)

And once we have a collection of terms like this, it becomes interesting to ask for methods to
tell when terms denote the same tree. Intuitively, (??) and (??) do not denote the same tree,

∗This paper was originally presented to the Mathematical Foundations of Programming Semantics meeting

in 1999, and an earlier version was published in the proceeding, ENTCS vol. 20. This version contains a number

of corrections and additions.
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while (??) and (??) below do:

x where {x = 〈g, x, w〉, w = 〈h, w, z where {z = 〈h, z, z〉} 〉} (3)

Going further, it seems natural to consider parametric trees, defined by terms containing free
variables, as in

x where {x = 〈g, x, y〉} (4)

x where {x = 〈g, 〈g, x, y〉, y〉} (5)

Such terms are “parametric” in the sense that given a concrete tree t, one should be able to
substitute t for y in (??) and (??). Substitution of the same t into both (??) and (??) gives
terms with the same denotation. So it seems to make sense that (??) and (??) should themselves
have the same denotation.

Of course, at this point we really need a semantics of terms involving the “where” con-
struction. (We also need a more exact syntax, of course.) The usual semantics for fixed-point
terms of this sort uses the set of partial trees, and then the semantics itself amounts to solving
a recursion equation on this larger set. In this paper, we depart from such approaches and
give a semantics of parametric objects using only the notion of a final coalgebra. In this case,
the infinite trees over any set S are a final coalgebra for the functor F : Set → Set given by
F (a) = S × a× a. (S is {g, h, i}, say.) F acts on functions in the usual way. Actually our work
generalizes to many other functors.

Contributions of this paper This paper presents a semantics for fixed-point terms using
final coalgebras. This semantics is applicable in any setting where final coalgebras arise. (There
are many such settings; cf. e.g. Rutten [?] for a survey.) Some of these settings can also be
treated by the more usual method of passing to a larger set which has more limits of some
kind. However, there is no known reduction of our work to the usual setting. Technically, our
work involves the construction of an iteration theories for a functor F with a final coalgebra.
(Actually we need F to satisfy some other properties; these are spelled out in the definition
of a parametric corecursion system in Section ??.) Our construction thus gives a new class of
iteration theories.

Once we see how to obtain iteration theories from suitable functors, the next step is to
examine the resulting equational logic. This connects our work to the literature on iteration
theories; cf. e.g. Bloom and Ésik[?, ?]. Let A = B be a single equation between fixed-point
terms. We show that A = B is valid for coalgebra interpretations iff it is valid for all interpre-
tations. It is known that this notion of validity coincides with validity on many other classes;
for example the class of all dcpo interpretations.

Contents Section ?? presents the syntax and semantics of FLR0. The final coalgebra semantics
that we work with is deferred, however, until we present some basic results on parametric
corecursion systems (Section ??). We get an easy soundness result for FLR0 interpreted on
final coalgebra interpretations in Section ??, and the Completeness Theorem for such equations
is also presented there. We conclude with some remarks on the significance of these results, the
relation to other work, and with open problems.

Background on iteration theories can be found in Bloom and Ésik [?] or [?]; background on
the Formal Language of Recursion can be found in Hurkens et al [?]. Sections ?? and ?? quote
several results from [?]. We do not make use of anything further from that paper.
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2 Syntax and Semantics of FLR0

This section recalls definitions from [?]. A N -ranked set is a set S togther with r : S → N ,
where N is the set of natural numbers. We write Sn for r−1(n) = {s ∈ S : r(s) = n}. Another
name for an N -ranked set is a signature, and here we use the notation of Σ for the set and arity

for the map. We think of Σ as a set of function symbols in this case. Consider such a signature
Σ, and also consider and a countably infinite set of variables {v1, v2, . . .}. We use letters like x,
y and z to denote these variables.

The following inductive definition specifies the terms E of the language FLR0 = FLR0(Σ).

E := vi | f(E1, . . . , En) | E0 where {x1 = E1, . . . , xn = En} .

Here f ∈ Σn, and E1, . . . , En are again terms. Intuitively, the second clause corresponds to
function application, and the third clause gives syntax for the solution of systems of recursive
equations. In the third clause, the variables x1, . . ., xn must be distinct.

Syntactic notions concerning FLR0 are defined as usual, including free and bound variable
occurrences (where binds x1, . . . , xn in the third clause), closed and open terms, and fresh
variables. We’ll denote the set of free variables occurring in a term E by fv(E). If X is a set
of variables and σ:X → FLR0, and A is a term such that fv(A) ⊆ X, then we can perform
the usual syntactic substitution of σ(x) for each free occurrence of x ∈ X in A. We write the
result as [σ]A. If a term has been written A(~x) displaying (some of) its free variables, we will
generally use the common notation A( ~E) for [σ]A where σ(xi) = Ei for each x in the sequence
~x.

2.1 Semantics

Definition An FLR0(Σ) structure is a pair R = (Φ,Λ) where Φ is an N -ranked set called
the universe of the structure, and Λ is a denotation map on FLR0(Σ ∪ Φ); i.e., for any term
E ∈ FLR0(Σ ∪ Φ) and any non-repeating sequence ~x = x1, . . . , xn of variables containing all of
the free variables of E, Λ(~x)E ∈ Φn.

The denotation map Λ must be compostional in the following sense: for any term E and
free substitutions σ and τ defined on ~x = x1, . . . , xn:

Λ(x1, . . . , xn)f(x1, . . . , xn) = f (6)

Λ(~y)

(

Λ(~x)E

)

(σ(x1), . . . , σ(xn)) = Λ(~y)[σ]E (7)

If Λ(~y)σ(xi) = Λ(~z)τ(xi) for all i, then Λ(~y)[σ]E = Λ(~z)[τ ]E (8)

The first of these properties says that every element of the universe acts as a symbol for itself.
The idea behind the other two compositionality conditions is that the denotation of a complex
term must depend only on the denotations of its subterms.

The conditions in (??)–(??) imply a number of standard consequences concerning renaming
variables; in particular, if ~x includes all of the free variables of A(~x), then Λ(~x)A(~x) = Λ(~y)A(~y).
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2.2 Normal FLR0 structures

The canonical examples of FLR0 structures are directed-complete partial orders (dcpo’s) in
which the function symbols are interpreted by monotone operations and in which the where

operation is interpreted as least fixed point. In this paper, we are interested in structures
which do not interpret where in this way but rather use finality. However, since the dcpo
interpretations are much better-studied, we shall use some concepts from their study.

Every FLR0 structure R gives rise to a notion of semantic consequence |=R. A structure
R = (Φ,Λ) satisfies an equation A = B if for any list of variables ~x including Fr(A) ∪ Fr(B),
Λ(~x)A = Λ(~x)B. R satisfies a set Γ of equations if it satisfies each γ ∈ Γ.

More generally, let Γ be a set of formulas and ϕ be any formula. Write [σ]Γ for the appli-
cation of the term substitution σ to every formula in Γ. Then ϕ is a consequence of Γ over
R, written Γ |=R ϕ, when the following condition holds: Whenever R satisfies [σ]Γ for a term
substitution σ, then R satisfies [σ]ϕ as well. (If Γ = ∅, then the notion Γ |=R ϕ reduced to that
of |=R ϕ from above.)

It can be shown that if R is a dcpo FLR0 structure, all instances of the following three
classes of identities hold, and all instances of the rule below also hold:

The Fixed Point Identity |=R A where {x = A} = x where {x = A} .
The Head Identity Let A and B1, . . . , Bn be terms. Define the term substitution σ by
σ(xi) = xi where {x1 = B1, . . . , xn = Bn} . Then

|=R A where {x1 = B1, . . . , xn = Bn} = [σ]A.

The Bekič-Scott Identity

|=R A where {~y = ~C, ~x = ~B}

= (A where {~y = ~C} ) where {x1 = B1 where {~y = ~C} ,

. . . , xn = Bn where {~y = ~C} }

The Recursion Inference Rule Consider two where-terms, say

A0 where {x1 = A1, . . . , xn = An} and B0 where {y1 = B1, . . . , ym = Bm} ,

with no bound variables in common. Let ∆ be any set of equations of the form xi = yj. Then

Γ,∆ |=R A0 = B0 Γ,∆ |=R Ai = Bj for xi = yj ∈ ∆

Γ |=R A0 where {~x = ~A} = B0 where {~y = ~B}
.

That is, if R satisfies all of the assertions above the line, then it also satisfies the bottom
assertion.

Definition An FLR0 structure R is normal if R satisfies all instances of the Fixed Point, Head,
and Bekič-Scott Identities, and if the Recursion Inference rule is sound for the consequence
relation Γ |=R A = B.
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3 Background on Parametric Corecursion Systems, Substitu-

tion, and Corecursion

3.1 Parametric Corecursion Systems

Let C be a category with a fixed coproduct operation +. If a and b are objects, then we have
injections inl : a → a + b and inr : b → a + b. When we use subscripts on these injections,
we have in mind a special meaning that we introduce below. If the context forces a unique
reading, then we prefer not to subscript these injections. If f : a → c and g : b → c, then we
have a unique 〈f, g〉 : a + b → c such that f = 〈f, g〉 ◦ inl and g = 〈f, g〉 ◦ inr. If f : a → b and
g : c → d, then we also have f + g : a + c → b + d given by 〈inl ◦ f, inr ◦ g〉.

Let F : C → C be an endofunctor. For all objects c, Fc denotes the functor d 7→ F (c + d).
If g : d → d′, then Fcg = F (idc + g).

Definition Let C be a category with a specified coproduct operation +. A parametric F -
corecursion system on C is an assignment ϕ taking each object c of C to a final Fc-coalgebra
ϕc : a → F (c + c).

This definition is intended to be quite weak. The point is that on the basis of it, one can
get further structure which, as we shall see, includes that of an iteration theory. See [?] for a
development of the theory of parametric corecursion systems and an application in set theory.

Our main class of examples is the following: We take C to be the category Set of sets and
functions1. We take + to be the operation disjoint unions of sets (or any other fixed coproduct
operation), except that to make our life easier at one point, we make the special assumption
that if n and m are natural numbers (von Neumann ordinals) then the coproduct of n and m

is the natural number n + m. (That is, we do not take the disjoint union in this case). This is
a technical point that is not really needed, but as we say it simplifies a few details. Further,
we take F be be any endofunctor on sets which is uniform in an appropriate sense (see [?]). It
can be shown that each derived functor Fc has a final coalgebra. So specifying one for each c

gives a parametric corecursion system.

Proposition 3.1 Let F be a uniform functor on sets. Then for all c, Fc has a final coalgebra.
Thus, there is a parametric F -corecursion system on C.

In addition, if one assumes the Antifoundation Axiom (AFA), then the greatest fixed point
F ∗ of F gives a final coalgebra 〈F ∗, id〉. Working with the greatest fixed points makes some of
the work easier, but it is not strictly necessary and so we shall not do it in this paper. For more
on these matters, see Aczel [?], Moss [?], or Turi and Rutten [?].

We shall be interested especially in functors on sets derived from signatures. Fix some
signature Σ, and also fix a constant ⊥ of Σ. Σ determines a functor F = FΣ on C in the usual
way, by setting

F (a) = {〈f, b1, . . . , bn〉 : f ∈ Σ, arity(f) = n, and b1, . . . , bn ∈ a},

and for k : a → b, Fk(〈f, b1, . . . , bn〉) = 〈f, kb1, . . . , kbn〉. A function symbol c of arity 0 is a
constant symbol. For all a, 〈c〉 ∈ F (a).

1It is also possible to be slightly more general by taking C to be the category of classes and definable,

set-continuous, operations.
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This functor is uniform, and so it follows from Proposition ?? that is gives a parametric
corecursion on sets. (The existence of final coalgebras in this case can be deduced not only
from results in [?] but also from the work of Aczel and Mendler [?], Barr [?], and Turi and
Rutten [?].)

We should stress that the final coalgebras may be constructed by general set-theoretic
arguments that do not amount to constructing explicit representations. In other words, the
existence of final coalgebras should be thought of as the fundamental fact, and the particular
representation is secondary.

The intuition behind the sets n Recall that (the standard model in set theory of) the
natural number n is {0, 1, . . . , n − 1}. As a particular consequence of Proposition ??, for each
n, the functor Fn has a final coalgebra. We fix such a final coalgebra ϕn : n → F (n+n). When
F is a signature functor, n can be taken to be the set of infinite, ordered trees t such that some
of the nodes of t are labeled by Σ and the rest of the nodes are labeled with the numbers 0, . . .,
n − 1. Moreover, the following requirements holds for t:

1. If a node x of t is labeled with one of the numbers 0, . . ., n− 1, then x has no children in
t; and

2. if x is labeled with f and arity(f) = k, then x has k children; and

3. the root of t is labeled with some function symbol f from Σ.

Our choice of the numbers 0, . . . , n− 1 is simply for notational convenience. One could instead
take them to be any sets x0, . . ., xn−1. Usually one would take them to be the “variables” x1,
. . ., xn. In this way, n corresponds to the infinite trees from Σ in these variables. We might
add that we have not added the variables to the signature, so that the one-point trees labeled
by numbers are not in our set. (This is what requirement (3) says.) But when we want the
bigger set, it would be n + n.

Some further remarks: What we have is actually a map ϕn : n → F (n+n). Our description
above assumes that ϕn is the identity (i.e., we suppressed mention of it), and this is certainly
the best way to read what we do. In addition, the formalism actually says that every element
t ∈ n is of the form 〈f, z1, . . . , zk〉, where k = arity(f), and where each zi is either a natural
number below k or else another t′ with the same features as in this definition. The use of the
coproduct is to make the two forms distinguishable. What we have done above with trees is to
just give the more classical rendering of the same structure.

As an example of how our notation works in this case, consider the term f(x1, x2) as an
element of n, where n > 2 is arbitrary. For i < n, xi corresponds to inln(i − 1), and so term
f(x1, x2) corresponds to

ϕ−1
n (〈f, inln(0), inln(1)〉).

A complex term like g(x3, f(x1, x2)) then corresponds to

ϕ−1
n (〈g, inln(2), inrn(ϕ−1

n (〈f, inln(0), inln(1)〉))〉).

We know that our formalism will be unfamiliar to nearly all readers, but it has its advantages
for the work we do beginning in the next section. We hope that the remarks in this section will
allow a smooth translation to more standard notations.
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3.2 Substitution and Corecursion

As it usually appears, substitution is an easy consequence of initiality or recursion. Here is
the kind of formulation we have in mind. The set TΣ of Σ-terms is an initial algebra of the
functor F = FΣ. Moreover, for each set X, we can consider the derived functor FX and its
initial algebra TΣ(X). More precisely, let the initial algebra maps for TΣ and TΣ(X) be ǫ and
ǫX , respectively. Now the initiality gives us the following principle: for every map f : X → TΣ

there is a unique [f ] : TΣ(X) → TΣ with the property that ǫ ◦ [f ] = F 〈g, [f ]〉 ◦ ǫX .
In contrast to all of this, we need a formulation of substitution based on finality. The basic

idea is the same as the one mentioned above, except that in contrast to the situation above, we
cannot define the function we need by recursion. Instead, we appeal to finality. We say in this
case that the substitution operation is be defined by corecursion.
Here is our substitution principle:

Lemma 3.2 (Substitution [?]) Let f : a → b+ b. Then there is a unique [f ] : a → b so that

F 〈f, inrb ◦ [f ]〉 ◦ ϕa = ϕb ◦ [f ]. (9)

[tight,size=3.5em] aϕa F (a + a)
[f ]

F 〈f,inrb◦[f ]〉

bϕb
F (b + b)

We also need the notion of a solution to a system of parametric equations. This is supplied
by the following result.

Theorem 3.3 (Parametric Corecursion [?]) Let f : a → a + b. Then there is a unique
f † : a → b so that f † = [〈inrb ◦ f †, inlb〉] ◦ f : [tight,size=3em] a fa + b

f† [〈inrb◦f†,inlb〉]

b

3.3 Additional Structure in Parametric Corecursion Systems

Theorem ?? plays the role of fixed-point principles in other approaches. That is, our semantics
of fixed-point terms is based heavily on this result. We also need some properties of substitution
which we mention at this point. As with Theorem ?? and Lemma ??, the results just below
hold in any parametric corecursion system.

Lemma 3.4 Consider inla : a → a + a. Then [inla] = ida.

Lemma 3.5 Let f : a → b + b and g : b → c + c. Then [g] ◦ [f ] = [〈g, inrc ◦ [g]〉 ◦ f ].

To prove Lemma ??, we only need to check that ida works for [inla] in (??). This is an easy
consequence of functoriality. For Lemma ??, we check that [g] ◦ [f ] has the defining property
of [〈g, inrc ◦ [g]〉 ◦ f ].

We also have additional structure 〈M, unit,−⋆〉 given as follows: M is the operation taking
the object a to described as a Kleisli triple as follows: Ma = a+a, unit takes a to the morphism
inla : a → Ma, and for each f : a → Mb, f⋆ : Ma → Mb is 〈f, inrb ◦ [f ]〉.
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Lemma 3.6 〈M, unit,−⋆〉 is a Kleisli triple. That is, unit⋆a = idMa, f⋆ ◦ unita = f , and
f⋆ ◦ g⋆ = (f⋆ ◦ g)⋆.

Proof The first point is by Lemma ??, the second is by the definition of f⋆, and the last is a
routine calculation using Lemma ??. ⊣

4 Iteration Theories and FLR0-structures Derived From Para-

metric Corecursion Systems

We begin with four data:

1. A category (C,+), a category with a specified coproduct + and containing (Tot,+) as a
substructure (i.e., a subcategory, and the coproduct on Tot is the restriction of the one
on C).

2. A parametric F -corecursion system ϕ on C.

3. A signature Σ containing a constant symbol ⊥.

4. For each f ∈ Σn, some C-morphism fΛ : 1 → n + n. We call the map f 7→ fΛ a
pre-denotation, since at some point later we use it to define a denotation map.

Recall that Tot is the algebraic theory with morphisms in for 1 ≤ i ≤ n. These make each
n the n-fold coproduct of 1 in Tot. We assume that the coproduct in C works as in Tot for
natural numbers. (For sets, this is related to the technical assumption mentioned above.)

From the data we will construct an iterative theory T = T (ϕ). By (3) and (4) we have a map
⊥Λ : 1 → 0+0. We use ⊥Λ to extend the dagger operation of T , and obtain an iteration theory
S = S(ϕ,⊥Λ). We use the rest of the maps fΛ to define an FLR0(Σ)-structure R = R(ϕ,⊥).

For the definitions and basic properties of algebraic theories, iterative theories, and iteration
theories, see Bloom and Ésik [?]. We follow this book in writing f · g for g ◦ f .

4.1 An Iterative Theory T (ϕ)

Lemma ?? shows that the parametric corecursion system ϕ gives rise to a Kleisli triple which
we denoted by 〈M, unit,−⋆〉. Let K be the associated Kleisli category for this triple. So K has
the same objects as C, and f : a → b in K iff f : a → Mb in C. Moreover, g · f = f ◦ g in K

is g · f⋆ = f⋆ ◦ g in C, and also ida in K is unita. (The import of Lemma ?? is that it implies
the category properties for K.)

We next define a theory T = T (ϕ). As a category, T will be a subcategory of K. We put
a morphism f : n → m into T if f is a morphism of K, and if each in · f is of exactly one of
following two forms in C:

1. in · inln for some in of Tot

2. g · inrm, for some g : 1 → m of C

9



(In sets, since the coproduct + gives a disjoint union, the “exactly” is of course redundant.)
This specifies T as a category. Let in in T be in · inlm of C. It is easy to check that T

is closed under the source tupling operations of C, and we use these operations to define the
source tupling of T .

We next check that in T , if g = 〈f1, . . . , fn〉 and i ≤ n, then in ·g = fi. For this, we translate
in · g to C and calculate there:

in · inln · g⋆ = in · unitn · g⋆ = in · g = fi.

Therefore, we have an algebraic theory T at this point. (We might note as well that 11 = id1:
both are given explicitly as inl1 : 1 → 1 + 1.)

It remains to define the dagger operation. Before we do this, we check that the collection I

of nondistinguished scalar morphisms of T is a scalar ideal of T . Let f ∈ I. Then there is some
g : 1 → n in C such that f = g · inrn. Let h : n → m in T ; so h : n → m + m in C. Then we
calculate f · h in C: f · h⋆ = g · inrn · h⋆ = g · [h] · inrm. Since g · [h] : 1 → m in C, we see that
f · h belongs to I. This verifies that I is a scalar ideal.

Now we define the dagger operation. Suppose that f : m → m + p is an ideal morphism of
T . Let f1 : m → m + p in C be such that f = f1 · inrm+p. By Theorem ??, we have a unique
morphism f2 : m → p so that f2 = f1 · [〈f2 · inrp, inlp〉]. We set f † = f2 · inrp.

Lemma 4.1 T (ϕ) is an ideal iterative theory.

Proof Suppose that f : m → m + p is an ideal morphism of T . We showed how to define
f † in terms of other morphisms, and we’ll use the notation from above. We want to show that
in T , f † = f · 〈f †, idp〉. Now the coproduct 〈f †, idp〉 in T is actually 〈f2 · inrp, inlp〉 in C. We
calculate in C:

f · 〈f2 · inrp, inlp〉
⋆ = f1 · inrm+p · 〈〈f2 · inrp, inlp〉, [〈f2 · inrp, inlp〉] · inrp〉

= f1 · [〈f2 · inrp, inlp〉] · inrp
= f2 · inrp
= f †.

This shows that f † satisfies the appropriate fixed-point equation. For the uniqueness of f †,
suppose that f∗ : m → p is such that in T , f∗ = f · 〈f∗, idp〉. Let f ′

2 : m → p be such that
f∗ = f ′

2 · inrp. Again, 〈f∗, idp〉 in T is 〈f ′
2 · inrp, inlp〉 in C. And we have f ′

2 · inrp = f∗ =
f · 〈f ′

2 · inrp, inlp〉 = f1 · [〈f
′
2 · inrp, inlp〉] · inrp. So f ′

2 = f1 · [〈f
′
2 · inrp, inlp〉]. Now our uniqueness

assertion on f2 implies that f ′
2 = f2. Therefore f∗ = f †, as required. This concludes the proof.

⊣

4.2 An Iteration Theory S(ϕ,⊥Λ)

An iteration theory is an algebraic theory which is equipped with an operation f 7→ f † defined
whenever f : n → n + p. This dagger operation must be total, and a number of equational
laws must also hold. Looking at FLR0, the totality requirement corresponds to a choice of a
canonical solution to equations like x = x. Up until now, we have not used any of the maps fΛ

from datum (4) at the beginning of this section. We use ⊥Λ : 1 → 00 + 0 now. Notice that ⊥Λ

is also a morphism of T . As such, ⊥Λ : 1 → 0.
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Lemma 4.2 Consider T (ϕ) and ⊥Λ : 1 → 0.

1. There is an extension of the dagger operation of T (ϕ) to an operation defined for all
morphisms f : m → m + n, and such that (id1)

† = ⊥Λ.

2. Let S = S(ϕ,⊥) be the theory T (ϕ), together with the extended dagger. Then S is an iter-
ation theory, and it also satisfies the functorial dagger implication for all base morphisms
(among other things).

Proof This is just a special case of a result of Bloom, Elgot, and Wright [?]. This result also
appears as Chapter 6, Theorem 4.5 of Bloom and Ésik [?]. ⊣

4.3 An FLR0(Σ) Structure R(ϕ, Λ)

In [?] we find a general way to take an iteration theory into and a pre-denotation and to obtain
an FLR0(Σ)-structure. We apply this to the iteration theory S(ϕ,⊥Λ) from Section ??.

The universe Φ is given by Φn = S(1, n). Then the denotation map Λ of our FLR0-structure
is given as follows:

• Λ(x1, . . . , xn)xi = in.

• Λ(x1, . . . , xm)f(E1, . . . , En) = fΛ · 〈Λ(~x)E1, . . . ,Λ(~x)En〉.

• Λ(x1, . . . , xm)E0 where {y1 = E1, . . . yn = En} is

Λ(~y, ~x)E0 · 〈〈Λ(~y, ~x)E1, . . . ,Λ(~y, ~x)En〉
†, idm〉.

The second clause deals with f from the signature Σ, and again we use the pre-interpretation.
In an FLR0-structure, the elements of each Φn are also taken function symbols of arity n. We
therefore extend the pre-interpretation by taking fΛ = f for f ∈ Φn. In the last clause, we
must make a provision here to cover the case when the sequence ~y, ~x has repeated elements.
We deal with this case in the following way: Let w1, . . . , wk be the subsequence of ~x containing
the variables which occur in ~y. Let ~z be the sequence ~x with wi replaced by the ith variable
(in the natural order) which is not among the x’s or y’s. Then ~y and ~z have no overlaps, and
we set the value to be

Λ(~y, ~z)E0 · 〈〈Λ(~y, ~z)E1, . . . ,Λ(~y, ~z)En〉
†, idm〉.

Theorem 4.3 R(ϕ,Λ) is a normal FLR0 structure.

Proof See Proposition ?? and the Appendix of [?]. The sketch of the proof in [?] unfortunately
omits the soundness of the Recursion Inference Rule, and this takes an argument. One can be
found in Moss and Whitney [?], based on the connection of the functorial dagger implication
for all base morphisms and the Recursion Inference Rule. ⊣
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Theorem ?? is the main result of this paper for FLR0-structures. (For iteration theories,
the parallel results of Lemmas ?? and ?? would be the main ones.) The point is that functors
on sets which satisfy the mild condition of having final coalgebras give rise to interpretations
of fixed-point terms in a way that satisfies all of the standard identities. That is, the logic of
recursion is sound for all of these interpretations.

Incidentally, it is of course possible to define R(ϕ,Λ) in a completely elementary way, with-
out going via iteration theories and iterative theories. However, if did things this way, the
verifications of all of the needed properties would be quite long. In effect, one would be re-
proving the results which we quoted, either in their original form or in special cases. This fact
is what decided the presentation strategy for this paper.

4.4 Examples

We present several examples of final coalgebra interpretations.

Example 4.4 Perhaps the most natural example is that of a signature functor. This example
also comes up in In Section ??. Take C to be sets, + to be disjoint union modified on the
natural numbers, F to be the signature functor corresponding to a signature Σ containing a
fixed constant ⊥. For the pre-denotation, we set fΛ to be the S-morphism fΛ : 1 → n whose
value is

inrn(ϕ−1
n (〈f, inln(0), . . . , inln(n − 1)〉)).

We shall call this structure R(Σ).

Example 4.5 Another example might be the terms in the introduction to this paper. Here
again we would take C and + the same way. We would take F to be the functor defined on
objects by F (a) = S × a × a, where S is a fixed set. On morphisms, F is as expected. This
functor is uniform (as are practically all functors of interest except for the identity), and so
we get a parametric corecursion system. We fix a signature Σ containing ⊥. In the rest of
this example, we will suppress all of the injections and isomorphisms for readability. We chose
our pre-interpretation to be defined by fΛ = 〈g, 0, 1〉, gΛ = 〈h, 1, 1〉, etc. In this way, the trees
which interpret terms as in (??)–(??) are naturally the denotations of terms from FLR0(Σ).
Moreover, the assertions we made concerning equalities or inequalities of denotations can be
checked formally. (That is, on the basis of our semantics one can check the assertions in the
Introduction, or one can check our definitions against the intutions that we presented earlier.)

To summarize the results of this section, we have a general way of taking any parametric
corecursion system and obtaining an iteration theory which satisfies some addtional properties.
This iteration theory then translates to a normal FLR0 structure.

5 Coalgebraic Proof of the Completeness of the Logic of Re-

cursion

We recall the equational proof system ⊢ A = B for FLR0(Σ) from [?]. Its axioms are the
identities x = x together with the Fixed Point, Head, and Bekič-Scott Identities. Its rules
of inference correspond to the symmetric and transitive properties of equality, to substitution
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using the function symbols of the underlying signature Σ, and finally to the Recursion Inference
Rule.

Let FC be the class of FLR0(Σ)-structures which are final coalgebra interpretations. That
is, all of the structures defined from parametric corecursion systems and pre-denotations by the
definitions of Section ??. We write |=FC A = B to mean that A = B holds in all R from FC.
Recall also that we have a the functor F = FΣ and also the final coalgebra interpretation R(Σ)
given in Example ??. These are used throughout the rest of this proof.

Theorem 5.1 (Completeness) Suppose that Σ contains a symbol other than ⊥. |=R(Σ) A =
B iff |=FC A = B iff ⊢ A = B. That is, every equation which holds in R(Σ) is provable.

Proof One can check that for the particular signature functor FΣ on C, the final coalgebra
interpretation R(Σ) of Example ?? is isomorphic to the iteration theory Σtr. It is known that
an equation holds in Σtr iff it holds in all iteration theories. This result for iteration theories
may be found in Ésik [?]. For the class of all FLR0-structures, Σtr is called FLR0(Σ). Theorem
2 of Hurkens et al [?] sketches the proof of the completeness theorem in this setting. ⊣

Despite the fact that known results easily imply Theorem ??, we give a different proof.
We do this for three reasons: First, there is an intuition that the Recursion Inference Rule
has something to do with bisimulation. For example, [?] contains the following remark on
the decidability of the equational theory of iteration theories: “The whole process resembles
the minimization of deterministic finite automata.” Our proof makes the connection explicit:
minimization of automata is also the quotient under the largest bisimulation. A second reason
to present our proof is that we use only the final coalgebra structures; one never needs to
explicitly construct or study Σ-trees. Finally, the fact that the proof is more abstract means
that is that might generalize in ways that the older proof does not. (Of course, the abstraction
also means that something might be lost. In this case, what is lost is the fact the polynomial-
time algorithm for decidability. This extra information does not follow directly from our work
below.)

An FLR0(Σ) term A is in simplified form if A is of the form

xj where {x1 = A1, . . . , xn = An} , (10)

where 1 ≤ j ≤ n and where each Ai, is either xi, or is of the form fi(z1, . . . , zmi
) where fi ∈ Σ

has arity mi and each zj is one of the xk. (When mi = 0, Ai is a constant term.) A is in tightly
simplified form if A is either a variable; or A is in simplified form, and the only equations in A

between variables are of the form x = x (that is, the same variable appears on both sides).

Lemma 5.2 (Simplification Lemma) Let A be a term of FLR0(Σ).

1. There is a term A′ ∈ FLR0(Σ) in simplified form such that ⊢ A = A′.

2. There is a term A′′ ∈ FLR0(Σ) in tightly simplified form such that ⊢ A = A′.

Proof The first part is from [?]. For the second part, we may assume that A already is a
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simplified form. If x and y are different and A is x = x where {x = y} , then ⊢ A = y. Also,
x = x where {x = x} is tightly simplified. So we assume that A has at least two equations.
We show how to take one equation of A between different variables, say y = z, and eliminate
this equation. For example, suppose A is

x where {x = f(x, y), y = z, z = g(x, y, z)} .

By the Bekič-Scott Identity,

⊢ A = (x where {x = f(x, y), z = g(x, y, z)} ) where {y = z} .

By the Head Identity,

⊢ A = x where {x = f(x, y where {y = z} ), z = g(x, y where {y = z} , z)} .

Now as we know, ⊢ ( y where {y = z} ) = z. So with an an application of the Recursion
Inference rule (or a substitution principle derived from it), we see that

⊢ A = x where {x = f(x, z), z = g(x, z, z)} .

We thus eliminate one equation between non-identical variables. Doing this as many times as
necessary, way obtain a tightly simplified form. ⊣

Proof The fact that each interpretation R in FC is a normal FLR0 structure tells us that
if ⊢ A = B, then |=R A = B. The crux of the matter is showing that if |=R(Σ) A = B, then
⊢ A = B.

By Lemma ??, we assume that A and B are tightly simplified forms. Also, we may assume
that neither A nor B is a variable, since in such cases the only way to have |=R(Σ) A = B would
be to have A and B identical to the same variable. Here we use our assumption that Σ is not
just ⊥.

Let the bound variables of A be X = {x1, . . . , xn}; let the bound variables of B be Y =
{y1, . . . , ym}; and let the variables with free occurrences in either term be Z = {z1, . . . , zp}.
We may assume that X, Y , and Z are pairwise disjoint. We show that ⊢ A = B using an
application of the Recursion Inference Rule.

Let e : X → Fp(X) be defined by taking Ai and replacing the z variables by natural
numbers and keeping the x’s. For example, we might have Ai = f(xj, zr). Then we would set

e(xi) = 〈f, inr(xj), inl(r − 1)〉 ∈ F (p + X).

The precise definition of e would involve specifying each Ai as an element of F (Z + X). Let
s : Z → p be a bijection. Then e(xi) = F 〈s, idX〉(Ai).

Recall that for each term A, Λ(z1, . . . , zp)A ∈ p + p. If A is tightly simplified but not a
variable, then Λ(~z)A factors through inrp. So we can define u : X → p by

inrpu(xi) = Λ(z1, . . . , zp)xi where {~x = ~A} .

We need to review how the semantics works in R(Σ) (and hence in T (ϕ) and S(ϕ,Λ)).
For i = 0, . . . ,m, let ai ∈ Φn+p be Λ(~x, ~z)Ai. For 1 ≤ i ≤ m, ai is of the form inr(bi) for

some bi ∈ n + p. Let k : n → n + p be given by k(i) = bi. Let k† : n → p be determined from
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k by the Parametric Corecursion Theorem ??. Let l : n + p → p + p be 〈inrp ◦ k†, inlp〉. Then
[l] : n + p → p. We take

Λ(~z)xi where {~x = ~A} = 〈l, inrn ◦ [l]〉inln(i − 1) = inrp ◦ k†(i − 1).

We conclude that u(xi) = k†(i − 1) for all i.

Claim u : 〈X, e〉 → 〈p, ϕp〉 is a morphism of Fp-coalgebras.

Proof To keep the notation manageable, we’ll again work with Ai = f(xj, zr). We show that
(ϕp ◦ u)xi = (Fpu)e(xi). We calculate, using the Fixed Point Identity, the semantics of R(Σ),
the defining equation for [l] (see equation (??)), the definition of Fp, and the relations between
u, k†, and l noted above:

Λ(~z)xi where {~x = ~A}

= Λ(~z) f(xj, zr) where {~x = ~A}
= (〈l, inrp ◦ [l]〉 ◦ inrn+p ◦ ϕ−1

n+p)〈f, inln+p(p + j − 1), inln+p(r − 1)〉
= (inrp ◦ [l] ◦ ϕ−1

n+p)〈f, inln+p(p + j − 1), inln+p(r − 1)〉
= (inrp ◦ ϕ−1

p ◦ F 〈l, inrp ◦ [l]〉)〈f, inln+p(p + j − 1), inln+p(r − 1)〉
= (inrp ◦ ϕ−1

p )〈f, k†(j − 1), inln(r − 1)〉
= (inrp ◦ ϕ−1

p )〈f, u(xj), inln(r − 1)〉

So (ϕp ◦ u)xi = 〈f, u(xj), inln(r − 1)〉 = (Fpu ◦ e)xi. ⊣

Of course, we can define functions e′ and v on Y in a similar way to u, and again we shall
have a morphism of Fp-coalgebras v : 〈Y, e′〉 → 〈p, ϕp〉.

At this point, we need a number of well-known facts of coalgebra (see, e.g. Rutten [?]).
First, all signature functors preserve weak pullbacks. Second, for all functors which preserve
weak pullbacks, the pulback of a pair of final coalgebra morphisms is a bisimulation. Third,
a bisimulation for a signature functor behaves exactly as expected: if two terms are related,
then their head function symbols must be identical, and corresponding variables must also be
related. These three facts hold for the signature functor F ; related facts hold for Fp, mutatis
mutandis.

Hence the pullback of u and v is an Fp-bisimulation. This is the set

∆ = {xi = yj : xi ∈ A, yj ∈ B, and u(xi) = v(yj)}.

We use the Recursion Inference Rule to show that ⊢ A = B. By our hypothesis that |=R(Σ)

A = B, ∆ contains the equation between the two head variables of A and B.
We only need to show that ∆ ⊢ Ai = Bj whenever xi = yj ∈ ∆. Assume that Ai is

of the form f(w1, . . . , wn). Then again by the bisimulation property, Bj must be a function
application with the same function symbol f . Say Bj is f(w′

1, . . . , w
′
n). By bisimulation, wk is

one of the z’s iff w′
k is the same variable. And if wk is one of the x’s, then w′

k must be one of
the y’s and we have u(wi) = v(w′

i). In this latter case, the equation wi = w′
i belongs to ∆. And

then by equational logic ∆ ⊢ Ai = Bj. ⊣

The FLR0/iteration theory proof system is complete in the same sense for numerous classes
of interpretations, and we conclude that recursion and corecursion have the same equational
logic.
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6 Concluding Remarks

But is the semantics and the Completeness Theorem the same one we already
know? In view of the running example of trees in this paper, is natural to ask whether we
have actually obtained anything new. For that particular example, we get a new semantics for
the parametric trees, but of course we do not get a better logic. Moreover, we do not get any
new insights into the valid equations by any of the work of this paper.

Nevertheless, we do feel that giving the semantics in terms of parametric corecursion systems
is appealing. Many of the fixed points that one finds in theoretical computer science have to
do with final coalgebras (see Rutten [?], for example). Once one is familiar with the ideas, it
seems natural to work as much as possible with notions of finality. The one up-front cost of
such an approach is that one would need to have results giving final coalgebras. But for sets at
least, there is a body of such results (see [?, ?], for example).

But even more, the methods here would work wherever final coalgebras are used. This is
the key contribution of this paper.

It is natural to ask whether all of the final coalgebra interpretations are in some sense
reducible to other kinds of interpretations, especially those involving dcpo’s. This question was
asked in a more precise way in our paper [?]. We showed that for essentially all functors on
sets which arise “in practice,” the final coalgebra interpretations could indeed be obtained as
the maximal elements of some dcpo. However, that work involved assuming hypotheses on
the functors that go beyond what we needed here (but which nevertheless hold “in practice”).
The work also used specific features of sets (the Replacement Axiom, for example). So at the
present time, we have a reduction most of the time for functors on sets. For functors on other
categories, I know of no general results which reduce corecursion to recursion.

What about the duals of these results? It is natural to ask about dual results to the
ones of this paper. This is something that can be asked about many of the results of coalgebra.
As it happens, the basic results of the subject are not duals of results concerning algebras: the
point is that the category of coalgebras for a functor is not the dual of the category of algebras
for it. Turning to matters closer to that of this paper, in [?], we noted that one of our results
was known in dual form. This was a lemma used in the proof of Lemma ?? on substitution.
However, our formulation of both substitution and parametric corecursion do not seem to be
the duals of known results.

One paper which presents results which at first glance would seem to be duals of ours is Ésik
and Labella [?]. The paper shows that “If the fixed point operation over a category is defined by
initiality, then the equations satisfied by the fixed point operation are exactly those of iteration
theories.” Here is what this comes to with comparisons to this paper: For any category T , take
Th(C) to be the 2-theory whose horizontal morphisms n → p are the functors Cp → Cn. (For
C = Set, neither the categories Cp nor the functors of this form seem to be related to what we
call p.) An algebraically complete category in the sense of [?] is category with a collection of
F of functors Cn+p → Cn which is closed in some basic ways and with the property that for
each Cp-object y, there is an initial Fy-algebra, where Fy here is F (−, y) : Cn → Cn. (This
does look like a dual to the notion of a parametric corecursion system, but again our derived
functors are different.) Every algebraically complete category is a sub-2-theory of Th(C) which
is an algebraically complete 2-theory. (As the present time, we do not see any interesting 2-
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categorical structure behind our results.) The main result of [?] is that “the iteration theory
identities hold in all algebraically complete 2-theories satisfying the parameter identity.” (The
parameter identity corresponds to the Head identity of FLR0.) This results does not seem to
be related to anything here, mostly because the fixed point operation here is derived from our
notion of a parametric corecursion system, and this seems quite different from an algebraically
complete category. However, we would summarize our results by saying that “If the fixed point
operation over a category is defined by finality, then the equations satisfied by the fixed point
operation are exactly those of iteration theories.” So perhaps there is a connection somewhere.

Future work in this direction This paper suggests a number of questions. One would be
to axiomatize the full consequence relation for fixed-point equations on final coalgebras. This
is often difficult or impossible (see [?]). But it may well be that final coalgebra interpretations
are easier to handle than dcpo’s (for example), since the ⊥ here “more disconnected” from the
rest of the structure. A completeness result for final coalgebra interpretations would probably
be the first result of that type for any proper class of iteration theories. So it certainly would
be important for studies of recursion equations.

Also, it should not be hard to add the conditional to the equational logic of recursion and
get the corresponding completeness result (see [?, ?]).

In terms of trees, our work here deals with what is usually called first-order substitution.
This is the substitution of trees for variables. There is also a notion of second-order substitution,
where one substitutes trees for function symbols. Second-order substitution is more challenging
to formulate in terms of final coalgebras. It is also more useful, especially if one has results
guaranteeing solutions of appropriate systems of equations, such as

f(x, y) = F(g(g(x)), f(x, y))
g(x) = G(f(x, x))

(11)

Here F and G are “given” function symbols, either in the sense that one has a concrete domain
with interpretations for these symbols, or else that one wants a solution to (??) as an infinite
tree labeled by F and G. The algebraic semantics of recursive program schemes depends on
principles of second-order substitution and the existence of solutions to systems such as (??).
The paper [?] shows how to extend the work here to handle these problems.
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