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1 Prologue

Epistemic logic investigates what agents know or believe about certain factual descriptions
of the world, and about each other. It builds on a model of what information is (statically)
available in a given system, and isolates general principles concerning knowledge and belief.
The information in a system may well change as a result of various changes: events from the
outside, observations by the agents, communication between the agents, etc. This requires
information updates. These have been investigated in computer science via interpreted sys-
tems; in philosophy and in artificial intelligence their study leads to the area of belief revision.
A more recent development is called dynamic epistemic logic. Dynamic epistemic logic is an
extension of epistemic logic with dynamic modal operators for belief change (i.e., information
update). It is the focus of our contribution, but its relation to other ways to model dynamics
will also be discussed in some detail.

Situating the chapter This chapter works under the assumption that knowledge is a
variety of true justifiable belief. The suggestion that knowledge is nothing but true justified
belief is very old in philosophy, going back to Plato if not further. The picture is that we
are faced with alternative “worlds”, including perhaps our own world but in addition other
worlds. To know something is to observe that it is true of the worlds considered possible.
Reasoners adjust their stock of possible worlds to respond to changes internal or external to
them, to their reasoning or to facts coming from outside them.

The identity of knowledge with true justified (or justifiable) belief has been known to be
problematic in light of the Gettier examples (see also our discussion in Section 3.3). Being
very short again, the point is that this simple picture ignores the reasons that one would
change the collection of possibilities considered, and in particular it has nothing to say about
an agent who made a good change for bad reasons and thereby ends up “knowing” something
in a counter-intuitive way.

However, the work presented in this chapter is in no way dependent on this mistaken
identity: while all the forms of knowledge presented here are forms of true justified belief,
the converse does not necessarily hold. On the contrary, in all the logics in this chapter that
are expressive enough to include both knowledge and belief operators, the above-mentioned
identity is provably wrong.

We have already mentioned that we are interested in the broader concept of justifiable
belief. This is broader in the sense that we consider an even more ideal agent, someone who
reasons perfectly and effortlessly. (Technically, this means that we are going to ignore the
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fact that the agents we want to model are not logically omniscient. So justifiable belief can be
regarded as a modeling of logically omniscient agents immune from Gettier-type problems.)

In addition, justifiable belief for us diverges from knowledge in the sense that it need not
imply truth. As with Gettier examples, if one accepts and uses misinformation, then whatever
conclusions are drawn are in some sense “justified.” We postpone a fuller discussion of this
point until later, but we wanted to alert the reader who expects us to write justifiable true
belief for what we study.

Since the topic of the chapter is “epistemic logic”, and since we were quick to point out
that it is mistaken to identify knowledge with (true) justifiable belief, the reader may well
wonder: why are they writing about it?

We claim that the study of justifiable belief is in itself illuminating with respect to the
nature of knowledge, even if it fails as a satisfactory proposal for knowledge. This is the main
reason why people have worked in the area. The main contributions are technical tools that
allow one to make reliable predictions about complicated epistemic scenarios, stories about
groups of agents which deal with who knows what about whom, etc. We shall go into more
detail on what this means in Section 2 just below, and then in Section 5 we shall see how it
works in detail.

Getting back to our study overall, one could think of it as a first approximation to the
more difficult studies that would be desirable in a formal epistemology. It is like the study of
motion on a frictionless plane: it is much easier to study the frictionless case than that of real
motion on a real surface, but at the same time the easier work is extremely useful in many
situations. We also point out that our subject has two other things going for it. First, it is a
completely formalized subject with precise definitions, examples, and results. We know that
not all readers will take this to be a virtue, and we have tried hard to introduce the subject
in a way that will be friendly to those for whom logic is a foreign language. But we take the
formalized nature of the subject to be an attraction, and so we aim to convey its nice results.
Second, in recent years the subject has concentrated on two phenomena that are clearly of
interest to the project of epistemology and which for the most part are peripheral in older
treatments of epistemic logic. These are the social and dynamic sides of knowledge. The
modeling that we present puts these aspects in the center.

At the time of this writing, it seems fair to say that the subject matter of the first part
of our chapter, modeling based on justifiable belief, is fairly advanced. There are some open
issues to be sure, and also outstanding technical questions. Many of the people involved in
the area have gone on to adjacent areas where the insights and technical machinery may be
put to use. Two of these are combinations of logic and game theory and belief revision theory.
We are not going to discuss logic and game theory in this chapter, but the last section of
our chapter does present proposals on the extension of dynamic epistemic logic to the area of
belief revision.

In addition, as the subject moves closer to belief revision, it is able to question the notion
of justifiable belief, to develop a more general notion of conditional belief, and also to mean-
ingfully distinguish between various types of “knowledge” and characterize them in terms of
conditional belief. These and similar formal notions should appeal to the epistemologist as
well.

Overview Our overarching goal is that this chapter make the case for its subject to the
uninitiated. We begin work in Section 2 with discussion of a series of epistemic scenarios.
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These discussions illustrate the subject of the chapter by example, rather than by a direct
discussion. They also are a form of “on-the-job-training” in the kinds of logical languages
and representations that will be found later. This leads to a collection of issue areas for the
subject that we present briefly in Section 3. Following that, we have some background in
logic in Section 4. Even there, we are not only offering a catalog of a million logical systems:
we attempt to say why the philosophically-minded reader might come to care about technical
results on those systems. Dynamic epistemic logic (DEL, for short) is our next topic. This
is the part of the chapter with the most sustained technical discussion. After this, we end
the chapter with our look at belief revision theory. The proposals there are foreshadowed in
Section 2, and a reader mainly interested in belief revision probably could read only Sections 2
and 7. It goes without saying that such readers should also read Hans Rott’s Chapter 4c on the
subject in this handbook. This is also true for readers whose main interest is in epistemology.

All readers would do well to consult Johan van Benthem and Maricarmen Martinez’
Chapter 3b in order to situate our work even more broadly in studies of information modeling,
especially the contrast and blending of the correlational and proof theoretic stances on the
topic. In their terminology, however, the work in this chapter is squarely in the “information
as range” paradigm.

The material in this chapter alternates between its main thrust, an examination of the
philosophical and conceptual sides of the subject, and the technical aspects. We have chosen
to emphasize the philosophical material because it is the subject of this handbook; also, there
already are several introductions to the technical material. Historical pointers are mainly to
be found at the ends of the sections.

2 Introduction: Logical Languages and Representations

As with many works in the area, we begin with an epistemic scenario. The one here is
probably the simplest possible such scenario, an agent ignorant of which of two exclusive
alternatives holds.

A person named Amina enters a room and is then shown a closed box on a table. She has
been told that box contains a coin, and that the coin lies flat in the box. What she does not
know is whether the coin lies heads up or tails up.

Our tasks as modelers are (1) to provide an adequate representation of this scenario; (2)
to use the representation as part of a formal account of “knowledge” and related terms; (3)
to see where the representation and formal account run into problems; (4) to then “scale up”
all of the previous points by considering more complicated scenarios, models, and accounts,
with the same goals in (1)–(3).

The most natural representation is simply as a set of two alternatives. In pictures, we
have

ONMLHIJKH ONMLHIJKT

The two circles are intended as abstract representations of the two states of the coin. There
is no significance to the symbols H (for heads) and T (for tails, but please do not confuse it
with truth). There is also no significance to the fact that the representation has heads on the
left and tails on the right. There is a very real significance to the fact that each circle has
exactly one symbol. There is some significance to the absolutely symmetric treatment of the
two alternatives. Perhaps the most important aspect of the representation is that it leaves
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out everything to do with Amina’s state of mind: why she thinks that heads and tails are
the only ones possible, her prior experience with similar situations, her emotions, etc. For
the most part, the formal work of this chapter will not help with proposals on any of these
important matters precisely because the representations abstract from them.

We regard the symbols H and T as atomic propositions (We also call them atomic sen-
tences, using the two terms interchangeably.) It is problematic at this point to speak of these
as true or false in our scenario: since the story was silent on the matter of whether the coin
was, in fact, lying heads up or tails up, it is debatable whether there is a “fact of the matter”
here or not. No matter how one feels on where there is, in fact, a fact or not, it is less contro-
versial to hold that either the coin lies heads up or tails up, and not both. (Recall that this is
part of what Amina has been told at the outset.) It is natural to use standard propositional
logic, and to therefore write H ↔ ¬T. (We may read this as “heads holds just in case tails
fails”.) We would like this sentence H↔ ¬T to come out true on our representation, and so
clearly we need a semantics for sentences of this type.

Even before that, we need a formal language. We take propositional logic built over the
atomic propositions H and T. So we have examples such as the one we just saw, H and T,
and also ¬¬H, H → (H → T), H ∨ T, etc. The language is built by recursion in the way all
formal languages are. We’ll use letters like ϕ for propositions of this and other languages.

In order to give the semantics, it will be very useful to change the representation a little.
We had used H and T inside the circles, but this will get in the way; also, as we shall see many
times in this chapter, the states in our representations are not individuated by the atomic
facts that they come with. So let us change our representation to

GFED@ABCs GFED@ABCt
with the additional information that H holds at s and not at t, and T holds at t and not at
s. We take this extra piece of information to be part of our representation. So we have a
set {s, t} of two (abstract) states and some extra information about them. The set {s, t} has
four subsets: ∅, {s}, {t}, and {s, t} itself. We also have the usual set theoretic operations of
the union of two subsets (x ∪ y), intersection (x ∩ y), and relative complement (x). To spell
out the details of relative complement in this example: ∅ = {x, y}, {s} = {t}, {t} = {s}, and
{s, t} = ∅.

Now it makes sense to formally interpret our language, assigning a set of states [[ϕ]] to a
sentence ϕ as follows:

[[H]] = {s}
[[T]] = {t}
[[¬ϕ]] = [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]
[[ϕ→ ψ]] = [[ϕ]] ∪ [[ψ]]
[[ϕ↔ ψ]] = ([[ϕ]] ∩ [[ψ]]) ∪ ([[ϕ]] ∩ [[ψ]])

The reader will know that we could have given only a few of these, leaving the rest to re-
appear as derived properties rather than the official definition. The choice is immaterial.
What counts is that we have a precise definition, and we can verify important properties such
as [[H↔ ¬T]] = {s, t}. The reason is that

([[H]] ∩ [[¬T]]) ∪ ([[H]] ∩ [[¬T]]) = ({s} ∩ {t}) ∪ ({s} ∩ {t}) = {s, t}.
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We’ll use S to refer to our set of states, both in this discussion and in later ones. And we
shall say that ϕ is valid in a model if its semantic interpretation [[ϕ]] is the full set S of states,
not merely a proper subset.

We have reliable and consistent intuitions concerning knowledge. Surely one feels that
upon walking into the room, Amina does not know whether the coin lies heads or tails up:
she was informed that there is a coin in the box, but so without further information to the
contrary, she should not know which alternative holds. We expand our language by adding a
knowledge operator K as a sentence-forming operation, making sentences from sentences the
way ¬ does. We thus have sentences like KH, K¬KT, etc. The semantics is then given by

[[Kϕ]] =
{
S if [[ϕ]] = S
∅ if [[ϕ]] 6= S

Notice that this modeling makes knowledge an “all-or-nothing” affair. One can check that
[[KH]] = ∅, matching the intuitions that Amina does not know that the coin lies heads up.
But also [[K¬H]] = ∅. In contrast, K(H ∨ ¬H) is valid on this semantics: its interpretation is
the entire state set.

“Knowing that” and “knowing whether” Up until now, all of our modeling of knowl-
edge is at the level of knowing that a given proposition, say ϕ, is true or false. We have no
way of saying knowing whether ϕ holds or not. The easiest way to do this in our setting is to
identify knowing whether ϕ with the disjunction knowing that ϕ or knowing that ¬ϕ. It will
turn out that in this example and all of our other ones, this “or” is automatically an exclusive
disjunction. That is, our modeling will arrange that no agents know both a sentence and its
negation.

Iterated knowledge One should note that our formal semantics gives a determinate truth
value to sentences with iterated knowledge assertions. For example, K¬KH comes out true.
(The reason: we saw above that [[KH]] = ∅. Therefore [[¬KH]] = {s, t}, and so also [[K¬KH]] =
{s, t}.) Translating this back to our original scenario, this means that we are predicting that
Amina knows that she doesn’t know that the coin lies heads up. For a real person, this
introspectivity is clearly false in general: though sometimes people can and do introspect about
their knowledge, it seems that only a tiny amount of what we talk about people knowing is
even susceptible to introspection. However, given our take on knowledge as justifiable belief
(and with justifications modeled as surveys of all relevant possibilities), it fits. The upshot
is that in the case of iterated knowledge assertions, the kind of modeling that we are doing
gives predictions which are at odds with what real people do (though they are the acid test)
but seem to work for ideal agents.

Note, however, that justifiable knowledge is a kind of potential knowledge: we would not
feel that a reasoner who exhibited it was making a mistake. We would be more likely to
commend them. Thus, the modeling that uses it is of value in adversarial situations of the
kind found in game theory. When you reason about your opponent in a game (or war), you
should not assume him to be stupid, but on the contrary: the safe option is to assume that
he already knows everything that he could possibly know; i.e, to model him as a logically
omniscient, fully introspective ideal agent. This is because you want to make sure your
strategy works no matter how smart or how resourceful your opponent happens to be. (On
the contrary, when reasoning about your own, or your allies’, knowledge, it is safer not to
idealize it, but to take into account possible failures of introspection.)
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2.1 Learning

Suppose next that Amina opens the box and sees that the coin lies heads up. It is natural
to assume that after she looks, she knows that the coin lies heads up. Furthermore, and in
support of this, consider the model

GFED@ABCs
along with the information that s is a state where H is true. This model reflects the intuition
that she considers only one state to be possible. Recall from Section 1 that our work here is
mainly about knowledge as justifiable belief. It takes knowledge to result from a survey of
the possible. The model above reflects this choice: it is a survey of the justifiable possible.
(But a one-point model is so simple that it reflects other intuitions as well.)

What interests us most is that we have a change of model. In this case, the change was to
throw away one state. Taking seriously the idea of change leads to dynamics, a key point of
our study. Sometimes people with a little exposure to logic, or even a great deal of it, feel that
logic is the study of eternal certainties. This is not the case at all. In the kinds of settings
we are interested in here, we move from single models to sequences of them, or structures of
some other kind. The particular kind of structure used would reflect intuitions about time,
causality and the like. These matters are largely orthogonal to the epistemic modeling. But
the important point for us now is that we can “add a dimension” to our models to reflect
epistemic actions.

We would like to indicate the whole story as

GFED@ABCs ))GFED@ABCt GFED@ABCs

We think of this as the two representations from before (along with the information that the
picture suppresses, that s is a state where the coin lies heads up, and t the same for tails)
connected by the dotted arrow. Amina discards the state t because it does not reflect what
she learned. But s persists, and the dotted arrow indicates this. As it happens, it will again
be confusing to use the same letter s for both the “before” and “after” states. This is not
strictly needed here, but later in the paper it will be needed. So we would prefer to illustrate
the story as

GFED@ABCs ))GFED@ABCt GFED@ABCu
Again, we would supplement the picture with a description of which states have which coin
faces showing: H is true at s and u, while T is true at t. Note that we can no longer use
the “all-or-nothing” notion of knowledge from the previous section: in the original state s,
Amina knows the state cannot be u (since she knows that she doesn’t yet know the face of
the coin); while in the new state u, Amina knows the state is neither s or t anymore. In
other words, Amina cannot distinguish between the initial states s and t, but can distinguish
between them and the new state u. We illustrate this by using lines to represent the agent’s
indifference between two (indistinguishable) possibilities:

GFED@ABCs ))GFED@ABCt GFED@ABCu
The way to read an assertion like “there is a line between s and t” is as follows: Amina

is indifferent in u between the world being as described in s and being described as in t. The
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agent is unable to tell apart these two descriptions: for all she knows, either of them can be
a correct description of the real world. So in s, Amina thinks that the world might be t, or
again it might be s itself. (This is not shown in the picture, but it is tacitly assumed.) In u,
Amina thinks that u itself is the only possible state, and so she knows there that the coin lies
heads up.

But what are these “states”? The above model has also more states. Since we have been
using the word “state” quite a bit, a word is in order on this usage. Our states are the same
as possible worlds in explanations of modality. That is, one should regard them as theoretical
primitives that have an overall use in the modeling. They are abstract objects that we as
outsiders use to discuss the examples and to further build a theory. Using them does not
involve a commitment to their ontological or psychological reality. There is also a tradition
of possible worlds as (maximal consistent) sets of propositions, and we also think of Carnap’s
state descriptions. But we do not follow either of these in our modeling, preferring to keep
states as the primitive. It would be possible to change what we do to render states as maximal
consistent sets, however, if one took the underlying language to be the full modal language
which we are describing, not simply propositional logic. For our states are not individuated
by the propositional facts holding in them: as we shall see shortly in (6) below, to separate
states one needs the information contained in the arrows.

Knowledge The heart of the matter is the proposal for the semantics of knowledge. Build-
ing on our explanation of what the worlds and the lines represent, the idea is that Amina
“knows” (in our sense) ϕ in a world x just in case the following holds: ϕ is true in all worlds
that she cannot tell apart from x. In symbols, the semantics is given by:

[[Kϕ]] = {s : whenever Amina is indifferent between s and t, t ∈ [[ϕ]]} (1)

In other words: we relativize the previous “all-or-nothing” definition to the set of worlds that
are indistinguishable from the real one. Using this modified definition, we can see that, in
the initial state s of the above model, Amina doesn’t know the face of the coin is H, while in
the new state u she knows the face is H.

Comparison with probabilistic conditioning It will be useful at this point to note a
similarity between the kind of updating that models Amina’s learning in this very simple
setting and what happens all the time in probability. Suppose that we have a probability
space. This is a set S of simple events, together with a probability p : S → [0, 1] with the
property that

∑
s∈S ps = 1. The probability space as a whole is S = (S, p); that is, the set S

together with the function p.
The subsets of S are called events. Every event X gets a probability p(X), defined by

p(X) =
∑

s∈X px. We should think of S as the states of some background system S. An
event X is then like a property of the system, and pX as the probability that a randomly
observation of S will have the property X. Not only this, but every event X whose probability
is nonzero gives a probability space on its own. This time, the sample space is X, and the
probability p|X is given by (p|X)(s) = p(s)/p(X). This formula reflects the re-normalization
of the probability p. We’ll call this new space S|X = (X, p|X). It is a subspace of the original
S called S conditioned on X. The idea is that if we again start with a system S whose set of
states is modeled by the probability space S, and if we obtain additional information to the
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effect that the background system definitely has the property X, then we should revise our
modeling, and instead take use S|X:

(S, p)
learning that X // (S|X, p|X) .

The sentences in our formal language are notations for extensional properties (subsets) of
the overall state space. Adding new information, say by a direct observation, corresponds to
moving to a subspace, to changing the representation.

2.2 Another agent enters

Let us go back to our first scenario, where Amina walks into the room in ignorance of whether
the coin lies heads or tails up. (We therefore set aside Section 2.1 right above.) Being alone
in a room with a closed box is not much fun. Sometime later, her friend Bao walks over. The
door is open, and someone tells Bao the state of the coin and does it in a way that makes it
clear to Amina that Bao now knows it. At the same time, Bao is in the dark about Amina’s
knowledge.

The natural representation here uses four states.�� ��u:H
b �� ��v:H

a �� ��w:T
b �� ��x:T (2)

Note that now we have labeled the indifference lines with the names of the agents. In this
case, we have four worlds called u, v, w, and x. The atomic information is also shown, and we
have made the picture more compact by eliminating redundant information. (So we intend u
to be a world where H is true and T is false, even though the second statement is not explicit.)

As before, the way to read an assertion like “there is a line labeled b between u to v” is as
follows: Bao is indifferent in u between the world being as described in u and being described
as in v. So in v, Amina thinks that the world might be w, or again it might be v itself. In
u, Amina thinks that u itself is the only possible state, and so she knows there that the coin
lies heads up.

The world u is the real world, and so once we have a formal semantics, we check our
intuitions against the formal semantics at u.

We begin, as we did in Section 2, with the propositional language built from symbols H
and T. In our current model, we have semantics for them:

[[H]] = {u, v} [[T]] = {w, x}.

We clearly need now two knowledge operators, one for a (Amina) and one for b. We shall
use Ka and Kb for those, and we define by taking for each agent the appropriate indifference
lines in the definition (1):

[[Kaϕ]] = {s : whenever Amina is indifferent between s and t, t ∈ [[ϕ]]}
[[Kbϕ]] = {s : whenever Bao is indifferent between s and t, t ∈ [[ϕ]]} (3)

We can check whether our formal semantics matches our intuitions about our model. The
way we do this is by translating a sentence A of English into a sentence ϕ in our formal
language, and evaluating the semantics. We want to be sure that x ∈ [[ϕ]], where x is the
“real” or “actual” world in the model at hand.
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Here are some examples:

English Formal rendering Semantics
the coin shows heads H {u, v}
a knows the coin shows heads KaH ∅
a knows whether the coin shows heads KaH ∨Ka¬H ∅
b knows that the coin shows heads KbH {u, v}
b knows whether the coin shows heads KbH ∨Kb¬H {u, v, w, x}
a knows that b knows Ka(KbH ∨Kb¬H) {u, v, w, x}
whether the coin shows heads

In our model, u is the “real world”. In all of the examples above, the intuitions match the
formal work.

But does there have to be a real world? Our representation in (2) and our semantics
in (3) did not use a designated real world. So mention of a real world could be dropped.
However, doing so would mean that we have less of a way to check our intuitions against the
formalism (since our intuitions would be less sharp). But one who doesn’t like the idea of a
“real world” would then look at all the worlds in a representation, take intuitive stories for
them, and then check intuitions in all cases.

Announcements We have already begun to discuss dynamics in connection with these
simple scenarios. Here are ways to continue this one. Suppose that Amina and Bao go up
and open the box. We again would like to say that the resulting model has a single world,
and in that world both agents consider that world to be the only possible one. In a word
(picture), we expect �� ��u:H (4)

However, this is not quite what we get by the world-elimination definition which we have
already seen. What we rather get is �� ��u:H

b �� ��v:H (5)

(We have dropped the worlds w and x from the picture in (2), and all the lines pertaining to
them.)

So we have a question at this point: can we say that the two models are equivalent, and
can we do so in a principled way? We return to this point at the end of Section 4.4.

As an alternative, suppose someone outside simply shouts out “The coin lies Heads up.”
Again, on the modeling so far, we have the same state at the end. We thus conclude our
representations cannot distinguish sources of information.

2.3 Another agent enters, take II

At this point, we want an alternative to the story in Section 2.2. Amina is again in the room
in ignorance of the state of the coin. Bao walks over, but this time, the door is shut. Outside
the door, some trusted third party says to him, “I’ll tell you that the coin lies heads up.”
Then Bao walks in.
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We naturally have some intuitions about what is going on. Bao should know that the
coin lies heads up, and he should also know that Amina doesn’t know whether the coin lies
heads up or tails up. What about Amina? What should she think about Bao’s knowledge?
We don’t know enough about her to say for sure, but to be definite, let us assume that she
(falsely) believes that Bao is as ignorant as she. Moreover, let us assume that Bao believes
this about Amina.

Belief Since we have mentioned belief, a comment is in order. We continue to deal with
“knowledge” as justifiable belief. This is the only notion at play at the moment. We have used
belief in the previous paragraph only to emphasize that the proposition believed is actually
false.

At this point, we return to our scenario and to a model of these intuitions. The model we
have in mind is �� ��u:H buu

a

||zz
zz

zz
zz a

""EE
EE

EE
EE

�� ��v:Ha,b **
oo

a,b
//
�� ��w:T a,bxx

(6)

We shall shortly go into details about why this model works. Before that, a comment: If
one tries to come up with a model by hand which reflects correctly the intuitions that we
spelled out above, he or she will see that it is not a straightforward task. It is hard to argue
that something is not easy to do, so we encourage readers to try it. This will also provide
experience in the important task of examining putative models with the eye towards seeing
whether they match intuitions or not.

This model generalizes the two-directional lines that we saw above to one-directional
arrows. The way to read an assertion like “there is an arrow labeled a from u to v” is as
follows: if the situation were modeled by u, then Amina would be justified in considering v a
possibility.

In our example, u is the “real world”. In that world, Bao is countenances no others.
Amina, on the other hand, thinks that the world is either v or w. (But she does not think
that the world u itself is even possible. This reflects the intuition that Amina doesn’t think
it possible that Bao knows the state of the coin.) The worlds she thinks are possible are ones
pretty much like the two we saw earlier for her alone, except that we have chosen to put in
arrows for the two agents.

Note that u and v in (6) have the same atomic information. However, they are very
different because what counts is not just the information “inside” but also the arrows. Now
given our explanation of what the epistemic arrows are intended to mean, we can see that there
is some circularity here. This is not a pernicious circularity, and the use of the logical language
makes this evident. Once we take the representation as merely a site for the evaluation of
the logical language, the problematic features of the models lose their force. We turn to that
evaluation now.

Building on our explanation of what the worlds now represent, we say that a believes ϕ
in a world x just in case the following holds: ϕ is true in all worlds that she would think are
possible, if x were the actual world. Formally:

[[Baϕ]] = {s : whenever s→a t, t ∈ [[ϕ]]}
[[Bbϕ]] = {s : whenever s→b t, t ∈ [[ϕ]]} (7)
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We again check that our semantics and model are sensible, going via examples.

English Formal rendering Semantics
the coin shows heads H {u, v}
a knows (believes) the coin shows heads BaH ∅
a believes the coin shows tails BaT ∅
b believes the coin shows heads BbH {u}
b believes that a doesn’t know (believe) it’s heads Bb¬BaH {u, v, w}
b believes that a believes that BbBa¬BbH {u, v, w}
b doesn’t know (believe) it’s heads

In our model, u is the “real world”. In all of the examples above, the intuitions match the
formal work.

Knowledge and Belief What does Amina actually know in the scenario above? She
believes that Bao doesn’t know the face of the coin, but this belief is not true. Is Amina
aware of the possibility that her belief is false? Let us assume so: in other words, although
she believes that Bao does not know the face, she at least countenances the possibility that
he does. Note that the states u, v and w are indistinguishable for her: she “sees” the same
things, and has the same information and the same beliefs in all these states. But then these
states also are indistinguishable for her from a fourth possibility, namely the one in which
Bob knows the face but the coin shows tails. All the information that Amina has is consistent
with this fourth possibility, so she cannot exclude it either.

To distinguish between belief and (truthful) knowledge, we supplement what we so far
have, in a few ways. First, we need to add to the state space a fourth state, representing the
fourth possibility just mentioned. Second, we consider two models on the same state set. The
one on the left below is intended to model knowledge, while the one on the right is intended
for belief: �� ��u:H

a

a

a
DD

DD
DD

DD
DD

DD

�� ��x:T

a{
{{

{{
{

{{
{{

{{
a

�� ��v:H
a,b

�� ��w:T

�� ��u:Hb ))

a

��

a
DD

DD
DD

!!DD
DD

DD

�� ��x:T btt

a{
{{

{{
{

}}{{
{{

{{
a

���� ��v:Ha,b **
oo

a,b
//
�� ��w:T a,bxx

(8)

The real world is u. On the side of knowledge, Amina is indifferent between all the states.
The difference between the belief model and the one in (6) is that we have added a fourth
state, x. This state is inaccessible from u in the belief model, and so it will turn out to be
irrelevant from the point of view of the agent’s beliefs in the actual world; however, x will
be crucial in dealing with knowledge and conditional belief in the real world. (Concerning
knowledge, leaving x off would mean that Amina in the real world knows there is no world
in which Bao knows that the coin is tails up. This would give her knowledge beyond what is
justified by our story.) Recall that the lines (as on the left) are the same as two-way arrows.
So we can see that all of the arrows in the right diagram (for belief) are also present in the left
diagram (for knowledge). This is good: it means that everything the agents know in a model
will also be believed by them. To make this precise, we of course need a formal semantics. Let
us agree to write ∼a for the knowledge arrows (indifference lines), and →a for the belief ones.
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In fact, it is natural to consider loops as being implicitly present in the knowledge model,
so we put s∼a t iff either s = t or there is an indifference line between them. The relevant
definitions (stated only for Amina) will then be

[[Kaϕ]] = {s : whenever s∼a t, t ∈ [[ϕ]]}
[[Baϕ]] = {s : whenever s→a t, t ∈ [[ϕ]]} (9)

On this semantics, then, Amina will believe that Bao does not know the state of the coin,
but also, she does not know this.

Observe now that the two models for this situation are not independent: the belief model
contains all the information about the knowledge model. Indeed, we can recover the knowledge
model from the belief model by closing the belief arrows under reflexivity, symmetry and
transitivity. Visually, this amounts to replacing in the model on the right all the one-way
arrows by lines, adding loops everywhere and adding lines between any two states that are
connected by a chain of lines. A simpler alternative procedure is to connect any two states
by lines if and only if the same states are reachable from both via (one-step) belief arrows.
This gives us the knowledge model on the left.

We know that there are issues involved in the translation that we are ignoring. One point
worth mentioning is that translating beliefs regarding conditionals is problematic (and this is
why none of the sentences in the table are conditionals). The reason is that the formal lan-
guage suggests the material conditional, and so the mismatches between any natural language
conditional and the material conditional are highlighted by the process we are suggesting.

2.4 Conditional beliefs

Consider again the belief-knowledge model (8). Where this model goes wrong is in dealing
with conditional assertions that are counterfactual with respect to the agents’ beliefs. Consider
the following statements:

1. If Bao knows the state of the coin, then the coin lies either heads up or tails up.

2. If Bao knows the state of the coin, then the coin lies heads up.

3. If Bao knows the state of the coin, then Amina does, too.

We are interested in whether Amina believes any of these statements. As such, these are
conditional belief assertions. Intuitively, she should believe the first statement, but not the
second and third. Yet, they are all true on the definition of belief in (9), if we interpret
conditional beliefs as beliefs in the conditional and we interpret the conditionals as material
conditionals.

In fact, the problem is not simply the use of the material conditional: no other “belief-
free” notion of conditional would do either! As argued in e.g. Leitgeb [54], it is not possible
to separate a conditional belief into a doxastic part (the “belief”) and a belief-free part (the
“conditional” that forms the content of the “belief”). Gärdenfors’ Impossibility Theorem1

can be understood as showing that, under reasonable assumptions, conditional beliefs are not
equivalent to beliefs in conditionals, for any belief-free notion of conditional. As a consequence,
we have to treat conditional belief as one indivisible operator Bα

aϕ instead of a composed
1See Section 7 and Hans Rott’s Chapter 4c in this handbook for.
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expression Ba(α ⇒ ϕ).2 But the above models are not adequate to give a semantics to this
operator. On a technical level, the problem is that to make the sentence Amina believes that
Bao doesn’t know come out true we need a belief model (such as the one above (8)) in which
u and x are not to be accessible for Amina from u; but at the same time, for evaluating
hypothetical statements like the conditionals above, we need to use a different belief model,
one in which u and x become accessible from u.

There are several ways of getting an appropriate model, but all of them involve going
beyond simple belief models. We are going to present one common modeling, essentially
derived from work of Lewis, Grove, and others. We supplement our model with a Grove
system of spheres, exactly as discussed and pictured in Section 2.3 of Chapter 4c. We need
one for each agent at each state. We’ll only spell out what Amina’s system looks like at
u. It would have v and w in the center, since she is most committed to them. In the next
ring, we put u and (crucially) x. As with all such systems of spheres, the definition gives
us notions of which worlds are at least as plausible as others, and strictly more plausible as
others. According to the above system of spheres, states v and w are equally plausible for
Amina, and they are strictly more plausible than the other two states u, x, which are also
themselves equally plausible.

If we draw arrows from any given state to all the states that are at least as plausible as
it, we obtain the following diagrammatic representation:�� ��u:Ha,b ))
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oo a //
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(10)

This is a plausibility model: it doesn’t directly capture knowledge or beliefs, but only doxastic
plausibility. However, this plausibility model contains all the information about the belief and
knowledge models. Indeed, we can recover the belief model by looking at the most plausible
states (for each agent); i.e., the states which can be reached via some (one-step) plausibility
arrow from any other state that is reachable from them (via a one-step arrow). To obtain
the belief model in (8), we keep for each agent only the arrows pointing to that agent’s
most plausible states. We can then recover the knowledge model from the belief model as in
the previous section. Or we can directly obtain the knowledge model in (8) from the above
plausibility model, by simply replacing all the arrows by lines (and deleting the loops).

We now rework the definition of conditional belief. Actually, we keep track of the an-
tecedent of the conditional in a special way, and write Bα

aχ to symbolize Amina believes that
were α to be true, χ would have been true as well. The formal definition is:

[[Bα
aχ]] = {s : t ∈ [[χ]], for all t ∈ [[α]] such that s∼a t

and such that there is no u ∈ [[α]], such that s∼a u
and u is strictly more plausible than t for Amina}

(11)

(And similarly for Bα
b χ, of course.)

2In Chapter 3b, this expression would be written Ba(ϕ|α).
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The idea is that in evaluating a conditional whose antecedent α contradicts the current
beliefs, one has to discard the most plausible worlds, and instead to “fall back” to the worlds
that are most plausible given α.

Let us see how this works in our example. For Amina, x is at least as plausible as the
real world u. So she should use this world in evaluating conditionals, along with others. This
easily shows why sentences 2 and 3 in the beginning of this subsection come out false.

Incidentally, one desirable property of this kind of modeling is that an agent’s knowledge
(as opposed to belief) should not be overridden, even in hypothetical contexts. (This will not
be suitable to modeling conditionals which are counterfactual with respect to knowledge.) To
arrange this, we should require that the union of all spheres for a given agent in a given state
coincides with the ∼-equivalence class of the agent there.

Modern epistemic logic started to flourish after modal logic (with its roots in Aristotle)
was formalized and given a possible world semantics. It is hard to track down the exact origins
of this semantics, but it is widely known as Kripke semantics, after Kripke, who devoted a
number of early papers to the semantics of modal logic [50]. A contemporary and thorough
reference for modal logic is the monograph [20].

Observations on how epistemic states change as a result of new information have been
around since the Hintikka founded the field of epistemic logic in his 1962 book Knowledge and
Belief [45] (republished in 2005 by King’s College, London). Hintikka is broadly acknowledged
as the father of modern epistemic logic, and his book is cited as the principal historical
reference. Hintikka himself thinks that von Wright [117] deserves these credits.

From the late 1970s, epistemic logic became subject of study or applied in the areas of
artificial intelligence (as in R.C. Moore’s early work [71] on reasoning about actions and
knowledge), philosophy (as in Hintikka’s [46]), and game theory (e.g. Aumann [6]). In the
1980s, computer scientists became interested in epistemic logic. In fact, the field matured a
lot by a large stream of publications by Fagin, Halpern, Moses and Vardi. Their important
textbook Reasoning about Knowledge [30] which appeared in 1995, contains the contents
of many papers co-authored by (subsets of) them over a period of more than ten years.
Another important textbook in both ‘pure’ and ‘applied’ epistemic logic is Meyer and van der
Hoek [66]. These both should be consulted in connection with Sections 1–4 of this chapter.
The work from Section 5 onward (on dynamic epistemic logic and its extensions) is mainly
newer than those books. A brief, but very good, introduction to the history, the philosophical
importance and some of the technical aspects of epistemic logic is the chapter “Epistemic
Logic”, by Gochet and Gribomont, in the Handbook of History of Logic [40]. It also gives a
very brief look at some of the older work in dynamic epistemic logic.

At the same time as computer scientists became interested in the topic, linguistic seman-
ticists were also discovering many of the basic issues, such as effects of public announcements
and the problem of belief revision. Of special mention here is the long work of Robert Stal-
naker, whose longstanding involvements with knowledge and belief revision theory include
publications such as [86, 87, 88].

3 Further Issues and Areas in Epistemic Logic

At this point, we have said a little about the subject matter of the chapter. Before we go
further, we mention a few issues, problems, puzzles, and discussion topics in the area. We
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especially comment on how they relate to the examples in the previous sections.

3.1 The Muddy children

Perhaps the most common of epistemic puzzles is one known in various guises and under
names like the muddy children, the wise men or the unfaithful spouses [34, 72]. Here is one
version of it. A number of children have been playing outside. After some time, some of them
might have mud on their foreheads; however, they don’t discuss this with one another. But
along comes one of their fathers, and says:

“At least one of you has mud on his/her forehead. Do you know if you are muddy?”
Let n be the number of who have muddy foreheads. If n = 1, the one muddy one sees the

clean heads of the others and deduce that she herself is muddy.
Otherwise, all reply (in unison) “No, I don’t know.” At this point, the father again asks

the same question. If n = 2, the two muddy ones would know see each other and know that
n ≥ 1, simply because the other did not answer Yes the first time. So they would know on
the second questioning.

The story continues in this way. The mathematical upshot is that if there are n muddy
children to start, then after the father asks his question n times, the muddy ones will know
their status; and before the nth time, nobody will know it. The essential feature for us of the
story is that it illustrates that statements about ignorance can lead to knowledge.

Comparing to the content of this chapter, it is not hard to draw the representations for
this problem and for variations, and to watch the process of announcement (as we have seen
it in Section 2.2). Indeed, we have found these to be excellent sources of exercises in modal
logic. We shall see the formal logical systems related scenarios like this.

Incidentally, we saw above that statements can change an agent’s knowledge. It is even
possible to find a setting where an agent can believe something at the outset, then someone
else’s statement causes them to lose this belief, and then a third statement to regain it. We
present an example in Section 6.1.

3.2 Logical omniscience

Logical omniscience is the phenomenon whereby an agent’s beliefs or knowledge are modeled
in such a way that they are closed under logical deduction. So the agent knows (or believes)
all the consequences of their knowledge, and in particular knows infinitely many sentences,
theorems whose length or complexity are absurdly great, etc. Logical omniscience is thus a
complaint against all of the kinds of models we are considering in this chapter. To avoid the
complaint, one must adopt much more fine-grained models. A number of different such models
have been proposed: a logic of awareness ([58], further extended by Fagin and Halpern), multi-
valued epistemic logic (A. Wisniewski [122]), doxastic linear logic (D’Agostino, Gabbay and
Russo [25]), resource-bounded belief revision (R. Wassermann [119], [120]) etc. A solution
using a new type of dynamic-epistemic logic was proposed by Ho Ngoc Duc [28].

3.3 The Gettier challenge

Gettier [39] pointed out examples that effectively jettisoned the justified true belief analysis
of knowledge. The ensuing discussions are central to modern epistemology. For an overview
of the area, see, e.g., Steup [90].
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Perhaps the easiest related example in epistemic logic is the following. Consider a muddy
children scenario with two children, say A and B. A is muddy and B clean. A parent
announces that at least one is muddy, asks if the two know their state. Usually, A would
announce affirmatively and B negatively, but this time let A lie and say that she does not;
B of course truthfully replies that he doesn’t know. Then on second round, both announce
that they do know. The point is, that B’s announcement is truthful: taking knowledge to be
justifiable true belief, he will have some knowledge of his state after hearing A once, no matter
what she says. B’s announcement is also justified, being based on A’s first declaration. At
that point, B has a justified true belief that he knows his state. But we would not judge B
to actually know whether he is dirty or not. This would mean either knowing that he is dirty,
or knowing that he is clean: he thinks he knows the former and denies he knows the latter.

3.4 Other notions of knowledge

The Gettier examples have been used, among other things, to deny the validity of the Negative
Introspection axiom for knowledge: in the example in Section 3.3, B thinks that he knows his
state, but intuitively speaking we can’t agree that he actually knows it. So agents may not
know something, while believing that they know it.

Various authors proposed dropping the characteristic S5 axiom (Negative Introspection),
and sticking with the system S4 instead. For instance, the S4 principles were as far as
Hintikka [45] was willing to go. This may also be appropriate in an intuitionistic context, and
also fit well with a topological interpretation of knowledge. For other work on appropriate
axioms, see Lenzen [56, 57].

The defeasibility analysis of knowledge We only look here at one of the alternative
proposals for a knowledge concept, that fits well with our discussion of conditional beliefs in
Section 2.4. This is the “defeasibility strategy”, followed by many of those who attempted to
respond to Gettier’s challenge, see e.g Lehrer and Paxson [53], Swain [91], Stalnaker [87, 88].
To quote Stalnaker [88], “the idea was that the fourth condition (to be added to justified true
belief) should be a requirement that there would be no ‘defeater’ - no true proposition that,
if the knower learned that it was true, would lead her to give up the belief, or to be no longer
justified in holding it”. One way to do this is to add to the semantics of belief a theory of
belief revision, and then define knowledge as belief that is stable under any potential revision
by a true piece of information. But as we shall see, conditional beliefs and plausibility models,
introduced in Section 2.4, give us a semantics for belief revision. So it is not surprising that
defeasible knowledge was formalized using a logic of conditional beliefs, as in [21] and [17], or
a logic of conditionals [87].

Knowledge and “safe belief” However, the notion of knowledge defined on plausibility
models in Section 2.4 is stronger than the one of (true, justifiable) defeasible belief. As we
shall see, it corresponds to a belief that is “absolutely unrevisable”: it cannot even be defeated
by revising with false information. Since we followed the common usage in Computer Science
and called “knowledge” this strong, absolute notion, we shall follow Baltag and Smets [16, 17]
and call safe belief the weaker notion resulting from the defeasibility analysis. In [87, 16, 17],
this concept is applied to reasoning about solution concepts in Game Theory.

16



3.5 Moore sentences

By a Moore sentence we mean one of the form ‘p is true and I don’t believe that’, or ‘p is
true and I don’t know that’. Moore’s “paradox” is that such a sentence may well happen
to be true, but it can never be truthfully asserted: a person uttering this sentence cannot
believe it. As this example crops up in very different settings, and as it is so crucial for a
proper understanding of dynamic epistemics, we discuss its origin in some detail, as a proper
historical primer to the subject area. In this discussion, Bϕ means “I believe ϕ ” and Kϕ
means “I know ϕ ”.

Moore writes that if I assert a proposition ϕ, I express or imply that I think or know ϕ,
in other words I express Bϕ or Kϕ. But ϕ cannot be said to mean Bϕ [68, p.77] as this
would cause, by substitution, an infinite sequence BBϕ, BBBϕ, ad infinitum. “But thus
to believe that somebody believes, that somebody believes, that somebody believes . . . quite
indefinitely, without ever coming to anything which is what is believed, is to believe nothing
at all” [68, p.77]. Moore does not state in [68] (to our knowledge) that ϕ ∧ ¬Bϕ cannot be
believed. In Moore’s “A reply to my critics”, a chapter in the ‘Library of Living Philosophers’
volume dedicated to him, he writes “ ‘I went to the pictures last Tuesday, but I don’t believe
that I did’ is a perfectly absurd thing to say, although what is asserted is something which is
perfectly possibly logically” [69, p.543]. The absurdity follows from the implicature ‘asserting
ϕ implies Bϕ’ pointed out in [68]. In other words, B(p ∧¬Bp) is ‘absurd’ for the example of
factual information p. As far as we know, this is the first full-blown occurrence of a Moore-
sentence. Then in [70, p.204] Moore writes “ ‘I believe he has gone out, but he has not’ is
absurd. This, though absurd, is not self-contradictory; for it may quite well be true.”

Hintikka [45] mentions the so-called ‘Moore’-problem about the inadequacy of information
updates with such sentences. This leads us to an interesting further development of this notion,
due to Gerbrandy [36], van Benthem [97] and others. This development, addressed in our
contribution, firstly puts Moore-sentences in a multi-agent perspective of announcements of
the form ‘I say to you that: p is true and that you don’t believe that’, and, secondly, puts
Moore-sentences in a dynamic perspective of announcements that cannot be believed after
being announced. This analysis goes beyond Moore and makes essential use of the tools of
dynamic epistemic logic. The dynamic point of view asks how an agent can possibly come
to believe (or know) that a Moore sentence ϕ is true. The only way to achieve this seems
to be by learning ϕ, or by learning some other sentence that implies ϕ. But one can easily
see that, when ϕ is a Moore sentence, the action of learning it changes its truth value: the
sentence becomes false after being learned, though it may have been true before the learning!
The same applies to any sentence that implies ϕ. In terms of [36], an update with a Moore
sentence can never be “successful”: indeed, in Section 5.2, a successful formula is defined
as one that is always true after being announced. Observe that Moore sentences have the
opposite property: they are “strongly un-successful”, in the sense that they are always false
after being announced. As a consequence, they are known to be un-successful: once their
truth is announced, their negation is known to be true. Van Benthem [97] calls such sentences
self-refuting.

There is nothing inherently paradoxical about these properties of Moore sentences: the
“world” that a Moore sentence is talking about is not simply the world of facts, but a “world”
that comprises the agent’s own beliefs and knowledge. In this sense, the world is always
changed by our changes of belief. Far from being paradoxical, these phenomena can in fact be
formalized within a consistent logic, using e.g. the logic of public announcements in Section
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5.1: using the notation introduced there, !ϕ is the action of learning (or being announced)
ϕ. If ϕ is a Moore sentence of the form p ∧ ¬Kp, it is easy to check the validity of the
dynamic logic formulas [!ϕ]¬ϕ and [!ϕ]K¬ϕ. The first says that Moore sentences are strongly
un-successful; the second says that Moore sentences are self-refuting. As argued in [97], self-
refuting sentences are essentially un-learnable. This explains why a Moore sentence can never
be known or believed: because it can never be learned.

A similar analysis applies to the doxastic versions p ∧ ¬Bp of Moore sentences. But, in
the case of belief, this phenomenon has even more far-reaching consequences: as pointed out
by van Ditmarsch [107] and others, the un-successfulness of Moore sentences shows that the
standard AGM postulates for belief revision (in particular, the “Success” postulate) cannot
accommodate higher-order beliefs. This observation leads to the distinction, made in the
dynamic-epistemic literature [98, 15, 19], between “static” and “dynamic” belief revision. As
shown in Section 7.2, in the presence of higher-order beliefs the AGM postulates (even in
their multi-agent and “knowledge-friendly” versions) apply only to static belief revision.

3.6 The Knower paradox

Related to the phenomenon of Moore-sentences is what comes under the name of ‘paradox
of the knower’, also known as Fitch’s paradox [23]. The general verification thesis states
that everything that is true can be known to an agent; formally, if we introduce a modal
possibility ♦ϕ to express the fact that something can be achieved (by an agent), this says
that the implication ϕ → ♦Kϕ is true (in our world), for all formulas ϕ. The following
argument, due to Fitch, appears to provide a refutation of verificationism on purely logical
grounds. Take a true Moore sentence ϕ, having the form ψ ∧ ¬Kψ. By the “verificationist”
implication above, ♦Kϕ must be true. But then Kϕ must be true at some possible world
(or some possible future “stage”, achievable by the agent). But, as we have already seen in
the previous subsection, this is impossible for Moore sentences: K(ψ ∧¬Kψ) is inconsistent,
according to the usual laws of epistemic logic. The only possible way out is to conclude that
there are no true Moore sentences; in other words, the implication ψ → Kψ holds for all
formulas. This simply trivializes the verificationist principle, by collapsing the distinction
between truth and knowledge: all truths are already known!

Numerous solutions for this paradox have been proposed; see [118, 92], for example.
In particular, Tennant [92] argues persuasively that the verificationist principle should be
weakened, by restricting its intended applications only to those sentences ϕ for which Kϕ is
consistent. In other words: if ϕ is true and if it is logically consistent to know ϕ, then ϕ can
be known. This excludes the principle’s application to Moore sentences of the usual type.

An interesting take on this matter is proposed by van Benthem in [97]: one can inter-
pret the modal possibility operator ♦ϕ above in a dynamic sense, namely as the ‘ability’ to
achieve ϕ by performing some learning action, e.g. an announcement in the technical sense of
Section 5, to follow. In other words, ‘ϕ is knowable’ is identified with ‘a true announcement
can be made after which the agent knows ϕ.’ In this interpretation, the above-mentioned
verificationist thesis reads “what is true may come to be known (after some learning)”, while
its Tennant version restricts this to sentences ϕ such that Kϕ is consistent. The Moore-
sentences are obviously unknowable (by the agent to whose knowledge they refer). But van
Benthem [97] shows that this interpretation is also incompatible with Tennant’s weakened
verificationist principle: in other words, there are sentences ϕ such that Kϕ is consistent but
still, ϕ → ♦Kϕ does not hold. A counterexample is the formula (p ∧ ♦¬p) ∨ K¬p. The
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dynamic epistemic logic of the ‘ability’ modality ♦ is completely axiomatized and thoroughly
studied in [7].

3.7 The Hangman paradox

The Hangman paradox, also known as the Surprise Examination paradox, has a relatively
short history of about sixty years. Apparently the Swedish mathematician Lennart Ekbom
heard a message on the radio during the second world war announcing a civil defense exercise,
which was to take place in the next week. It was also announced that this exercise would be
a surprise. Then he noticed that there was something paradoxical about this announcement.
[51, 84, pp.253]. The paradox was first published by O’Conner in 1948.

Consider the following case. The military commander of a certain camp announces
on a Saturday evening that during the following week there will be a “Class A
blackout”. The date and time of the exercise are not prescribed because a “Class
A blackout” is defined in the announcement as an exercise which the participants
cannot know is going to take place prior to 6.00 p.m. on the evening in which it
occurs. It is easy to see that it follows that the exercise cannot take place at all.
It cannot take place on Saturday because if it has not occurred on the first six
days of the week it must occur on the last. And the fact that the participants can
know this violates the condition which defines it. Similarly, because it cannot take
place on Saturday, it cannot take place on Friday either, because when Saturday
is eliminated Friday is the last available day and is, therefore, invalidated for the
same reason as Saturday. And by similar arguments, Thursday, Wednesday, etc.,
back to Sunday are eliminated in turn, so that the exercise cannot take place at
all. [74]

Many authors proposed various solutions to this paradox. Williamson [121] analyzes it as an
epistemic variety of the Sorites paradox. The first analysis that uses dynamic epistemic logic
was presented in [36], and found its final form in [108] and [37]. According to Gerbrandy,
the commander’s statement is ambiguous between two possible readings of what “Class A”
means: the first reads “You will not know (before 6:00 on the evening of the blackout) when
the blackout will take place, given (the information you have in) the situation as it is at the
present moment”, while the second reads “You will not know (before 6:00 of that evening)
when it will take place, even after you hear my announcement.” Gerbrandy chooses the
first reading, and shows that in fact there is no paradox in this interpretation, but only a
Moore-type sentence: in this reading, the property of being “Class A” cannot remain true
after the announcement. Unlike the previous puzzles however, there is also a more complex
temporal aspect that needs to be modeled by sequences of such announcements. As for the
second reading, Gerbrandy considers it to be genuinely paradoxical, similar to more standard
self-referential statements, such as the Liar Paradox.

3.8 Common knowledge

One of the important concepts involved in the study of social knowledge is that of common
knowledge. The idea is that common knowledge of a fact by a group of people is more than
just the individual knowledge of the group members. This would be called mutual knowledge.
Common knowledge is something more – what, exactly, is an issue, as is how to model it in
the kinds of models we are dealing with.
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Countries differ as to which side of the road one drives a car; the matter is one of social
and legal convention. As it happens, at the time of this writing all three co-authors are living
in countries in which people drive on the left. Suppose that in one of those, the government
decides to change the driving side. But suppose that the change is made in a quiet way, so
that only one person in the country, say Silvanos, finds out about it. After this, what should
Silvanos do? From the point of view of safety, it is clear that he should not obey the law:
since others will be disobeying it, he puts his life at risk. Suppose further that the next day
the government decides to make an announcement to the press that the law was changed.
What should happen now? The streets are more dangerous and more unsure this day, because
many people will still not know about the change. Even the ones that have heard about it
will be hesitant to change, since they do not know whether the other drivers know or not.
Eventually, after further announcements, we reach a state where:

The law says drive on the right and everyone knows (12). (12)

Note that (12) is a circular statement. The key point is not that everyone know what the
law says, but that they in addition know this very fact, the content of the sentence you are
reading.

This is an intuitive conception of common knowledge. Obviously it builds on the notion
of knowledge, and since there are differing accounts of knowledge there will be alternative
presentations of common knowledge. When we turn to the logical formalism that we’ll use
in the rest of this chapter, the alternative presentations mostly collapse. The key here is to
unwind a sentence like (12) into an infinite list:

α0: The law says drive on the right.

α1: α0, and everyone knows α0.

α2: α1, and everyone knows α1.

· · ·

Each of these sentences uses knowledge rather than common knowledge. Each also implies
its predecessors. Taking the infinite conjunction

α0 ∧ α1 ∧ α2 ∧ · · · (13)

we arrive at a different proposal for common knowledge. As it happens, given the kind of
modeling that we are doing in this chapter, the fixed point account in (12) and the infinite
iteration account in (13) agree.

History An early paper on common knowledge is Friedell [33]. This paper contains many
insights, both mathematical and social. In view of this, it is even more noteworthy that
the paper is not common knowledge for people in the field. Probably the first commonly-
read source in the area is David Lewis’ ‘Convention’ [59]. Heal’s 1978 paper [44] came a
decade later and is still a good source of examples. In the area of game theory, Aumann’s
[6] gives one of the first formalizations of common knowledge. McCarthy formalizes common
knowledge in a rather off-hand way when solving a well-known epistemic riddle, the Sum and
Product-riddle [65] (although at the time it was unknown to him that this riddle originated
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with the Dutch topologist Freudenthal [32]) as an abstract means towards solving the Sum
and Product-riddle. McCarthy’s work dates from the seventies but was only published later
in a collection of his work that appeared in 1990.

Concerning the formalizations, here is how matters stand in two textbooks on epistemic
logic: Fagin et al. [30] defines common knowledge by transitive closure, whereas Meyer and
van der Hoek [66] define it by reflexive transitive closure. There is a resurgence of interest
in variants of the notion, e.g., Artemov’s evidence-based common knowledge, also known as
justified common knowledge [3]. Another interesting variant is relativized (or conditional)
common knowledge, which came to play an important role in some recent developments of
dynamic epistemic logic [102, 49].

4 Epistemic Logic: What and Why?

We have introduced logical systems along with our representations in Section 2. We have
presented a set of logical languages and some semantics for them. One of the first things one
wants to do with a language and a semantics is to propose one or another notion of valid
sentences; informally, these are the sentences true in all intended models. In all the settings
of this paper, this information on validity includes the even more useful information of which
sentences semantically imply which others. Then one wants to present a proof system for the
valid sentences. There are several reasons why one would want an axiomatic system in the
first place. One might wish to compare alternative presentations of the same system. One
might also want to “boil a system down” to its essentials, and this, too, is accomplished by
the study of axiomatic systems. Finally, one might study a system in order to see whether it
would be feasible (or even possible) for a computer to use the system. We are not going to
pursue this last point in our chapter, but we instead emphasize the “boiling down” aspect of
logical completeness results.

4.1 Logic for ignorance of two alternatives

We return to our earliest scenario of Section 2, one person in a room with a concealed coin.
We have a language including a knowledge operator K and a semantics for it using just one
model. We write |= ϕ to say that ϕ is true in that model. The object of our logical system
is to give an alternative characterization of the true sentences.

Figure 1 contains our logical system truth. This paper is not the place to learn about
logical systems in a detailed and deep way, but in the interests of keeping the interest of
philosophers who may not know or remember the basics of logic, we do hope to provide a
refresher course.

We say that ϕ is provable in our system if there is a sequence of sentences each of which
is either an axiom or follows from previous sentences in the sequence by using one of the two
rules of inference, and which ends in ϕ. In this case, one would often write ` ϕ, but to keep
things simple in this chapter we are not going to use this notation.
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all sentential validities
H↔ ¬T exclusivity
¬KH,¬KT basic ignorance axioms
K¬ϕ→ ¬Kϕ consistency of knowledge
K(ϕ→ ψ)→ (Kϕ→ Kψ) distribution
Kϕ→ ϕ veracity
Kϕ→ KKϕ positive introspection
¬Kϕ→ K¬Kϕ negative introspection
From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer Kϕ necessitation

Figure 1: A logical system for valid sentences concerning two exclusive alternatives and a
very simple semantics of K. The axioms are on top, the rules of inference below.

Here is a simple deduction in the logic, showing that ` K¬KT:

1. H↔ ¬T
2. (H↔ ¬T)→ (¬T→ H)
3. ¬T→ H
4. K(¬T→ H)
5. K(¬T→ H)→ (K¬T→ KH)
6. K¬T→ KH

7. ¬KH
8. ¬KH→ ((K¬T→ KH)→ ¬K¬T)
9. (K¬T→ KH)→ ¬K¬T
10. ¬K¬T
11. ¬K¬T→ K¬K¬T
12. K¬K¬T

Line 1 is our exclusivity axiom and line 7 the basic ignorance axiom. A distribution axiom is
found in line 5, and negative introspection in 11. This deduction uses propositional tautologies
in lines 2 and 8, modus ponens in 3, 6, 9, 10, and 12, and necessitation in 4.

We mentioned before that there are several different reasons why one would construct
a logical system to go along with a particular semantics. The first, perhaps, is that by
formulating sound principles, one uncovers (or highlights) hidden assumptions. In this case,
we can see exactly what the assumptions are in this example: they are the principles in the
figure. The interesting point is that these assumptions are all there is: if one reasons with
the system as above, then they will obtain all the truths.

Proposition 1 The logical system above is sound and complete: ` ϕ iff ϕ is true in the
model.

The point of this completeness theorem is that we have isolated all the assumptions in
the scenario.

One remark which is of only minor significance in this discussion is that the veracity axioms
Kϕ→ ϕ may be dropped from the system. That is, all instances of them are provable anyway
from the other axioms. The reason for including them is that they will be needed in all of
the future systems.

Recall that the system here is based on our discussion at the beginning of Section 2. We
then went on in Section 2.1 to the situation after Amina looks. It is not hard to re-work the
logical system from Figure 1 to handle this second situation. We need only discard the basic
ignorance axioms ¬KH and ¬KT, and instead take KH so that we also get H. In particular,
all of the sound principles that we noted for the earlier situation continue to be sound in the
new one.
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flip H↔ T flipping
ϕ↔ flip flipϕ involution
flip¬ϕ↔ ¬flipϕ determinacy
flip (ϕ→ ψ)→ (flipϕ→ flipψ) normality
Kϕ↔ flipKϕ invariance
From ϕ, infer flipϕ necessitation

Figure 2: The logical system for knowledge and flipping. We also need everything from
Figure 1, except the basic ignorance axioms (these are derivable).

4.2 Logic can change the world

There is another intuition about knowledge pertinent to the simple scenario that we have
been dealing with. It is that what Amina knows about a coin in a closed box is the same as
what she would know if the box were flipped over. In this section, we show what this means.

We consider the same language as before, except we add an operator flip to indicate the
flipping the box over. For the semantics, let us begin with two models on the same state set.

1. M , a model with two states s and t, with the information that H is true at s and false
at t, and T is true at t and false at s.

2. N , a model with two states s and t, with the information that H is true at t and false
at s, and T is true at s and false at t.

Then we define M,u |= ϕ and N, u |= ϕ in tandem, the main points being that

M,u |= flipϕ iff N, u |= ϕ
N, u |= flipϕ iff M,u |= ϕ

Finally, we say that ϕ is valid if it holds at both states in both models. (This turns out to
be the same as ϕ holding in any one state in either model.)

We present a logical system for validity in Figure 2. Perhaps the first exercise on it would
be to prove the other flipping property: flip T ↔ H. We did not include in the figure the
general principles of knowledge that we have already seen, but we intend them as part of the
system. (These are the consistency, distribution, veracity, and introspection axioms; and the
necessitation rule.) Note that the invariance axiom Kϕ ↔ [flip ]Kϕ is exactly the opening
of our discussion. We refrain from presenting the completeness proof for this system, but it
does hold. One thing to note is that the invariance axiom of this system makes the earlier
ignorance axioms ¬KH and ¬KT unnecessary: they are derivable in this system.

4.3 Modal logics of single-agent knowledge or belief

At this point, we review the general topic of logics of knowledge. The basic language begins
with a set P of atomic propositions. From these sets, a language L is built from the atomic
propositions using the connectives of classical logic and also the knowledge operator K. We
get a language which is basically the same as what we saw in Section 2, except that our set
of atomic propositions is taken to be arbitrary, not just {H,T}.
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Semantics We interpret this language on relational models. These are tuples M =
〈S,R, V 〉 consisting of a domain S of states (or ‘worlds’), an accessibility relation R ⊆ S × S,
and a valuation (function) V : P → P(S). We usually write Vp instead of V (p). We also
write s→ t instead of R(s, t). We call these semantic objects relational models, but they are
more often called Kripke models. We call a tuple of the form (M, s), where M is a model and
s is a state in it, is an epistemic state.

We then define the interpretation of each sentence ϕ on an epistemic state (suppressing
the name of the underlying model):

[[p]] = Vp
[[¬ϕ]] = [[ϕ]]
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[Kϕ]] = {s : whenever s→ t, t ∈ [[ϕ]]}

It is more common to find this kind of definition “re-packaged” to give the interpretation of
a sentence at a given point. This rephrasing would be presented as follows:

s |= p iff s ∈ Vp
s |= ¬ϕ iff s 6|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= Kϕ iff for all t ∈ S : s→ t implies t |= ϕ

The two formulations are completely equivalent. At the same time, using one notation over
another might lead different people to different insights or problems.

Further semantic definitions A sentence ϕ is valid on a model M , notation M |= ϕ, if
and only if for all states s in the domain of M : s |= ϕ. A formula ϕ is valid, notation |= ϕ,
if and only if for all models M (of the class of models for the given parameters of A and P ):
M |= ϕ. That is, ϕ holds on all epistemic states.

Logic and variations on it The logical system for validity is a sub-system of one which we
already have seen. Look back at Figure 1, and take only the propositional tautologies, modus
ponens, the distribution axiom, and the necessitation rule. This logical system is called K.
Every book on modal logic will prove its completeness: a sentence is valid in the semantics
just in case it can be proved from the axioms using the rules.

What’s the point? For the modeling of knowledge, all we have so far is a spare definition
and logic: An agent lives in a world and can see others. What it knows in a given world is
just what is true in the worlds it sees. This seems a far cry from a full-bodied analysis of
knowledge. The logical completeness result underscores the point. Any agent who “knew”
things in the manner of this semantics would exemplify properties indicated by the logic. In
particular, it would act as if the distribution axiom and necessitation rule held. The former,
turned around a bit, says that the agent would be a perfect reasoner : if it knows ϕ and also
knows ϕ→ ψ, then it automatically and effortlessly knows ψ. Necessitation says that it also
knows all the general features of this logic. Thus, the agent is logically omniscient. And one
would be hard-pressed to maintain that such an agent “knew” in the first place. For it is
even possible that in some situations (models) the agent would “know” things which are false:
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Ax formal statement property of R interpretation
K K(ϕ→ ψ)→ (Kϕ→ Kψ) (none) closed under modus ponens
T Kϕ→ ϕ reflexive veracity
D Kϕ→ ¬K¬ϕ serial consistency
4 Kϕ→ KKϕ transitive positive introspection
5 ¬Kϕ→ K¬Kϕ Euclidean negative introspection

Figure 3: Axiom schemes of modal logic with their relational correspondents and epistemic
interpretations.

this might well happen the agent lived in a world which was not among those it considered
possible.

This leads to our next point. If one wants to model agents with certain epistemically-
desirable properties (see below for these), one can impose mathematical conditions on the
accessibility relation of models under consideration. Then one changes the definition of valid
from true in all epistemic states to true in all epistemic states meeting such-and-such a
condition.

To see how this works, we need a definition. A frame is the same kind of structure as
what we are calling a model, but it lacks the valuation of atomic sentences. So it is just a pair
F = 〈S,R〉, with R a relation on S. (In other terms, a frame is a graph.) Given a sentence ϕ
in our logic, we say that F |= ϕ if for all valuations V : P → P(S), every s ∈ S satisfies ϕ in
the model 〈S,R, V 〉.

Figure 3 presents well-known correspondences between conditions on a frame and prop-
erties of the logic. One example: a frame F satisfies each instance of D (say) iff F meets the
condition listed that every point in it has a successor. is related by R to some point or other.
Reflexivity means that every point is related to itself. Transitivity means that if x is related
to y, and y to z, then x is related to z. The Euclidean condition mentioned in connection
with the 5 axioms is

(∀x)(∀y)(∀z)((xRy ∧ xRz)→ yRz).

There is a further aspect of the correspondence. If one wants to study the sentences which
are valid on, say, transitive models, then one need only add the corresponding axiom (in this
case Kϕ → KKϕ) to the basic logic that we mentioned above. On a conceptual level, we
prefer to turn things around. If one wants to model agents which are positively introspective
in the sense that if the know something, then they know that they know it, then one way
is to assume, or argue, that they work with transitive models. The same goes for the other
properties, and for combinations of them.

There are many modal systems indeed, but we wish to mention only a few here. We
already have mentioned K. If we add the axioms called T and 4, we get a system called S4.
It is complete for models which are reflexive and transitive, and intuitively it models agents
who only know true things and which are positively introspective. If one adds the negative
introspection axioms 5, one gets a system called S5. The easiest way to guarantee the S5
properties is to work with relations which are reflexive, symmetric, and transitive (equivalence
relations), for these are also Euclidean.

Turning from knowledge to belief, the T axiom is highly undesirable. So logics appropri-
ate for belief will not have T. But they often have D, the seriality axioms. These may be
interpreted as saying that if an agent believes ϕ, then it does not at the same time believe
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¬ϕ. Probably the most common logic of belief is KD45, obtained by adding to K the other
axioms in its names. KD45 is complete with respect to models which have the properties
listed above. When studying belief, one usually changes the name of the modality from K to
B, for obvious reasons.

We wish to emphasize that all of the intuitive properties of knowledge and belief discussed
in this section, and indeed in this chapter as a whole, are highly contestable. Using logic does
not commit one to any of those properties. But logic can help to clarify the commitments in
a given form of modeling. For example, any modeling of knowledge using relational semantics
will always suffer from problems having to do with logical omniscience, as we have seen.

4.4 Multi-agent epistemic logic

The formal move from the basic modal logic of the last section its multi-agent generalization
is very easy. One begins with a set A of agents in addition to the set of atomic propositions.
Then the syntax adds operators Ka, and we read Kaϕ as “a knows ϕ.” The semantics then
moves from the models of the last section to what we shall call epistemic models. These are
tuples 〈S,R, V 〉 as before, except now R is an accessibility (function) R : A → P(S × S).
That is, it is a family of accessibility relations, one for each agent. We usually write Ra
instead of R(a). Further, we write s→a t instead of (s, t) ∈ Ra.

Example 2 We are going to present an example which hints at the applicability of our
subject to the modeling of games.

Consider three players Amina, Bao, and Chandra (a, b, c). They sit in front of a deck
consisting of exactly three cards, called clubs, hearts, and spades. Each is dealt a card,
they look, and nobody sees anyone else’s card. We want to reason about knowledge in this
situation. It makes sense to take as atoms the nine elements below

{Clubsa,Clubsb, . . . ,Spadesb,Spadesc}.

The natural model for our situation has six states. It is shown in a slightly re-packaged
form in Figure ??. We call the model Hexa. The states are named according to who has what.
For example, ♣♥♠ is the state where Amina has clubs, Bao hearts, and Chandra spades. The
lines between the states have labels, and these indicate the accessibility relations. So Bao, for
example, cannot tell the difference between ♥♣♠ and♠♣♥: if the real deal were one of those,
he would think that it could be that same deal, or the other one (but no others).

We mentioned that the picture of Hexa differs slightly in its form from what the official
definition calls for. That version is mathematically more elegant but does not immediately
lend itself to a picture. It would have, for example,

V (Clubsa) = {♣♥♠,♣♠♥}
· · ·

V (Spadesc) = {♣♥♠,♥♣♠}
Ra = {(♣♥♠,♣♠♥), (♥♣♠,♥♠♣), (♠♣♥,♠♥♣)}

· · ·

We can then evaluate sentences in English by translating into the formal language and using
the semantics. Here are some examples.

Amina knows she has the heart card. We translate to KaHeartsa. The semantics in Hexa
is [[KaHeartsa]] = {♥♣♠,♥♠♣}. (In more detail: in each of the two worlds ♥♣♠ and ♥♠♣,
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every world that Amina thinks is possible belongs to V (Heartsa). And if s is one of the
four other worlds, there is some world accessible from s for Amina which does not belong to
V (Heartsa). For example, in s = ♣♥♠, the world s itself is accessible for Amina, and she does
not have hearts there.) That is, our sentence is true exactly at ♣♥♠ and ♠♥♣. Note that
this is precisely the set of worlds where Amina indeed has hearts. So the sentence Amina has
hearts if and only if she knows she has hearts comes out true at all states.

If Bao has spades, Chandra has clubs. This is Spadesb → Clubsc. The semantics is

{♣♥♠,♥♣♠,♥♠♣,♠♣♥,♠♥♣}.

If Amina has hearts, then she knows that if Bao has spades, Chandra has clubs. The
translation is

Heartsa → Ka(Spadesb → Clubsc).

This true at all states.
Bao considers it possible that Amina has spades but actually Amina has clubs. We translate

“consider it possible that ϕ” by “does not know that ϕ is false.” So our sentence here is
¬Kb¬Spadesa∧Clubsa. Usually one prefers to avoid negation by introducing an abbreviation.
So if we say that K̂bϕ abbreviates ¬Kb¬ϕ, then we may read this as Bao considers ϕ possible
and translate our sentence as above. Its semantics is {♣♥♠}.

The last sentence shows the duality between “consider possible” and “know”. This phe-
nomenon of dual definitions is something we shall see later as well.

Logic We define validity exactly as in the last section, but using the generalized language
and semantics. Given a language and a semantics, one task for logic is to determine the set of
sentences which are valid. In particular, we might ask for a nice logical system for the valid
sentences, since this may well give insight into the underlying assumptions in the model. Now
in what we have been discussing in this section, we might seek at least three logical systems:

1. A system for validity on the model Hexa.

2. A system for validity on all models whatsoever.

3. A system for validity on all models that are “basically similar” to Hexa.

For the first question, we modify the system of Figure 1 for ignorance of two alternatives. The
axioms that actually pertain to H and T must be replaced, of course. Instead of exclusivity,
we take an axiom that says, informally, for exactly one of the six states s of Hexa, all atoms
true in s hold, and all not true in s do not hold. We also add an axiom saying that If Amina
has clubs, then she knows it, and similarly for the other players and cards, and also that
Amina does not know which card any other player holds. All of the rest of the axioms are
valid in this model, as are the rules. Each statement of the old system would be replaced by
three, one for each player. So one of the introspection axioms would be Kbϕ → KbKbϕ. In
particular, the introspectivity and necessitation principles are valid.

In passing, we note that this logical system has no interaction properties between the
knowledge of different agents. That is, none of the axioms mix Ka and Kb for different a
and b. Mathematically, this means that the generalization of single-agent knowledge to the
multi-agent case will be almost trivial. But there are two caveats: first, the phenomenon of
common knowledge does involve discussions of different agents’ knowledge, and so it turns out
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to be harder to study. And second, it really is possible to have situations where interaction
properties make sense. For example, suppose one wants to model situations where everything
Bao knows Chandra also knows. In the semantics, one would want Rc ⊆ Rb. And then in the
logic one could add Kbϕ→ Kcϕ.

For the second question above, the fact that we are dealing with a larger class of mod-
els means that fewer logical principles are sound. The only sound principles would be the
propositional tautologies and the distribution axioms, and the rules of modus ponens and
necessitation.

The last question is obviously not precise. The point of raising it is that one can make
precise the sense in which games are, or are not, similar by using the logical principles that
hold. For example, one often simplifies matters by assuming that adversaries are perfect
reasoners, and in this setting it is natural to assume the introspectivity principles in the
modeling. That is, one works only with models where those principles turn out to be sound.
The easiest way to arrange this is to look at the chart in Figure 3. If each accessibility relation
→a is reflexive, transitive, and euclidean, then the model will satisfy both introspectivity
assertions. (This holds no matter what the valuation V happens to do.) It turns out that a
relation with these properties is automatically symmetric and hence an equivalence relation.
Moreover, an equivalence relation on a set is equivalently formulated as a partition of the
set. So one often finds the tacit assumption in much of the game theory/economics literature
that the models used are partition models consisting of a set S and a partition of S for each
player.

Identity conditions on models We first looked at announcements in Section 2.2. In
discussing (4) and (5), we noted the need for principled identity conditions on relational
models. Fortunately, the general study of relational models and their logical systems gives
us a usable condition, called bisimulation. This condition is coarser than isomorphism, does
what we want (in particular, it tells us that (4) and (5) ought to be identified), and has an
intuitive resonance as well. For the formal definition and much more, see any text on modal
logic, for example Blackburn et al. [20].

4.5 Common knowledge

We have discussed the idea of common knowledge in Section 3.8. We turn now to the for-
malization on top of what we saw in Section 4.4 above. We present a generalization of our
previous concept, however. For each group B ⊆ A, we want notions of group knowledge for
the set B and common knowledge for the set B. This last notion has the same intuitive basis
as common knowledge itself. For example, it is common knowledge among Englishmen that
one drives on the left, but this common knowledge does not hold for the entire world.

For the syntax of group knowledge, we add operators EB to the language of multi-agent
epistemic logic. The semantics is given by

[[EBϕ]] =
⋂
a∈A

[[Kaϕ]].

This means that we (straightforwardly) translate EBϕ as Everyone knows ϕ. In the case of
finitely many agents (the assumption in practically all papers on the topic), EBϕ may be
regarded as an abbreviation.
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Example 3 We return to the model Hexa from Section 4.4 (see Figure ??). We have

♣♥♠ |= E{a,b}¬(Spadesa ∧ Clubsb ∧Heartsc).

That is, both Amina and Bao know that the deal of cards is not ♠♣♥. However, despite this,
each does not know that the other knows this fact.

We next turn to common knowledge. The syntax adds operators CBϕ to the language,
exactly as with group knowledge. The semantics is more problematic, and indeed there are
differing proposals in the literature. We follow the most common treatment. One essentially
takes the unwinding of the fixed point that we saw in (13) in Section 3.8 as the definition,
and then the fixed point property becomes a semantic consequence later on.

For the semantics, for each group B we pool all the accessibility relations for the members
of B together, and then take the reflexive-transitive closure:

R∗B ≡ (
⋃
a∈B

Ra)∗.

(see below for an explanation). Then we interpret via

s |= CBϕ iff for all t ∈ S : R∗B(s, t) implies t |= ϕ

Alternatively said, CBϕ is true in s if ϕ is true in any state sm that can be reached by a
(finite) path of zero or more states s1, . . . , sm such that, for not necessarily different agents
a, b, c ∈ B: Ra(s1, s2), Rb(s2, s3), and . . ., and Rc(sm−1, sm). A path of zero states is just a
single state alone. Hence if CBϕ is true at s, then automatically ϕ is true at s as well.

As an example of both the formal and informal concepts, we consider an n-person muddy
children scenario (see Section 3.1), before any announcement that at least one agent is muddy.
It is easy to describe the model: it has 2n states with the rest of the structure determined in
the obvious way. Then it is common knowledge at all states that no agents know their own
state. More interesting is the comment that in this model, if s is a state and every agent
knows ϕ at s, then ϕ is already common knowledge at all states.

The logic of common knowledge adds two principles to the basic multi-agent epistemic
logic. Those are the Mix Axiom:

CBϕ→ ϕ ∧ EBCBϕ

(so-called because it deals with the interactions of the the two operators of this section) and
the induction rule:

from χ→ ψ and χ→ Kaχ for all a ∈ B, infer χ→ CBψ.

Using this logic, one can prove the important properties of common knowledge. For example,
it is idempotent :

CBϕ↔ CBCBϕ.

The interesting direction here says that if ϕ is common knowledge in a group, then the fact
of its being common knowledge is itself common knowledge in the group.
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4.6 Belief-knowledge logic

Intuitively, belief and knowledge are related but different. However, we have heretofore con-
flated the two notions. We present here the simplest possible system which can sensibly
separate the two by incorporating both at the same time with different semantics. It and the
logical axioms are taken from Meyer and van der Hoek [66].

We fix sets A of agents and P of atoms. To separate the two notions, we need a language
with different operators K and B.

A knowledge-belief model (KB-model) is a Kripke model of the form 〈S,RKa , RBa , V 〉a∈A,
where S is set of states, RKa and RBa are binary accessibility relations in P(S × S), and V
is a function from P to P(S). We write s∼a t instead of (s, t) ∈ RKa , and s→a t instead of
(s, t) ∈ RBa . As the letters K and B indicate, the first relation ∼a is meant to capture the
knowledge of agent a, while the second →a captures the agent’s beliefs.

A KB model is required to satisfy the following conditions: ∼a is an equivalence relation;
→a is serial; if s∼a t and s→a w, then t→a w; and finally, →a is included in ∼a . So the
modeling reflects the following intuitions: the truthfulness and introspection of of knowledge,
full belief introspection (agents know their own beliefs), beliefs are consistent, and knowledge
implies belief. It is not necessary to assume that →a is transitive and Euclidean, since these
properties immediately follow from the above conditions. So we also have for free that belief
is introspective, in the usual sense.

Notice also that, as observed on the example in Section 2.3, the knowledge relation ∼a is
recoverable from the belief relation →a , via the following rule:

s∼a t iff (∀w)(s→a w iff t→a w). (14)

To see this, first assume that s∼a t. Then also t∼a s. From this and one of the conditions in
a KB model, we get the right-hand side of (14). And if the right-hand side holds, we show
that s∼a t. First, there must be some w so that s→a w. For this w we also have t→a w. And
then using the fact that ∼a is an equivalence relation included in →a , we see that s∼a t.

So, in fact, one could present KB-models simply as belief models 〈S, →a , V 〉, where →a is
transitive, serial and Euclidean, and one can take the knowledge relation as a defined notion,
given by the rule (14) above. We interpret the logical system in KB-models via

[[Kaϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s∼a t}
[[Baϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s→a t} (15)

Example 4 The easiest example is a two-state model for ignorance of two alternatives, say
heads and tails, together with a belief in one of them, say heads. Formally, we have one agent,
so we drop her from the notation. There are two states s and t, for H and T. The relation
→ is H → H and T → H. The relation ∼ therefore relates all four pairs of states. Then at
both states BH∧¬KH. In particular, the agent believes heads at the tails state t. Hence we
have our first example of a false belief. But agents in KB-models are not so gullible that they
believe absolutely anything : ¬B(H ∧ T), for example. And indeed, the seriality requirement
prohibits an agent from believing a logical inconsistency.

The logic is then axiomatized by the S5 system for knowledge, the KD45 system for belief,
and two connection properties: First, Baϕ → KaBaϕ. So an agent may introspect on her
own beliefs. (It also follows in this logic that ¬Baϕ → Ka¬Baϕ.) We should mention that
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introspection about beliefs is less controversial than introspection about knowledge. If we take
knowledge to be a relation between an agent and an external reality, then it is as problematic
to account for an agent’s knowledge of their own knowledge as it is to account for any other
type of knowledge. But to the extent that belief is an “internal” relation, it seems easier to
say that fully-aware agents should have access to their own beliefs.

The second logical axiom connecting knowledge and belief is Kaϕ→ Baϕ. This reiterates
an early point: we are thinking of knowledge as a strengthening of belief. It is sound due to
the requirement that →a be included in ∼a .

Variations There are some variations on the soundness and completeness result which we
have just seen. Suppose one takes an arbitrary relation →a , then defines ∼a from it using (14),
and then interprets our language on the resulting structures by (15). Then ∼a is automatically
an equivalence relation, and so the S5 axioms for knowledge will be sound. Further, the two
connection axioms automatically hold, as does negative introspection. Continuing, we can
add impose conditions on →a (such as seriality, transitivity, the Euclidean property, or subsets
of these), and then study validity on that class. In the logic, one would take the corresponding
axioms, as we have listed them in Figure 3. In all of the cases, we have completeness results.

4.7 Conditional doxastic logic

We now re-work the logical system of Section 4.6, so that it can handle conditionals in the
way that we did in Section 2.4. The logical system is based on Board [21], and Baltag and
Smets [15, 16, 17]. Following the latter, we’ll call it conditional doxastic logic (CDL).

Its syntax adds to propositional logic statements of the form Bα
aϕ, where a is an agent and

α and ϕ are again sentences in the logical system. This should be read as “If a were presented
with evidence of the assumption α in some world, then she should believe ϕ describes the
world (as it was before the presentation).”

The simplest semantics for this logic uses plausibility models. These are also special cases
of the belief revision structures used in Board [21]. (We shall see the general notion at the end
of this section.) Plausibility frames are Kripke structures of the form (S,≤a)a∈A, consisting
of a set S endowed with a family of locally pre-wellordered relations ≤a, one for each agent a.
When S is finite, a locally pre-wellordered relation on S is just one that is reflexive, transitive
and weakly connected both forwards and backwards3, i.e. s ≤a t and s ≤a w implies that
either t ≤a w or w ≤a t, and also t ≤a s and w ≤a t implies that either t ≤a w or w ≤a t.
Equivalently, we have a Grove system of spheres, just as in Section 2.3, consisting of a number
of (disjoint) “smallest spheres” (listing the worlds “in the center”), then surrounding them
the next smallest spheres (containing worlds a little less plausible than these central ones),
then the next ones, having worlds a little less plausible than these, etc. To match the notion
of local pre-wellorder above (again, in the finite case), we need to assume that every world
belongs to some sphere, and that if two spheres intersect or are both included in a larger
sphere, then one is included in the other.

As for Kripke models in general, a plausibility model is a tuple M = (S,≤, V ), where
(S,≤) is a plausibility frame and V is a valuation on it. A doxastic state is a tuple of the
form (M, s), where M is a plausibility model and s ∈M .

3This last property is also known as no branching to the left or to the right.
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Remark For readers of van Benthem and Martinez’ Chapter 3b, we mention that our order-
ings go the other way from theirs: for them, “more plausible” is “upward” in the ordering,
and for us it is “in the center” or “lower down”.

As in the example in Section 2.3, we define a knowledge (indifference) relation by putting

s∼a t iff either s ≤a t or t ≤a s.

Plausibility models for only one agent have been used as models for AGM belief revision in
[35, 81, 85]. The additional indifference relations turn out to be useful in modeling, as we
indicate shortly.

Similarly, we define a belief relation by putting:

s→a t iff s∼a t and (∀u)(s∼a u→ t ≤a u) .

It is easy to see that ∼a and →a satisfy all the postulates of a KB model. More generally,
we obtain a conditional belief relation by putting, for any set X ⊆ S of states:

s −→a,X t iff s∼a t, t ∈ X, and (∀u)(s∼a u & u ∈ X → t ≤a u) .

In other words, s −→a,X t if a considers t to be possible in s, if t ∈ X, and if t is among the most
plausible worlds for a with these two conditions. So here we see the basic idea: reasoning
about a’s hypothetical beliefs assuming α involves looking at the relation −→a,X where X = [[α]].

Observe that the belief relation →a is the same as the conditional belief relation −→a,S ,
where S is the set of all states. As a passing note, for each X ⊆ S we can use the relations
−→a,X to make a structure which is almost a KB-model in the sense of Section 4.6. Take S for
the set of worlds, −→a,X for the belief relation for each agent a, take the knowledge relation ∼a
for a as above, and use the same valuation in SX as in S. The only property of KB-models
lacking is that the belief relations might fail to be serial: a state s has no −→a,X -successors
if X is disjoint from the ∼a -equivalence class of s. This makes sense: seriality corresponds
to consistency of belief; but X being disjoint from the ∼a -equivalence of s corresponds to
conditionalizing on a condition X that is known (with absolute certainty) to be false: the
resulting set of conditional beliefs should be inconsistent, since it contradicts (and at the
same time it preserves) the agent’s knowledge.

For the semantics, we say

[[Bα
aϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s −→a,X t, where X = [[α]]} (16)

In other words, to evaluate a doxastic conditional, a looks at which of her possible worlds are
the most plausible given the antecedent α, and then evaluates the conclusion on all of those
worlds. If they all satisfy the conclusion ϕ of the conditional, then a believes ϕ conditional
on α. It is important that the evaluation take place in the original model.

Example 5 The model S from Section 2.4 had four worlds u, v, w, x. Amina’s plausibility
relation ≤a is essentially the ordered partition: {v, w} < {u, x}. Bao’s plausibility relation
is the reflexive closure of the relation {(v, w), (w, v)}. We are interested in sentences Bα

aϕ,
where α = KbH∨Kb¬H. Let X = [[α]] = {u, x}. Then −→a,X relates all four worlds to u and x.
Our semantics in (16) is equivalent to what we used in (11). Note as well that the right-hand
model in (8) shows −→a,S and −→b,S .
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Knowledge in plausibility models There are two equivalent ways to define knowledge
in plausibility models. One can use the definition (15) applied directly to the ∼a relations
introduced above, saying that

s |= Kaϕ iff s∼a t implies t |= ϕ.

Alternatively, one can use the following observation to get an intuitively appealing reformu-
lation.

Proposition 6 Let S be a plausibility model and s ∈ S. The following are equivalent:

1. s |= Kaϕ.

2. s |= B¬ϕa ⊥, where ⊥ is a contradiction such as p ∧ ¬p.

3. s |= B¬ϕa ϕ.

4. s |= Bα
aϕ, for every sentence α.

Here is the reasoning: If (1) holds, then s has no −→a,X -successors at all, where X = [[¬ϕ]].
This means that the next two assertions hold vacuously. Also, notice that, for every set X,
s −→a,X t implies s∼a t. Hence, if (1) holds then, for any sentence α, ϕ is true at all −→a,X -
successors of s, where X = [[α]]. Therefore (4) holds as well. Conversely, (4) clearly implies
(3); also, if either of (2) or (3) hold, then the semantics tells us that s has no −→a,X -successors,
so every t∼a s must satisfy ϕ; i.e., (1) must hold.

A proposal going back to Stalnaker [86] defines “necessity”4 in terms of conditionals, via
the clause (3) above. This contains an idea concerning our notion of “knowledge”: what it
means to know ϕ (in this strong sense) is that one would still believe ϕ even when hypothet-
ically assuming ¬ϕ.

Finally, (4) can be related to the “defeasibility analysis” discussed in Section 3.4. Indeed,
what is says is that our notion of knowledge satisfies a stronger version of this analysis than
the original one: our knowledge is the same as “absolutely unrevisable” belief. One “knows”
ϕ (in this absolute sense) if giving up one’s belief in ϕ would never be justified, under any
conditions (even when receiving false information).

The logic We list a complete axiomatization in Figure 4. Note that in the syntax, we take
conditional belief as the only basic operator, and define knowledge via (3). Verifying the
soundness of most of the axioms is easy, and we discuss only the principle of minimality of
revision. Let X = [[α]]. Let Y = [[α ∧ ϕ]], so Y ⊆ X. Suppose that s |= ¬Bα

a¬ϕ. So there is
some t so that s −→a,X t and t |= ϕ. This means that, for all w, we have s −→a,X w iff s −→a,Y w. We
first show that if s |= Bα

a (ϕ→ θ), then s |= Bα∧ϕ
a θ. To see this, let w be such that s −→a,Y w.

Then s −→a,X w, and since w |= ϕ, we have w |= θ. For the second half, one checks directly
that Bα∧ϕ

a θ implies s |= Bα
a (ϕ→ θ).

Incidentally, the axioms of the logic have interpretations in terms of belief revision, as
we shall see. In particular, the last axiom (“minimality of revision”) corresponds to the
conjunction of the AGM principles of Subexpansion and Superexpansion (principles (7) and
(8) in Section 7).

4This is denoted in [86] by �ϕ. Note that it corresponds in our notation to Kϕ, and should not be confused
with our notation for “safe belief” �ϕ in the next subsection.
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Syntax ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Bα
aϕ

Definition Kaϕ := B¬ϕa ϕ (knowledge)

Main Axioms Bα
aα hypothetical acceptance

Kaϕ→ ϕ veracity
Kaϕ→ Bα

aϕ persistence of knowledge
Bα
aϕ→ KaB

α
aϕ positive belief introspection

¬Bα
aϕ→ Ka¬Bα

aϕ negative belief introspection
¬Bα

a¬ϕ→ (Bα∧ϕ
a θ ↔ Bα

a (ϕ→ θ)) minimality of revision

Figure 4: Syntax and axioms for conditional doxastic logic. We also assume Modus Ponens,
as well as Necessitation and the (K) axiom for Bα

a .

Adding common knowledge and belief It is also possible to expand the language with
operators CbαB and CbαB, reflecting conditional versions of common belief and knowledge in a
group B. For the proof systems and more on these systems, cf. Board [21], and Baltag and
Smets [15, 16, 17]. Board’s paper also contains interesting variations on the semantics, and
additional axioms. Baltag and Smets offer a generalization of the notion of a plausibility model
to that of a conditional doxastic model. Both authors considers applications to modeling in
games.

Belief revision structures The plausibility models that we have been concerned with in
this section may be generalized in a number of ways. First of all, the pre-wellorders for each
agent might be world-dependent. This would be important to model agents with incorrect
beliefs about their own beliefs, for example.

In this way, we arrive at what Board [21] calls belief revision structures. For more on this
logic, including completeness results, see Board [21].

4.8 The logic of knowledge and safe belief

As we saw, Stalnaker’s defeasibility analysis of knowledge asks a weaker requirement than the
one satisfied by our notion of “absolutely unrevisable knowledge”: namely, it states that ϕ is
known (in the weak, defeasible sense) if there exists no true piece of information X such that
the agent would no longer be justified to believe ϕ after learning X. Following Baltag and
Smets [16, 17], we call safe belief this weak notion of defeasible “knowledge”, and we use the
notation �aϕ to express the fact that a safely believes ϕ. We can immediately formalize this
notion in terms of conditional belief arrows:

s |= �aϕ iff for all t ∈ S, and all s ∈ X ⊆ S : s −→a,X t implies t |= ϕ.

To our knowledge, the first formalization of safe belief (under the name of “knowledge”)
was due to Stalnaker [87], and used the above clause as a definition. Observe that it uses
quantification over propositions (sets of states). It was only recently observed, in [16, 17, 88],
that this second-order definition is equivalent to a simpler one, which takes safe belief as the
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Kripke modality associated to the relation “at most as plausible as”:

[[�aϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t ≤a s} (17)

This last condition was adopted by Baltag and Smets [19] as the definition of safe belief. The
same notion was earlier defined, in this last form, by van Benthem and Liu [100], under the
name of “preference modality”.

Example 7 The situation described in Section 2.4 provides us with examples of safe and
unsafe beliefs. In the model 10, Amina believes (though she doesn’t know) that Bao doesn’t
know that the face of the coin is tails. If the real state is v, then this belief is true, and
moreover it is safe: this is easy to see, since it is true at both v and w, which are the only two
states that are at least as plausible for Amina as v. This gives us an example of a safe belief
which is not knowledge. If instead the real state is u, then the above belief is still true (though
is not known). But it is not safe anymore: formally, this is because at state x (which for
Amina is at least as plausible as u), Bao does know the face is tails. To witness this unsafety,
consider the sentence α := BbH ∨ BbT, saying that Bao knows the face of the coin. At the
real world u, the sentence α is true; but, at the same world u, Amina does not believe that, if
α were true then Bao wouldn’t know that the face was tails: u |= α∧¬Bα

a¬BbT. This shows
that Amina’s belief, though true, can be defeated at state u by learning the true sentence α.

Stalnaker [88] observes that belief can be defined in terms of safe belief, via the logical
equivalence: Baϕ ↔ ¬�a¬�aϕ, and that the complete logic of the safe belief modality �a is
the modal logic S4.3.5 Baltag and Smets [16, 17] observe that by combining safe belief �aϕ
with the “absolute” notion of knowledge Kaϕ introduced in the previous section, one can
define conditional belief via the equivalence6:

Bα
aϕ ↔ (¬Ka¬α→ ¬Ka¬(α ∧�a(α→ ϕ))).

The logic of knowledge and safe belief is then axiomatized by the S5 system for knowl-
edge, the S4 system for safe belief, and two connection properties: First, Ka → �aϕ. This
reiterates the earlier observation: knowledge (in our absolute sense) is a strengthening of
safe belief. The second axiom says that the plausibility relation ≤a is connected within each
∼a -equivalence class:

Ka(ϕ ∨�aψ) ∧Ka(ψ ∨�aϕ)→ Kaϕ ∨Kaψ.

Belief and conditional belief are derived notions in this logic, defined via the above logical
equivalences.

4.9 Propositional Dynamic Logic

This section of our chapter mainly consists of brief presentations of logical systems which
are intended to model notions of importance for epistemic or doxastic logic. The current
subsection is an exception: propositional dynamic logic (PDL) is a system whose original
motivations and main uses come from a different area, semantics studies programming lan-
guages. We are not concerned with this here, and we are presenting PDL in a minimum of

5S4.3 is the logic of reflexive transitive frames with no branching to the right.
6Van Benthem and Liu [100] use another logical equivalence to similarly define conditional belief.
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Syntax
Sentences ϕ
Programs π

pi ¬ϕ ϕ ∧ ψ [π]ϕ
a ?ϕ π;σ π ∪ σ π∗

Semantics Main Clauses [[[π]ϕ]] = {s : if s[[π]]t, then t ∈ [[ϕ]]}
[[?ϕ]] = {(s, s) : s ∈ [[ϕ]]}
[[π;σ]] = [[π]] ; [[σ]]
[[π ∪ σ]] = [[π]] ∪ [[σ]]
[[π∗]] = ([[π]])∗

Figure 5: The language of Propositional Dynamic Logic (PDL)

detail, so that the reader who has not seen it will be able to see what it is, and how it is used
in systems which we shall see later in the chapter.

The syntax of PDL begins with atomic sentences p, q, . . ., (also called atomic propo-
sitions), and also atomic programs a, b, . . . (sometimes called actions). From these atomic
sentences and programs, we build a language with two types of syntactic objects, called sen-
tences and programs. The syntax is set out in Figure 5. The sentence-building operations
include those of standard logical systems. In addition, if ϕ is a sentence and π a program,
then [π]ϕ is again a sentence. The intended meaning is “no matter how we run π, after we
do so, ϕ holds.” This formulation hints that programs are going to be non-deterministic, and
so one of the syntactic formation rules does allow us to take the union (or non-deterministic
choice) of π and σ to form π ∪ σ. The other formation rules include composition (;), testing
whether a sentence is true or not (?ϕ), and iteration (π∗).

The basic idea in the semantics is that we have state set S to start, and programs are
interpreted in the most extensional way possible, as relations over S. So we are identifying
the program with its input-output behavior; since we are thinking of non-deterministic pro-
grams, this behavior is a relation rather than a function. Atomic programs are interpreted as
relations which are given as part of a model, and the rest of the programs and sentences are
interpreted by a simultaneous inductive definition given in Figure 5. With this interpretation,
each program π turns into a sentence-forming operation [π]; these then behave exactly as in
standard relational modal systems. The clause for program composition uses composition of
relations, and the one for iteration uses the reflexive-transitive closure operation.

PDL turns out to be decidable and to have a nice axiom system. The system resembles
modal logic, and indeed one takes the basic axioms and rules for the operators [π] given by
programs. The other main axioms and rules are

(Test) ` [?ϕ]ψ ↔ (ϕ→ ψ)
(Composition) ` [π;σ]ϕ↔ [π][σ]ϕ
(Choice) ` [π ∪ σ]ϕ↔ ([π]ϕ ∧ [σ]ϕ)
(Mix) ` [π∗]ϕ→ ϕ ∧ [π][π∗]ϕ

One also has an Induction Rule: From χ → ψ χ → [π]χ, infer χ → [π∗]ψ. The treatment of
iteration is related to what we saw for common knowledge in Section 4.5; there is a common
set of mathematical principles at work. For more on PDL, see, e.g., Harel, Kozen, and
Tiuryn [43].
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PDL and epistemic updates One important observation that links PDL with epistemic
logic is that the changes in agents’ accessibility relations as a result of an epistemic action of
some sort or other are often given as relation-changing programs. We want to spell this out
in detail, because it will be important in Section 7.2.

The semantics of a PDL sentence ϕ in a given model M may be taken to be a subset
[[ϕ]] ⊆M , namely the set of worlds making ϕ true. Similarly, the semantics of a PDL program
π may be taken to be a relation [[π]] on M . Now given a PDL program π(r) with a relation
variable r, we can interpret π(r) by a function [[π(r)]] from relations on M to relations on M
(a relation transformer): for each R ⊆M ×M , we use R for the semantics of r and the rest
of the semantics as above.

We shall see a simple example of this shortly, in Example 9 of Section 5.1.

5 Dynamic Epistemic Logic

We now move on to a different form of dynamics related to the topic of our chapter. Starting
from the perspective of epistemic logic, knowledge and belief change can also be modeled by
expanding the logic with dynamic modal operators to express such changes. The result is
known as Dynamic Epistemic Logic(s), or DEL for short. The first and the simplest form of
dynamics is that associated with public announcements. It is simple from the perspective of
change, but not particularly simple seen as an extension of epistemic logic. Public announce-
ment logic is discussed in Section 5.1, and some related technical results of philosophical
interest are presented in Section 5.2. Next, we move on to various forms of private announce-
ments and to the associated dynamic logics, presented in Section 5.3. Even more complex
types of dynamics, induced by various types of epistemic actions, are treated in Section 5.4.
Finally, in Section 5.5 we briefly introduce logical languages and axioms for epistemic actions.

5.1 Public announcements

We first saw public announcements in Section 2.1. The example there was very simple indeed,
and so to illustrate the phenomenon further, it will be useful to have a more complicated
scenario. This discussion in this section is based on Example 2 in Section 4.4. Assume for the
moment that the card deal is described by ♣♥♠: Amina holds clubs, Bao hearts, and Chandra
spades. Amina now says (‘announces’) that she does not have the hearts card. Therefore she
makes public to all three players that all deals where Heartsa is true can be eliminated from
consideration: everybody knows that everybody else eliminates those deals, etc. They can
therefore be publicly eliminated. This results in a restriction of the model Hexa as depicted
in Figure ??.

At this point, we only consider announcements like this in states where the announce-
ment is true. We view the public announcement “I do not have hearts” as an ‘epistemic
program’. We interpret it as an state transformer just as flipping the box was so interpreted
in Section 4.2. This program is interpreted as an ‘epistemic state transformer’ of the original
epistemic state, exactly as we saw in Section 4.9 for PDL. We want [!ϕ]ψ to mean that after
(every) truthful announcement of ϕ, the sentence ψ holds. Continuing to borrow terminology
from dynamic logic, state transformers come with preconditions. In this case, we want the
precondition to be ¬Heartsa, so that we set aside the matter of false announcements.

The effect of such a public announcement of ϕ is the restriction of the epistemic state to all
worlds where ϕ holds. So, ‘announce ϕ’ can indeed be seen as an epistemic state transformer,
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with a corresponding dynamic modal operator [!ϕ].
We appear to be moving away slightly from the standard paradigm of modal logic. So

far, the accessibility relations were between states in a given model underlying an epistemic
state. But all of a sudden, we are confronted with an accessibility relation between epistemic
states as well. “I do not have hearts” induces a(n) (epistemic) state transition such that the
pair of epistemic states in Figure ?? is in that relation. The epistemic states take the role of
the points or worlds in a seemingly underspecified domain of ‘all possible epistemic states’.
By lifting accessibility between points in the original epistemic state to accessibility between
epistemic states, we can get the dynamic and epistemic accessibility relations ‘on the same
level’ again, and see this as an ‘ordinary structure’ on which to interpret a perfectly ordinary
multimodal logic. (There is also a clear relation here with interpreted systems, which will
be discussed in Subsection 6.3, later.) A crucial point is that this ‘higher-order structure’ is
induced by the initial epistemic state and the actions that can be executed there, and not the
other way round. So it is standard modal logic after all.

Amina’s announcement “I do not have hearts” is a simple epistemic action in various
respects. It is public. A ‘private’ event would be when she learns that Bao has hearts without
Bao or Chandra noticing anything. This required a more complex action description. It is
truthful. She could also have said “I do not have clubs.” She would then be lying, but, e.g.,
may have reason to expect that Bao and Chandra believe her. This would also require a more
complex action description. It is deterministic. In other words, it is a state transformer. A
non-deterministic action would be that Amina whispers into Bao’s ear a card she does not
hold, on Bao’s request for that information. This action would have two different executions:
“I do not have hearts”, and “I do not have spades.” Such more complex actions can be
modeled in the action model logic presented in Section 5.4.

Language and semantics Add an inductive clause [!ϕ]ψ to the definition of the language.
For the semantics, add the clause:

M, s |= [!ϕ]ψ iff M, s′ |= ϕ implies M |ϕ, s |= ψ

where M |ϕ = 〈S′, R′, V ′〉 is defined as

S′ ≡ {s′ ∈ S | M, s′ |= ϕ}
R′a ≡ {(s′, t′) ∈ S′ × S′ : (s, t) ∈ Ra}
V ′p ≡ {s′ ∈ S′ : s ∈ Vp}

In other words: the model M |ϕ is the model M restricted to all the states where ϕ holds,
including access between states (a submodel restriction in the standard meaning of that
term). It might be useful to look back at Section 2.1 for a discussion of the parallel case of
probabilistic conditioning.

The language described above is called the language of public announcement, or public
announcement logic (PAL).

Example 8 After Amina’s announcement that she does not have hearts, Chandra knows
that Amina has clubs (see Figure ??). We can verify this with a semantic computation as
follows: In order to check that Hexa,♣♥♠ |= [!¬Heartsa]KcClubsa, we have to show that
Hexa,♣♥♠ |= ¬Heartsa implies Hexa|¬Heartsa,♣♥♠ |= KcClubsa. The antecedent of this
conditional being true, it remains to show that Hexa|¬Heartsa,♣♥♠ |= KcClubsa. The state
Hexa|¬Heartsa,♣♥♠ is shown in Figure ??. Clearly, at the world ♣♥♠ in it, KcClubsa.
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Example 9 We mentioned at the end of Section 4.9 that program terms in PDL with
variables may be used to specify the actions of epistemic actions. Here is how this works
for public announcement of a sentence ϕ. For each agent a, the program π(r) we want is
?ϕ; r; ?ϕ. As previously explained, this defines a relation transformer [[π(r)]] on the underlying
model. Then if Ra is agent a’s accessibility relation before the announcement, [[π(r)]](Ra) is
her accessibility relation afterwards. In more detail,

[[?ϕ; r; ?ϕ]](Ra) = {(w,w) : w ∈ [[ϕ]]}; {(u, v) : uRa, v}; {(w,w) : w ∈ [[ϕ]]}
= {(u, v) : u, v ∈ [[ϕ]] and uRa, v}

The dual operators 〈!ϕ〉 Most people prefer to consider the dual 〈!ϕ〉 of [!ϕ]. That is, we
take 〈!ϕ〉ψ to an abbreviation for ¬[! ϕ]¬ψ. This is equivalent to saying that M, s |= 〈!ϕ〉ψ if
and only if M, s |= ϕ and M |ϕ, s |= ψ.

The point is that statements of the form [!ϕ]ψ are conditionals and therefore are taken to
be true when their antecedents are false; the duals are conjunctions. To see the difference,
〈!¬Heartsa〉KcClubsa is false at (Hexa,♣♥♠).

Announcement and knowledge In general, [!ϕ]Kaψ is not equivalent to Ka[!ϕ]ψ. The
easiest way to see this in our running example is to note that

Hexa,♣♥♠ 6|= Kc[!Heartsa]Clubsa.

The correct equivalence in general requires that we make the truth of [!ϕ]Kaψ conditional on
the truth of the announcement. So we get the following:

[!ϕ]Kaψ is equivalent to ϕ→ Ka[!ϕ]ψ.

Announcement and common knowledge Incidentally, the principle describing the in-
teraction between common knowledge and announcement is rather involved. It turns out to
be an inference rule rather than an axiom scheme. (One may compare it to the Induction
Rule of PDL which we saw in Section 4.9; the rule here generalizes that one.) We therefore
turn next to the proof system for validity in this logic.

A logical system See Figure 6 for a a proof system for this logic, essentially taken from [12].
It has precursors (namely completeness results for the logic with announcements but without
common knowledge) in [77] and [38]; technically, this works out easier because the rules of the
logic allow one to rewrite all sentences in a way that eliminates announcements altogether, and
in this situation we may appeal to the known completeness result for epistemic logic. Thus
the main point in the axiomatic work of [12] was the formulation of the Announcement Rule
relating announcements and common knowledge, and the resulting completeness theorem.

Announcements are functional If an announcement can be executed, there is only one
way to do it. So the partial functionality axiom in Figure 6 is sound. It is also convenient to
write this as

〈!ϕ〉ψ → [!ϕ]ψ.

This is a simple consequence of the functionality of the state transition semantics for an-
nouncement. One might also say (from a programming perspective) that announcements are
deterministic.
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[!ϕ]p↔ (ϕ→ p) atomic permanence
[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ) partial functionality
[!ϕ]Kaψ ↔ (ϕ→ Ka[!ϕ]ψ) announcement-knowledge

From χ→ [!ϕ]ψ and χ ∧ ϕ→ Kaχ for all a ∈ B, infer χ→ [!ϕ]CBψ
(the Announcement Rule)

Figure 6: The main points of the logic of public announcements. We have omitted the usual
modal apparatus for modalities [!ϕ].

Sequence of announcements A sequence of two announcements can always be replaced
by a single, more complex announcement. Instead of first saying ‘ϕ’ and then saying ‘ψ’ you
may as well have said for the first time ‘ϕ, and after saying that ψ’. This is expressed in

[!〈!ϕ〉ψ]χ↔ [!ϕ][!ψ]χ.

This is useful when analyzing announcements that are made with specific intentions; or, more
generally, conversational implicatures à la Grice. Intentions can be postconditions ψ that
should hold after the announcement. So the (truthful) announcement of ϕ with the intention
of achieving ψ corresponds to the announcement 〈!ϕ〉ψ.

If a sentence is common knowledge to all agents, there is no point in announcing
it It will not change anyone’s knowledge state:

CAϕ→ (Kaψ ↔ [!ϕ]Kaψ).

Here A is our set of all agents.

What can be achieved by public announcements? An interesting question, related to
van Benthem’s [97] discussion of Fitch’s paradox presented in Section 3.6, is to characterize the
sentences that can come to be true through some (sequence of) public announcement(s), at a
given state (in a given model). One answer is offered by the “ability” modality ♦ϕ, informally
introduced in Section 3.6. Now we can formally define the semantics of ♦ϕ, by saying it is
true at a state iff there exists some epistemic sentence ψ such that 〈!ψ〉ϕ is true at that
state. So the “ability” modality can be obtained by quantifying over public announcements
(for all epistemic sentences). The above observation on the fact that a sequence of public
announcements can be simulated by a single announcement shows that we do not have to
iterate the defining clause of ♦ϕ: it already captures what can be achieved by any iteration.
It also means that this modality satisfies the axioms of the system S4. Balbiani et al [7] call
♦ϕ the “arbitrary announcement” modality, and give a complete axiomatization of the logic
of arbitrary announcements, as well as studying its expressivity.

Alternative semantics There are some alternative semantics for public announcements.
Gerbrandy [36, 37] and Kooi [49] propose a different semantics for announcements in a setting
possibly more suitable for ‘belief’. The execution of such announcements is not conditional
to the truth of the announced formula.
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vision
∧
a∈A

∧
b 6=a((db → Kadb) ∧ (¬db → Ka¬db))

at least one
∨
a∈A da

background CA(vision ∧ at least one)
nobody knows

∧
a∈A(¬Kada ∧ ¬Ka¬da)

somebody knows ¬nobody knows

Figure 7: Abbreviations in the discussion of the Muddy Children scenario, following [38].

Yet another semantics has recently been proposed by Steiner [89], to solve the problem of
inconsistent beliefs that may be induced by public announcements. The semantics presented
in this section has the disadvantage that updates induced by announcements do not necessar-
ily preserve the seriality property (axiom D above): agents who have wrong (but consistent)
beliefs may acquire inconsistent beliefs after a truthful public announcement. Steiner’s alter-
native semantics solves this by proposing a modified semantics in which the new information
is rejected if not consistent with prior beliefs. Yet another possible solution would be to
incorporate some mechanism for belief revision, along the lines we discuss in Section 7.

Relativized common knowledge Recent developments in the area use a different modal
notion, ‘relativized common knowledge’, of which standard common knowledge can be seen
as a special case [102, 49]. Here is the idea. Add to the syntax an operation CB(ϕ,ψ). The
semantics is

w |= CB(ϕ,ψ) iff every path from w using
⋃
a∈B →a

consisting entirely of worlds where ϕ holds
ends in a world where ψ holds

This results in more a expressive logic. At the same time, the relation between announcements
and relativized common knowledge turns into an axiom:

(EB(ϕ→ ψ)→ CB(ϕ,ψ → EB(ϕ→ ψ)))→ CB(ϕ,ψ).

van Benthem, van Eijck and Kooi [102] contains the completeness proofs for this logic and
others, and also various expressivity results.

Iteration The language of PDL has an iteration operator on actions, but this has not been
reflected in any of our example scenarios. However, there are scenarios and protocols whose
natural description uses action iteration. One example is the general form of the Muddy
Children-type scenario, as we described it in Section 3.1. We discuss this in connection with
the sentences in Figure 7. These are based on sentences in Gerbrandy and Groeneveld [38].
In them, da is an atomic sentence asserting that child a is dirty, and similarly for the other
children. Informally, the sentence vision says that every child a can see and therefore knows
the status of all other children. Note that vision is a (finite) sentence since the set A of agents
(the children here) is finite. background says that it is common knowledge that vision and
at least one hold. The intuition is that this is the background that the children have after
the adult’s announcement that at least one of them is dirty.

The sentence background is much weaker than what one would usually take to be
the formalization of the overall background assumptions in the Muddy Children scenario.
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However, it is enough for the following result:

ϕA ≡ background→ 〈nobody knows∗〉somebody knows. (18)

Note the ∗ in (18). The formal semantics would make this equivalent to the infinitary sentence

background→
∨
n

〈nobody knowsn〉somebody knows.

Either way, ϕA says that given the background assumption, some finite number of public an-
nouncements of everyone’s ignorance will eventually result in the opposite: someone knowing
their status.

Proposition 10 For each finite set A of children, |= ϕA.

For a proof, see Miller and Moss [67]. The point of Proposition 10 is that the statements
ϕA are natural logical validities. So it makes sense to ask for a logical system in which such
validities coincide with the provable sentences. The basic logic of announcements and common
knowledge is known to be decidable, and indeed we have seen the axiomatization in Figure 6.
However, it was shown in [67] that adding the iterated announcement construct that gives
us the 〈nobody knows∗〉 operation results in logical systems whose satisfiable sentences are
not decidable. The upshot is that (unfortunately) there is no hope of a finitely axiomatized
logical system for the validities in a language which includes sentences like (18).

Notes The logic of multi-agent epistemic logic with public announcements and without
common knowledge has been formulated and axiomatized by Plaza [77]. For the somewhat
more general case of introspective agents, this was done by Gerbrandy and Groeneveld [38];
they were not aware of Plaza’s work at the time. In [77], public announcement is seen as a
binary operation +, such that ϕ+ψ is equivalent to 〈!ϕ〉ψ. The logic of public announcements
with common knowledge was axiomatized by Baltag, Moss, and Solecki [12], see also [13, 8, 11],
in a more general setting that will be discussed in Section 5.4: the completeness of their proof
system is a special case of the completeness of their more general logic of action models.
A concise introduction into public announcement logic (and also some of the more complex
logics presented later) is found in [112]. A textbook presentation of the logic is [113]. This also
contains a more succinct completeness proof than found in the original references. Results on
complexity of the logic are presented by Lutz in [64].

There are a fair number of precursors of these results. One prior line of research is in
dynamic modal approaches to semantics, not necessarily also epistemic: ‘update semantics’.
Another prior line of research is in meta-level descriptions of epistemic change, not necessarily
on the object level as in dynamic modal approaches. This relates to the temporal epistemics
and interpreted systems approach for which we therefore refer to the summary discussion in
the previous section.

The ‘dynamic semantics’ or ‘update semantics’ was followed in van Emde Boas, Groe-
nendijk, and Stokhof [114], Landman [52], Groeneveld [41], and Veltman [116]. However,
there are important philosophical and technical differences between dynamic semantics and
dynamic epistemic logic as we present it here. The main one is that update semantics in-
terprets meaning (in natural language) as a relation between states, and so it departs from
standard accounts. Nevertheless, the “dynamic” feature is common to both. Work taking
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propositional dynamic logic (PDL) in the direction of natural language semantics and related
areas was initiated by van Benthem [93] and followed up in de Rijke [26] and Jaspars [47].
As background literature to various dynamic features introduced in the 1980s and 1990s we
recommend van Benthem [93, 95, 94]. More motivated by runs in interpreted systems is van
Linder, van der Hoek, and Meyer [115]. All these approaches use dynamic modal operators
for information change, but (1) typically not (except [115]) in a multi-modal language that
also has epistemic operators, (2) typically not for more than one agent, and (3) not necessarily
such that the effects of announcements or updates are defined given the update formula and
the current information state: the PDL-related and interpreted system related approaches
presuppose a transition relation between information states, such as for atomic actions in
PDL. We outline, somewhat arbitrarily, some features of these approaches. Groeneveld’s ap-
proach [41] is typical for dynamic semantics in that is has formulas [!ϕ]aψ to express that after
an update of agent a’s information with ϕ, ψ is true. His work was later merged with that of
Gerbrandy, resulting in the seminal [38]. Gerbrandy’s semantics of public announcements is
given in [36], in terms of the universe VAFA of non-wellfounded sets: this is a kind of “uni-
versal Kripke model”; i.e., a class in which every Kripke model can be embedded in a unique
manner (up to bisimilarity; see the end of Section 4.4). In this way, one can avoid changing
the initial model (by eliminating states and arrows) after a public announcement: instead, one
just moves to another state in the same huge, all-encompassing Kripke super-model VAFA. It
was later observed in [73] that one can do with ordinary models.

De Rijke [26] defines theory change operators [+ϕ] and [∗ϕ] with a dynamic interpretation
that link an enriched dynamic modal language to AGM-type theory revision [1] (see also Sec-
tion 7 addressing dynamic epistemics for belief revision). In functionality, it is not dissimilar
to Jaspars’ [47] ϕ-addition (i.e., expansion) operators [!ϕ]u and ϕ-retraction (i.e., contraction)
operators [!ϕ]d, called updates and downdates by Jaspars. Van Linder, van der Hoek, and
Meyer [115] use a setting that combines dynamic effects with knowledge and belief, but to
interpret various action operators they assume an explicit transition relation as part of the
Kripke structure interpreting such descriptions.

As somewhat parallel developments to [36], we also mention Lomuscio and Ryan [63].
They do not define dynamic modal operators in the language, but they define epistemic state
transformers that clearly correspond to the interpretation of such operators: M ∗ ϕ is the
result of refining epistemic model M with a formula ϕ, etc. Their semantics for updates is
only an approximation of public announcement logic, as the operation is only defined for finite
(approximations of) models.

5.2 Sentences true after being announced

Moore sentences, revisited Recall that Moore sentences are strongly unsuccessful: they
are always false after being announced. In terms of our public announcement logic, we can
define strongly unsuccessful formulas ϕ as the ones such that the formula [!ϕ]¬ϕ is valid.
An interesting open problem is to give a syntactic characterization of strongly unsuccessful
sentences.

Successful formulas A more interesting and natural question is to characterize syntacti-
cally the successful formulas: those ϕ such that [!ϕ]ϕ is valid. That is, whenever ϕ holds and
is announced, then ϕ holds after the announcement. In our setting, it is easy to see that a
successful formula has also the property that [!ϕ]CAϕ is valid.

43



For example, the atomic sentences p are successful, as are their boolean combinations
and also the sentences Kp. Logically inconsistent formulas are also trivially successful: they
can never be truthfully announced, so after their truthful announcement everything is true
(including themselves). Public knowledge formulas are also successful: [!CAϕ]CAϕ is valid.
This follows from bisimulation invariance under point-generated submodel constructions. On
the negative side, even when both ϕ and ψ are successful, ¬ϕ may be unsuccessful (for
ϕ = ¬p ∨Kp), ϕ ∧ ψ may be unsuccessful (for ϕ = p and ψ = ¬Kp), and as well [!ϕ]ψ and
ϕ→ ψ may be unsuccessful.

In its general form, the question of syntactically characterizing successful sentences re-
mains open. But we present now two results on this problem.

Preserved formulas One successful fragment form the preserved formulas (introduced for
the language without announcements by van Benthem in [96]) that are inductively defined as

ϕ ::= p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | Kaϕ | CBϕ | [!¬ϕ]ψ

(where B ⊆ A). From ϕ → [!ψ]ϕ for arbitrary ψ, follows ϕ → [!ϕ]ϕ which is equivalent
to [!ϕ]ϕ; therefore preserved formulas are successful formulas. The inductive case [!¬ϕ]ψ in
the ‘preserved formulas’ may possibly puzzle the reader. Its proof [108] is quite elementary
(and proceeds by induction on formula structure) and shows that the puzzling negation in
the announcement clause is directly related to the truth of the announcement as a condition:

Let M, s |= [!¬ϕ]ψ, and M ′ ⊆ M such that s ∈ M ′. Assume M ′, s |= ¬ϕ. Then
M, s |= ¬ϕ by contraposition of the inductive hypothesis for ϕ. From that and M, s |= [!¬ϕ]ψ
follows M |¬ϕ, s |= ψ. From the inductive hypothesis for ψ follows M ′|¬ϕ, s |= ψ. Therefore
M ′, s |= [!¬ϕ]ψ by definition.

Universal formulas A different guess would be that ϕ is successful iff ϕ is equivalent to a
sentence in the universal fragment of modal logic, the fragment built from atomic sentences
and their negations using K, ∧, and ∨. However, this is not to be. We discuss work on
single agent models whose accessibility relation is an equivalence relation in this discussion.
It remains open to weaken this assumption and obtain similar results.

Suppose that ϕ and ψ are non-modal sentences (that is, boolean combinations of atomic
sentences). Suppose that |= ψ → ϕ. Consider ϕ ∨ K̂ψ. (Again, K̂ is the dual of K, the
“possibility” operator.) This is clearly not in general equivalent to a sentence in our fragment.
Yet we claim that

|= [!(ϕ ∨ K̂ψ)](ϕ ∨ K̂ψ).

To see this, fix a state model M and some state s in it. If s ∈ [[ϕ]] in M , then since ϕ is
non-modal, s “survives the announcement” and satisfies ϕ ∨ K̂ψ in the new model. On the
other hand, suppose that s ∈ [[K̂ψ]] in M . Let s → t with t ∈ [[ψ]] in M . Then again, t
survives and satisfies ψ and even ϕ ∨ K̂ψ. Hence, s satisfies ϕ ∨ K̂ψ in the new model.

This example is due to Lei Qian. He also found a hypothesis under which the “first guess”
above indeed holds. Here is his result. Let T0 be the set of non-modal sentences. Let

T1 = T0 ∪ {Kϕ : ϕ ∈ T0} ∪ {K̂ϕ : ϕ ∈ T0}.

Finally, let T2 be the closure of T1 under ∧ and ∨.

Theorem 11 (Qian [78]) Let ϕ ∈ T2 have the property that |= [!ϕ]ϕ. Then there is some
ψ in the universal fragment of modal logic such that |= ϕ↔ ψ.
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5.3 Varieties of privacy

As a warm up before meeting the general notion of “epistemic actions” in the next section,
we present here two generalizations of public announcements: the first, called fully private
announcements, is essentially due (modulo minor differences7) to Gerbrandy [38, 36], while
the second, which we call fair-game announcements, is due to van Ditmarsch [105, 106]. Both
can be regarded as forms of private announcements: some information is broadcast to an
agent, or a group of agents, while being withheld from the outsiders. But there are important
differences: a fully private announcement is so secret that the outsiders do not even suspect
it is happening; while a fair-game announcement is known by outsiders to be possible, among
other possible announcements.

Fully Private Announcements to Subgroups For each subgroup B of agents, !Bϕ is
the action of secretely broadcasting ϕ to all the agents in the group B, in a way that is
completely oblivious to all outsiders a 6∈ B: they do not even suspect the announcement is
taking place. An example of fully private announcement was encountered in Section 2.3: Bao
is informed that the coin lies Heads up, but in such a way that Amina does not suspect that
this is happening. The announcement is truthful (as in the previous section) but completely
private: after that, Amina still believes that Bao doesn’t know the state of the coin.

Assuming that before Bao entered, it was common knowledge that nobody knew that state
of the coin, the belief/knowledge model before the announcement is a multi-agent version of
the model �� ��Ha,b 44

oo a,b //
�� ��T a,bjj (19)

The situation after the fully private announcement (by which Bao is secretely informed that
the coin lies Heads up) is given by the model (6) from Section 2.3. To recall, this was:�� ��H bjj

a

����
��

��
�

a

��?
??

??
??

�� ��Ha,b 44
oo

a,b
//
�� ��T a,bjj

(20)

We can see that unlike the case of public announcements, the number of states increases after
a fully private announcement. In fact, one can think of the model in the above picture as
being obtained by putting together the initial model (19) and the model obtained from it
by doing a public announcement, with the outsider (Amina) having doxastic arrows between
the two submodels. In other words, the state transformer for a fully private announcement
combines features of the original model with the one given by the state transformer for a
public announcement.

Language and semantics Add an inductive clause [!Bϕ]ψ to the definition of the language.
For the semantics, add the clause:

M, s |= [!Bϕ]ψ iff M, s |= ϕ implies M !Bϕ, s′ |= ψ

7As for public announcements, Gerbrandy’s private announcements are not necessarily truthful. We present
here a slightly modified version, that assumes truthfulness, in order to be able to subsume public announcements
(as presented in Section 5.1) as a special case.
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where M !Bϕ = 〈S′ ∪ S,R′, V ′〉 is defined as

S′ ≡ {s′ ∈ S | M, s′ |= ϕ}
R′a ≡ Ra ∪ {(s′, t′) ∈ S′ × S′ : (s, t) ∈ Ra}
V ′p ≡ V (p) ∪ {s′ ∈ S′ : s ∈ V (p)}

The language described above is called the logic of fully private announcements to sub-
groups. The axioms and rules are just as in the logic of public announcements, with a few
changes. We must of course consider the relativized operators [!Bϕ] instead of their simpler
counterparts [!ϕ]. The most substantive change which we need to make in Figure 6 concerns
the Action-Knowledge Axiom. It splits into two axioms, noted below:

[!Bϕ]Kaψ ↔ (ϕ→ Ka[!Bϕ]ψ) for a ∈ B
[!Bϕ]Kaψ ↔ (ϕ→ Kaψ) for a /∈ B

The last equivalence says: assuming that ϕ is true, then after a private announcement of ϕ
to the members of B, an outsider knows ψ just in case she knew ψ before the announcement.

Fair-game Announcements In a fair-game announcement, some information is privately
learned by an agent or a group of agents, but the outsiders are aware of this possibility: it is
publicly known that the announcement is one of a given list of possible alternatives, although
only the insiders will known which one.

We illustrate fair-game announcements with two examples. Let us reconsider the epistemic
state (Hexa,♣♥♠) wherein Amina holds clubs, Bao holds hearts, and Chandra holds spades.
It is shown in Figure ??. Consider the following scenario:

Amina shows (only) Bao her clubs card. Chandra cannot see the face of the shown
card, but notices that a card is being shown.

It is assumed that it is publicly known what the players can and cannot see or hear. Call
the action we are discussing showclubs. The epistemic state transition induced by this action is
depicted in Figure ??. Unlike after public announcements, in the showclubs action we cannot
eliminate any state. Instead, all b-links between states have now been severed: whatever was
the actual deal of cards, Bao now knows that card deal and cannot imagine any alternatives.
We hope to demonstrate the intuitive acceptability of the resulting epistemic state. After the
action showclubs, Amina considers it possible that Chandra considers it possible that Amina
has clubs. That much is obvious, as Amina has clubs anyway. But Amina also considers it
possible that Chandra considers it possible that Amina has hearts, because Amina considers
it possible that Chandra has spades, and so does not know whether Amina has shown clubs
or hearts. It is even the case that Amina considers it possible that Chandra considers it
possible that Amina has spades, because Amina considers it possible that Chandra does not
have spades but hearts, in which case Chandra would not have known whether Amina has
shown clubs or spades. And in all those cases where Amina shows her card, Bao obviously
would have learned the deal of cards. Note that, even though for Chandra there are only two
possible actions—showing clubs or showing hearts—none of the three possible actions can be
eliminated from public consideration.

But it can become even more complex. Imagine the following action, rather similar to the
showclubs action:
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Amina whispers into Bao’s ear that she does not have the spades card, given a
(public) request from Bao to whisper into his ear one of the cards that she does
not have.

This is the action whispernospades. Given that Amina has clubs, she could have whispered “no
hearts” or “no spades”. And whatever the actual card deal was, she could always have chosen
between two such options. We obtain a model that reflects all possible choices, and therefore
consists of 6 × 2 = 12 different states. It is depicted in Figure ?? (wherein we assume
transitivity of the accessibility relation for c). There is a method of calculating complex
representations like this one, and we shall discuss this particular model in Example 13 in
the next section. But for now, the reader may look at the model itself to ascertain that
the desirable postconditions of the action whispernospades indeed hold. For example, given
that Bao holds hearts, Bao will now have learned from Amina what Amina’s card is, and
thus the entire deal of cards. So there should be no alternatives for Bao in the actual state
(the underlined state ♣♥♠ ‘at the back’ of the figure—for convenience, different states for
the same card deal have been given the same name). But Chandra does not know that Bao
knows the card deal, as Chandra considers it possible that Amina actually whispered “no
hearts” instead. That would have been something that Bao already knew, as he holds hearts
himself—so from that action he would not have learned very much. Except that Chandra
could then have imagined him to know the card deal . . . Note that in Figure ??, there is also
another state named ♣♥♠, ‘in the middle’, so to speak, that is accessible for Chandra from
the state ♣♥♠ ‘at the back’, and that witnesses that Bao doesn’t know that Amina has clubs.

Notes The logic of fully private announcements has been first formulated and axiomatized
by Gerbrandy [38, 36], in a slightly different version: as for public announcements, Ger-
brandy’s private announcements are not necessarily truthful. Also, Gerbrandy’s semantics
of fully private announcements, as the one of public announcements, is given in terms of
non-wellfounded sets, rather than Kripke models. The version presented here (which assumes
truthfulness and uses Kripke semantics) was formulated in Baltag and Moss [11], as a special
case of a “logic of epistemic programs”. Gerbrandy [36] considers more general actions: fully
private announcements are only a special case of his operation of (private) updating with an
epistemic program.

The logic of fair-game announcements is a special case of the work by van Ditmarsch
[105, 106] and by Baltag, Moss, and Solecki [12, 11]; the latter call it “the logic of common
knowledge of alternatives”.

5.4 Epistemic actions and the product update

As we saw in the previous section, some epistemic actions are more complex than public
announcements, where the effect of the action is always a restriction on the epistemic model.
As in the previous examples, the model may grow in complex and surprising ways, depending
on the specific epistemic features of the action. Instead of computing by hand the appropriate
state transformer for each action, it would be useful to have a general setting, in which one
could input the specific features of any desired action and compute the corresponding state
transformer in an automatic way.
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Action models We present a formal way to model such actions, and a large class of similar
events, via the use of ‘action models’, originating in [12]. The basic idea is that the agents’
uncertainty about actions can profitably be modeled by putting them in relation to other
possible actions, in a way similar to how the agents’ uncertainty about states was captured in
a Kripke model by relating them to other possible states. When Amina shows her clubs card
to Bao, this is indistinguishable for Chandra from Amina showing her hearts card to Bao—if
she were to have that card. And, as Amina considers it possible that Chandra holds hearts
instead of spades, Amina also considers it possible that Chandra interprets her card showing
action as yet a third option, namely showing spades. These three different card showing
actions are therefore, from a public perspective, all indistinguishable for Chandra, but, again
from a public perspective, all different for Amina and Bao.

We can therefore visualize the ‘epistemic action’ of Amina showing clubs to Bao as some
kind of Kripke structure, namely with a domain of three ‘action points’ standing for ‘showing
clubs’, ‘showing hearts’, and ‘showing spades’, and accessibility relations for the three players
corresponding to the observations above. We now have what is called an action model. What
else do we need? To relate such ‘action models’ to the preconditions for their execution, we
associate to each action point in such a model a formula in a logical language: the precondition
of that action point.

To execute an epistemic action, we compute what is known as the restricted modal product
of the current epistemic state and the epistemic action. The result is ‘the next epistemic state’.
It is a product because the domain of the next epistemic state is a subset of the cartesian
product of the domain of the current epistemic state and the domain of the action model. It
is restricted because we restrict that full product to those (state, action) pairs such that the
precondition for the action of the pair is satisfied in the state of the pair. Two states in the
new epistemic state are indistinguishable (accessible), if and only if the states in the previous
epistemic state from which they evolved were already indistinguishable (accessible), and if
the two different actions executed there were also indistinguishable. For example, Chandra
cannot distinguish the result of Amina showing clubs in state ♣♥♠ from Amina showing hearts
in state ♥♣♠, because in the first place she could not distinguish those two card deals, and
in the second place she cannot distinguish Amina showing clubs from Amina showing hearts.

Remark This is perhaps a good point to make a comment on the terminology. What we are
calling “action models” involve “actions” in an abstract sense, and so some of the important
features of real actions are missing. For example, there is no notion of agency here: events
like public announcement are modeled without reference to any agent(s) whatsoever as their
source. Further, they may well be complex (many-step) actions, and for this reason they are
also called programs in work such as [11]. So other authors have called our “action models”
event models. We maintain the older terminology mainly because this is how it has appeared
in the literature.

We now formally define action models and their execution, for any given logical language.
We leave for later the problem of finding a good such language for describing epistemic actions
and their effects. As usual, we assume background parameters in the form of a set of agents
A and a set of propositional variables P .

Definition [Action model] Let L be a logical language. An action model over L is a structure
U = 〈S,R, pre〉 such that S is a domain of action points, such that for each a ∈ A, Ra is an
accessibility relation on S, and such that pre : S→ L is a precondition function that assigns a
precondition pre(σ) ∈ L to each σ ∈ S. An epistemic action is a pointed action model (U, σ),
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with σ ∈ S.

Example 12 The public announcement of ϕ is modeled by a singleton action model, consist-
ing of only one action point, accessible to all agents, and having ϕ as its precondition. We call
this action model Pub ϕ, and denote by !ϕ the (action corresponding to the) unique point of
this model. A more concrete example is the action !¬Heartsa in Section 5.1 in which Amina
publicly announces that she does not have the hearts card: the action model is Pub¬Heartsa.

A fully private announcement of ϕ to a subgroup B is modeled by a two-point action
model, one point having precondition ϕ (corresponding to the private announcement) and
the other point having precondition > := p ∨ ¬p (corresponding to the case in which no
announcement is made): �� ��ϕb∈B 44

c 6∈B //
�� ��> a∈Akk

We call this action model PriBϕ. Again, the action point on the left represents the fully
private announcement of ϕ. This action will be denoted by !Bϕ. The action point on the
right has as precondition some tautology >, and represents the alternative action in which no
announcement is made: essentially nothing is happening. This action will be denoted by τ .

A more concrete example of a fully private announcement model is the action considered
in Section 2.3, in which Bao was secretely informed that the coin lay heads up, without Amina
suspecting this to be happening. This corresponds to the right-hand point in the action model
Prib H: �� ��Hb 44

a //
�� ��> a,bkk

Fair-game announcements with n commonly-known alternatives can be modeled using an
action model with n points, having the corresponding announcements as preconditions. For
the “insiders”, the accessibility relation is the identity relation, while the accessibility for the
“outsiders” is the universal relation (linking every two points).

As a concrete example of fair-game announcement, the action model U for the showclubs
action in the previous section has three action points σ, ρ, and µ, with preconditions pre(σ) =
Spadesa, pre(ρ) = Heartsa, and pre(µ) = Clubsa. The epistemic structure of this model is:

�� ��σ
a,b,c

��

??
c

����
��

��
��

__
c

��@
@@

@@
@@

�� ��ρa,b,c 55
oo

c
//
�� ��µ a,b,cjj

(21)

The pointed action model of interest is (U, µ). In it, the action µ which really happened
is one where Amina and Bao come to share the knowledge that she has clubs: no other
options are available to the two of them. Chandra, on the other hand, is in the dark about
which of three announcements is taking place, but she does know the three possible messages:
Clubsa,Spadesa,Heartsa.

Similarly, the action model U′ for the action whispernospades in the previous section has
the same structure as the model U above, except that we take: pre(σ) = ¬Clubsa, pre(ρ) =
¬Heartsa, pre(µ) = ¬Spadesa. The pointed action model of interest is (U′, µ).
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Definition [Execution, Product Update] Given an epistemic state (M, s) with M = 〈S,R, V 〉
and an epistemic action (U, σ) with U = 〈S,R, pre〉. The result of executing (U, σ) in (M, s)
is only defined when M, s |= pre(σ). In this case, it is the epistemic state ((M ⊗ U), (s, σ))
where (M ⊗ U) = 〈S′, R′, V ′〉 is a restricted modal product of M and U defined by

S′ ≡ {(s, σ) | s ∈ S, σ ∈ S, and M, s |= pre(σ)}
R′a((s, σ), (t, ρ)) iff Ra(s, t) and Ra(σ, ρ)
(s, σ) ∈ V ′p iff s ∈ Vp

This restricted product construction has become known in the DEL literature as “Product
Update”. Here, we simply call it action execution. The intuition is that indistinguishable
actions performed on indistinguishable input-states yield indistinguishable output-states: if
when the real state is s, agent a thinks it is possible that the state might be s′, and if when
action σ is happening, agent a thinks it is possible that action σ′ might be happening, then
after this, when the real state is (s, σ), agent a thinks it is possible that the state might be
(s′, σ′).

Example 13 At this point we can go back and justify all our previous state transformers in
a uniform manner. The model in Figure ?? can be obtained by calculating Hexa ⊗!¬Heartsa,
where Hexa is the model shown in Figure ??, and the action model Pub¬Heartsa was described
above. The model (6) from Section 2.3 can be computed by calculating the restricted modal
product of the model (19) from Section 5.3 and the action model PubbH above. The pointed
model shown in Figure ?? is obtained by calculating

(Hexa⊗ U, (♣♥♠, µ)),

where U is from (21) above.
Finally, we justify the pointed model in in Figure ??, by calculating

(Hexa⊗ U′, (♣♥♠, µ)),

where the action model U′ is as above. Let us look at this last calculation in more detail: the
restricted product itself contains the twelve pairs

(♣♥♠, ρ), (♣♥♠, µ), (♣♠♥, ρ), (♣♠♥, µ), (♥♣♠, σ), (♥♣♠, µ),
(♥♠♣, σ), (♥♠♣, µ), (♠♣♥, σ), (♠♣♥, ρ), (♠♥♣, σ), (♠♥♣, ρ)

The valuation only looks at the first components. For example (♥♠♣, σ) |= Heartsa∧Spadesb∧
Clubsc. The epistemic relations are determined in the usual way of products. For example,
R′c((♠♥♣, ρ), (♥♠♣, σ)) because Chandra cannot tell the difference between ♠♥♣ and ♥♠♣ in
Hexa, and she also cannot tell the difference between ρ and σ in U.

5.5 Logics for epistemic actions

There is only one more step to make: to give a logical language with an inductive construct
for action models. The task of finding a natural general syntax for epistemic actions is
not an easy problem. A number of different such languages have been proposed, see e.g.,
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[36, 8, 11, 102, 105, 106, 111]. We follow [11], presenting here only one type of syntax, based
on the notion of signature.

Definition [Signature] An action signature is a finite Kripke frame Σ, together with a list
(σ1, . . . , σn) enumerating some of the elements of Σ without repetitions. The elements of Σ
are called action types.

Example 14 The public announcement signature Pub is a singleton frame, consisting of an
action type !, accessible to all agents, and the list (!).

The signature PriB of fully private announcements to a subgroup B is a two-point Kripke
frame, consisting of an action type !B (corresponding to fully private announcements) and
an action type τ (for the case in which no announcement is made). The list is (!B), and the
structure is given by: �� ��!Ba∈A 11

b∈B // �� ��τ a∈Aii

The signature of fair-game announcements (to a given group of insiders, and with common
knowledge of a given finite set of alternatives) can be similarly formalized. For instance,
the signature Showa,b for the logic of the actions showclubs and whispernospades (with a, b as
insiders and c as outsider) is a frame with three action types listed as (σ, ρ, µ). The structure
is:

�� ��σ
a,b,c

��

??
c

����
��

��
��

__
c

��@
@@

@@
@@

�� ��ρa,b,c 55
oo

c
//
�� ��µ a,b,cjj

(22)

Definition [Language] For a given action signature Σ with a list (σ1, . . . , σn), the language
LΣ of the logic of Σ-actions is the union of the formulas ϕ and the epistemic actions8 α
defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ | CBϕ | [α]ϕ
α ::= σϕ1 . . . ϕn | α ∪ β

where p ∈ P , a ∈ A, B ⊆ A, σ ∈ Σ, and σϕ1 . . . ϕn above is an expression consisting of a
basic action σ followed by a string of n formulas, where n is taken from the listing in Σ.

The expressions of the form σ~ϕ are called basic epistemic actions. In addition, we have
included in the language LΣ an operation of non-deterministic choice on the actions, mainly
to show the reader familiar with dynamic logic, process algebra, and the like that it is possible
to add such operations. One can also add sequential composition, iteration (Kleene star ∗),
etc.

Definition [Action model induced by a signature] Given an action signature Σ with its list
(σ1, . . . , σn) of action types, and given a list ~ϕ = (ϕ1, . . . , ϕn) of n formulas in LΣ, the action
model Σ~ϕ is obtained by endowing the Kripke frame Σ with the following precondition map:

8We are using the letter α here for both action points and also for syntactic expressions denoting them.
This ambiguity should not cause problems, but we wish to alert the careful reader of it.
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if σ = σi is in the given list ~σ, we take pre(σi) := ϕi; while, if σ is not in the given list
(σ1, . . . , σn), pre(σ) is taken to be some tautology p∨¬p. When seen as an action point in the
action model Σ~ϕ, the point σ ∈ Σ is denoted by σ~ϕ. Since the frame is the same as Σ, having
the relation σ~ϕ→a σ′~ϕ in the action model Σ~ϕ is the same as having the relation σ→a σ′ in
the frame Σ.

Example 15 The action model Pub ϕ from the previous section is induced by the signa-
ture Pri above, in the obvious way. The action model PriBϕ from the previous section
is induced by the signature Pri above. The action model U for the showclubs action in
the previous section is induced by the signature Showa,b, since it coincides with the model
Showa,bSpadesaClubsaHeartsa. (This is an action signature followed by three propositions.)
The model U′ for the whispernospades action is induced by the same signature, since it can
be written as Showa,b¬Clubsa¬Heartsa¬Spadesa.

Definition [Semantics]

M, s |= [σ~ϕ]ψ iff M, s |= pre(σ~ϕ) implies (M ⊗ Σ~ϕ), (s, σ~ϕ) |= ψ
M, s |= [α ∪ β]ϕ iff M, s |= [α]ϕ and M, s |= [β]ϕ

Note that the preconditions in an action model are arbitrary sentences in the language, since
we want to talk about announcements concerning announcements and similar things. In fact,
to avoid vicious circles, the definition of the semantics of LΣ and the definition of action
execution (as in the previous section) for action model over LΣ should be taken to form
one single definition (by simultaneous double induction) of both concepts. As usual, 〈α〉ϕ is
defined by duality as ¬[α]¬ϕ.

It is easy to see that the logic of public announcements (PAL) from Section 5.1, the logic
of fully private announcements and the logic of fair-game announcements are examples of
signature-based logics. The only syntactic difference is the presence of modalities [τϕ]ψ in
the signature-based language for the signature Pri; but it is easy to see that [τϕ]ψ is logically
equivalent to ψ, and so this language reduces to the logic of fully private announcements.

The logical system for this language is a generalization of what we have seen for the public
announcement logic earlier. A statement of it may be found in Baltag and Moss [11], and the
completeness in the final version of Baltag, Moss, and Solecki [12]. For each of the operators
of basic epistemic logic, one has a Reduction Axiom which allows one to push the dynamic
(action) modalities past that operators, given a certain context. But the main difficulty
comes in the combination of the action modality with common knowledge statements. An
alternative system which uses the relativized common knowledge operators may be found in
van Benthem, van Eijck and Kooi [102]. Since we are not going to need any of these systems
or any of their interesting fragments, we leave matters at that. The only exception is the
generalization of the Announcement-Knowledge Axiom, which we deem worth explaining in
some detail.

The Action-Knowledge Axiom The Reduction Axiom for the K operator will be a gen-
eralization of of the Announcement-Knowledge Axiom, which we call the Action-Knowledge
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Axiom: for every basic action α, we have

[α]Kaϕ↔

pre(α)→
∧

α→a α′

Ka[α′]ϕ

 .

To state it in a more transparent form, we need the notion of appearance of an action to an
agent: for each basic action α of our language and for each agent a, the appearance of α to a
is the action

αa :=
⋃

α→a α′

α′,

where
⋃

is the non-deterministic choice of a (finite) set of actions. The action αa describes
the way action α appears to agent a: when α is happening, agent a thinks that (one of
the deterministic actions subsumed by) αa is happening. With this notation, the Action-
Knowledge Axiom says that, for every basic action α, we have:

[α]Kaϕ↔ (pre(α)→ Ka[αa]ϕ).

In other words: knowledge commutes with action modalities, modulo the satisfaction of the
action’s precondition and modulo the replacement of the real action with its appearance. One
can regard this as a fundamental law governing the dynamics of knowledge, a law that may
be used to compute or predict future knowledge states from past ones, given the actions that
appear to happen in the meantime. The law embodies one of the important insights that
dynamic-epistemic logic brings to the philosophical understanding of information change.

Notes The action model framework has been developed by Baltag, Solecki, and Moss, and
has appeared in various forms [12, 13, 8, 11]. The signature-based languages are introduced
in Baltag and Moss [11]. A final publication on the completeness and expressivity results is
still in preparation. A different but also rather expressive way to model epistemic actions was
suggested by Gerbrandy in [36]; this generalizes the results by Gerbrandy and Groeneveld
in [38]. Gerbrandy’s action language can be seen as defined by relational composition, in-
terpreted on non-wellfounded set theoretical structures corresponding to bisimilarity classes
of pointed Kripke models. Van Ditmarsch explored another relational action language—but
based on standard Kripke semantics—[105, 106] and was influenced by both Gerbrandy and
Baltag et al. His semantics is restricted to S5 model transformations. Van Ditmarsch et al.
later proposed concurrent epistemic actions in [111]. How the expressivity of these different
action logics compares is unclear. Recent developments include a proposal by Economou in
[29]. Algebraic axiomatizations of a logic of epistemic actions may be found in [9] and [10],
while a coalgebraic approach is in [24]. A logic that extends the logic of epistemic actions by
allowing for factual change and by closing epistemic modalities under regular operations is
axiomatized in [102]. A probabilistic version of the action model framework is presented by
van Benthem, Gerbrandy and Kooi in [99]. For a more extensive and up-to-date presentation
of dynamic epistemic logic (apart from the present contribution), see the textbook ‘Dynamic
Epistemic Logic’ by van Ditmarsch, van der Hoek, and Kooi [113].

6 Temporal Reasoning and Dynamic Epistemic Logic

It is very natural in a conversation about knowledge to refer to the past knowledge of oneself or
others: I didn’t know that, but now I do. We have already mentioned briefly the “Mr. Sum and
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Mr. Product” puzzle, illustrating that agents’ comments on the past ignorance and knowledge
of others can lead to further knowledge. In addition, all treatments of the Hangman paradox
mentioned in Section 3.7 must also revolve around the issue of temporal reasoning concerning
the future.

We begin with a scenario in which agent’s knowledge and ignorance reverses itself more
than once. We present an example, due to Sack [80], because the natural summation of it
involves statements about past knowledge.

Our three players Amina, Bao, and Chandra are joined by a fourth, Diego. They have
a deck with two indistinguishable ♠ cards, one ♦ and one ♣. The cards are dealt, and in
the obvious notation, the deal is (♠,♠,♦,♣). We assume that the following are common
knowledge: the distribution of cards in the deck, the fact that each player knows which card
was dealt to them, and that they do not initially know any other player’s card. Then the
following conversation takes place:

i. Amina: “I do not have ♦.”

ii. Diego: “I do not have ♠.”

iii. Chandra: “Before (i), I knew ϕ: Bao doesn’t know Amina’s card. After (i), I did not
know ϕ. And then after (ii), I again knew ϕ.”

All three statements are intuitively correct. After Amina’s statement, Chandra considers it
possible that the world is w = (♠,♣,♦,♠). In w after the announcement, Bao does know
that Amina holds ♠, so ϕ is false. But Amina no longer reckons this world w to be possible
after Diego’s announcement. Indeed, she only considers possible v = (♠,♠,♦,♣). And in
v after both announcements, Bao thinks that (♣,♠,♠,♦) is possible. Hence ϕ holds, and
Chandra knows that it does.

Our first order of business is to extend the kind of modeling we have been doing to be
able to say the sentence in (iii), and also to prove it in a logical system.

6.1 Adding a ‘yesterday’ operator to the logic of public announcements

To get started, we present here the simplest temporal extension of the simplest dynamic
epistemic logic, the logic of public announcements from Section 5.1. We think of a multi-
agent epistemic model M0 subject to a sequence of public announcements of sentence ϕ1, ϕ2,
. . ., ϕn. These determine models Mi: M0 is given, and for i < n, Mi+1 is given by taking
submodels via Mi+1 = Mi|ϕi+1. We add a single operation Y to the language, with the
intended semantics that Y ϕ means that ϕ was true before the last announcement. Formally,
we would set

Mi, w |= Y ϕ iff Mi−1, w |= ϕ (23)

There are two problems here, one minor and one more significant. The slight problem: what
to do about sentence Y ϕ in the original model M0? The choice is not critical, and to keep
our operators �-like, we’ll say that all sentences Y ϕ are automatically true in M0, w.

The larger problem has to do with the semantics of public announcement sentences [!ψ]χ.
We know how to deal with announcement of one of the ϕ sentences with which we started, since
these figure into the definition of the models Mi. But for announcement of other sentences,
those models are of no help. One solution is to think in terms of histories

H = (M0, ϕ1,M1, ϕ2, . . . ,Mn−1, ϕn,Mn) (24)
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Again, we require that the models and sentences be related by Mi+1 = Mi|ϕi+1. We recast
(23) as a relation involving a history H as in (24) and a world w ∈Mn:

H,w |= Y ϕ iff i = 0, or w ∈Mn−1 implies (M0, ϕ1, . . . ,Mn−1), w |= ϕ
H,w |= [!ψ]χ iff H,w |= ψ implies (M0, ϕ1, . . . ,Mn, ψ,Mn|ψ), w |= χ

So the effect of public announcements is to extend histories.
We turn to the logical principles that are reflected in the semantics. The decision to have

Y be �-like means that the distribution axiom and the rule of necessitation formulated with
Y are going to be sound for the logic. Here are the additional logical principles that are sound
for this semantics (true in all worlds in all models in all histories):

(p→ Y p) ∧ (¬p→ Y ¬p) atomic permanence
¬Y⊥ → (Y ¬ϕ→ ¬Y ϕ) determinacy
(Y⊥ → KaY⊥) ∧ (¬Y⊥ → Ka¬Y⊥) initial time
(ϕ→ ψ)↔ [!ϕ]Y ψ action-yesterday
Y Kaϕ→ KaY ϕ memory

These are due to Yap [123] and Sack [80]. In these, pmust be atomic. And⊥ is a contradiction,
so Y⊥ is only true at the runs of length 1. Most of the axioms are similar to what we have
seen in other systems, except that one must be careful to consider those runs of length 1.
The initial time axiom implies that it is common knowledge whether the current history is of
length 1 or not The memory axiom is named for obvious reasons. Notice that the converse is
false.

Sack’s dissertation [80] also contains the completeness proof for this logic, with common
knowledge operators added. In fact, his work also includes operators for the complete past
(not just the one step ‘yesterday’), the future, and also arbitrary epistemic actions formulated
in the same language. This means that one can model private announcements concerning
the past knowledge of other agents, to name just one example. His language also contains
nominals to allow reference to particular states (we do not discuss these here) and also allows
agents to, in effect, know what epistemic action they think just took place.

Returning to the flip-flop of knowledge In the previous section we presented a scenario
that involved statements of previous knowledge and ignorance. Here is how this is formalized.
Let ϕ be ¬(KbSpadesa∨KbDiamondsa∨KbClubsa). Then a formalized statement of the entire
conversation would be

〈!¬Diamondsa〉〈!¬Spadesd〉(Y Y Kaϕ ∧ Y ¬Kaϕ ∧Kaϕ).

All of the background information about the scenario and the initial deal can be written as
a sentence ψ in the language, assuming that we have common knowledge operators. Then
the fact that we have a completeness result means that ψ ` ϕ in the proof system. The logic
is moreover decidable. As a result, it would be possible to have a computer program find a
formal proof for us.

6.2 The future

Adding temporal operators for the future is more challenging, both conceptually and techni-
cally. To see this, let us return to the modeling of private announcements which we developed
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in Example 12 in Section 5.4. The way we modeled things, private announcements to groups
seem to come from nowhere, or from outside the system as a whole. Let us enrich this notion
just a bit, to see a simple setting in which temporal reasoning might be profitably modeled.

Consider a setting where each individual agent a might send a message m to some set B
of agents, with the following extra assumptions: (0) m is a sentence in whatever language
we are describing; (1) the names of the recipient agents B are written into m; (2) sending
m take arbitrarily long, but eventually each agent in B will receive m; (3) all agents in B
receive m at the same time; (4) the sending and receipt of messages is completely private; (5)
at each moment, at most one message is sent or received; (6) messages are delivered in the
order sent. We make these assumptions only to clarify our discussion, not because they are
the most realistic or useful.

One might like to have temporal operators in the language so that agents can “say”
sentences like at some future point, all agents in B will receive the message I just sent,
resulting in the common knowledge for this group of ϕ, or I sent m1 and then m2 to b, and
the message I received just now from b shows me that it was sent between the time b received
m1 and the time he received m2.

At the time of this writing, there are no formalized systems which include knowledge
and temporal operators, epistemic actions as we have been presenting them in this chapter,
and also have temporally extended events such as the asynchronous message passing we have
just mentioned. There is a separate tradition from the computer science literature which
incorporates temporally extended events, knowledge, and temporal assertions along different
lines than this chapter. We are going to present the ideas behind one of those approaches,
that of interpreted systems.

Before that, we want to mention a different approach, the history-based semantics of
messages due to Parikh and Ramanujam [76]. This work has a different flavor than interpreted
systems. (But the two are equivalent in the sense the semantic objects in them may be
translated back and forth preserving truth in the most natural formal language used to talk
about them. See Pacuit [75] for this comparison.) The only reason we present the interpreted
systems work instead is that it has a larger literature.

6.3 Interpreted systems and temporal epistemic logic

A general framework involving information change as a feature of interpreted systems was
developed by Halpern and collaborators in the 1990s [30]. There are a few basic notions.

We start with a collection of agents or processors, each of which has a local state (such
as ‘holding clubs’ for agent Amina), a global state is a list of all the local states of the
agents involved in the system, plus a state of the environment. The last represents actions,
observations, and communications, possibly outside the sphere of influence of the agents.
An example global state is (♣♥♠, ∅) wherein Amina has local state ♣, i.e., she holds clubs,
Bao local state ♥, and Chandra local state ♠, and where ‘nothing happened so far in the
environment,’ represented by a value ∅. It is assumed that agents know their local state but
cannot distinguish global states from one another when those states have the same local state.
This induces an equivalence relation among global states that the reader will will play the
role of an accessibility relation. Another crucial concept in interpreted systems is that of a
run: a run is a (typically infinite) sequence of global states. For example, when Amina says
that she does not have hearts, this corresponds to a transition from global state (♣♥♠, ∅) to
global state (♣♥♠, nohearts). Atomic propositions may also be introduced to describe facts.
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For example, not surprisingly, one may require an atom Heartsa to be true in both global
state (♣♥♠, ∅) and in global state (♣♥♠, nohearts).

Formally, a global state g ∈ G is a tuple consisting of local states ga for each agent and
a state gε of the environment. A run r ∈ R is a sequence of global states. The m-th global
state occurring in a run r is referred to as r(m), and the local state for agent a in a global
state r(m) is written as ra(m). An interpreted system I is a pair (G,R) consisting of a set of
global states G and a set of runs R relating those states.

A point (r,m) is a pair consisting of a run and a point in timem—this is the proper abstract
domain object when defining epistemic models for interpreted systems. In an interpreted
system, agents cannot distinguish global states from one another iff they have the same local
state in both, which induces the relation shown below:

(r,m)∼a (r′,m′) iff r(m)∼a r′(m′) iff ra(m) = r′a(m
′)

(For an indistinguishability relation that is an equivalence, we usually write ∼ instead of R.)
With the obvious valuation for local and environmental state values, that defines an epistemic
model. For convenience we keep writing I for that. Given a choice of a real (or actual) point
(r′,m′), we thus get an epistemic state (I, (r′,m′)). Epistemic and (LTL) temporal (next)
operators have the interpretation

I, (r,m) |= Xϕ iff I, (r,m+ 1) |= ϕ
I, (r,m) |= Kaϕ iff for all (r′,m′) : (r,m)∼a (r′,m′) implies I, (r′,m′) |= ϕ

It will be clear that subject to some proper translation (see e.g. [62]) interpreted systems
correspond to some subclass of the S5 models: all relations are equivalence relations, but the
interaction between agents is even more than that. The relation between Kripke models and
interpreted systems is not entirely trivial, partly because worlds or states in Kripke models
are abstract entities that may represent the same set of local states. The main difference
between the treatment of dynamics in interpreted systems and that in dynamic epistemics is
that in the former this is encoded in the state of the environment, whereas in the latter it
emerges from the relation of a state (i.e., an abstract state in a Kripke model) to other states.

Example For a simple example, consider the single agent the case of our three players
as usual. Suppose that Amina holds clubs, and the hearts card is on top of the spades
card (both facedown) on the table. She may now be informed about the card on top of the
stack. This is represented by the interpreted system depicted in Figure ??. It consists of
four global states. The card Amina holds represents her local state. The other cards are
(in this case, unlike in the three-agent card deal) part of the environment. The state of the
environment is represented by which of the two cards is on top, and by an ‘observation’ state
variable obs that can have three values u♥, y♥, and n♥, corresponding to the state before the
announcement which card is on top, the state resulting from the announcement that hearts
is on top, and the other state resulting from the announcement that it is at the bottom. The
valuation V is now such that V (Clubsa) = {(♣♥♠, u♥), (♣♠♥, u♥), (♣♥♠, y♥), (♣♠♥, n♥)}, and
V (Heartst) = {(♣♥♠, u♥), (♣♥♠, y♥)}. The system consists of two runs, one from (♣♥♠, u♥)
to (♣♥♠, y♥) (optionally extended with an infinite number of idle transitions), and the other
run from (♣♠♥, u♥) to (♣♠♥, n♥). One can now compute that in the actual state (♣♥♠, u♥)
it is true that ¬KaHeartst, but in state (♣♥♠, y♥) she has learned that hearts is on top:
Ka¬Heartst is now true. For another example: in the actual state XKaHeartst. How the
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treatment of announcements in interpreted systems relates to public announcement logic will
be made precise at the end of the following section.

Interpreted systems have been highly successful as an abstract architecture for multi-
agent systems, where agents are either human operators or computer processors, and where
the assumption that an agent ‘knows its own state’ is a realistic simplification. For that
reason they can be said to model interaction between ideal agents. This assumption is also
implicitly applied when modeling perfectly rational agents as in game theory and economics.
Also, given that all the dynamics is explicitly specified in the runs through the system, it
combines well with temporal epistemic logics (LTL, CTL) wherein dynamics is implicitly
specified by referring to an underlying structure wherein such a change makes information
sense. Temporal epistemic logics have been fairly successful. Their computational properties
are well-known and proof tools have been developed. See, for example, [104, 27, 42]. The
work of Fagin et al. [30] also generated lots of complexity results on knowledge and time, we
also mention the work of van der Meyden in this respect, e.g. [103, 104].

There are two rather pointed formal differences between the temporal epistemic approach
and the dynamic epistemic approach.

Closed versus open systems First, the temporal epistemic description takes as models
systems together with their whole (deterministic) history and future development, in the
shape of ‘runs’. As such, it can be easily applied to ‘closed’ systems, in which all the possible
developments are fixed in advance, where there are no accidents, surprises or new interactions
with the outside world, and thus the future is fully determined. Moreover, in practice the
approach is more applicable to closed systems having a small number of possible moves: that’s
the only ones for which it is feasible to work explicitly with the transition graph of the full
history.

The dynamic epistemic approach is better suited to ‘open’ systems. This is for example the
case with epistemic protocols which can be modified or adapted at any future time according to
new needs, or which can interact with an unpredictable environment. But it is also applicable
to closed systems in which the number of possible different changes is large or indefinite.

There are two analogies here. The first is with open-versus-closed-system paradigms in
programming. People in concurrency are usually interested in open systems. The program
might be run in many different contexts, in the presence of many other programs, etc. More
recently (in the context of mobile computation), people have looked at approaches that allow
programs to be changed at any time inside the same logical frame. The temporal logic
approach is not fit for this, since it assumes the full current program to be fixed and given
as ‘the background model’. That is why people in this area have used totally different kinds
of formalisms, mainly process algebraic, such as the π-calculus. In contrast to that, dynamic
epistemic logics are interesting in that, although based on a modal logic, which is not an
algebraic kind of formalism, they are able to express changes in an open system through the
semantic trick of changing the models themselves, via ‘epistemic updates’.

The second analogy is with game theory. The temporal approach is like the description
of a game through explicitly giving its full extensive form: the graph of all possible plays.
For instance, chess (in this approach) is defined as the set of all possible chess plays. But
there is another way to describe a game: by giving only the ‘rules of the game’ (which type
of actions are allowed in which type of situations), together maybe with an ‘initial state’ (or
set of states) and some ‘winning rules’. This is a much more economical and way to describe
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a game, and it is more common as well. Of course, once this description is given, one could
draw the game in extensive form as the set of all plays, if one is given enough computational
power. . . If we neglect the aspects of the game that deal with who wins (and what), the
dynamic epistemic approach can naturally describe epistemic games in precisely this way:
one gives an epistemic Kripke model of ‘initial states’ and also an epistemic Kripke model or
other semantically precise description of possible ‘epistemic actions’, including preconditions
that tell us on which type of states a given action may be applied. Then one can play the
game by repeatedly updating the state model with the action model. A ‘full play’ or ‘run’ of
the game is obtained when we reach a state (at the end of many updates) on which no action
(in our given action model) can be applied.

Information change description The second difference between the interpreted systems
and the dynamic epistemics approach simply concerns the ability to model and classify various
‘types’ or ‘patterns’ of information change, or information exchange, such as public announce-
ments, private announcements, game announcements etc. The dynamic epistemic approach
obviously has this in-built ability, while the temporal approach doesn’t have it, at least not
in a direct, usable manner. There is nothing like an “announcement”. All of the structure is
encoded in the set of runs that serves as a model. Even the semantics of knowledge uses this
set of runs, and so if one wants to use this as a model of real knowledge, it means that the
agents must have implicit access to the overall model. To put it differently, in the temporal
approach, one can only say what is true ‘before’ and ‘after’ a given action, and thus only
implicitly get some information about the type of the action itself, through its input-output
behavior. Moreover, this information is not enough to isolate the type of the action, since
it only gives us the local input-output behavior of a given action; and different actions may
behave identically in one local context, but differ in general. For instance in the two play-
ers and two cards case, in an epistemic state in which the fact that the card deal is ♣♥♠
is common knowledge, a public announcement of that fact will have the same input-output
description as a ‘skip’ action corresponding to ‘nothing happens’. But in the epistemic state
where the cards were dealt but not seen, or the subsequent one where all players only know
their own card, this fact was not common knowledge and its public announcement will in that
case induce an informative (i.e. non-skip) transition. For the same reason, actions like private
announcements, announcements with suspicion, etc., are harder to model in the interpreted
systems approach.

A number of people are investigating the relation between dynamic epistemic logic and
either interpreted systems or history-based models. One should see, for example, van Benthem
and Pacuit [101] for hints in this direction and also for related work on temporal epistemic
reasoning.

7 Belief Change and Dynamic Epistemic Logic

Our final section is concerned with the interaction of DEL with the topic of belief revision.
The material of this section is very new and still in a state of flux, so our discussion here
cannot claim in any way to represent the definitive word on the matter.

Here is our plan for the section: First, we briefly present the classical AGM theory of
belief revision. We then briefly mention some dynamic (but non-epistemic) versions of AGM.
Finally, we present some of the recent work that incorporates belief revision into the DEL
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framework, in an attempt to overcome the above-mentioned classical problems: the work of
van Benthem on the dynamic logic of belief upgrades, the action plausibility models of Aucher
and van Ditmarsch, and the action-priority update of Baltag and Smets. As before, we follow
a “logical” rather than a historical order, leaving the history for the Notes at the end of each
section.

Classical AGM theory A belief set (or theory) is a set K of sentences in some language.
We at first take the language to be propositional logic, but we are keen to extend this to various
modal languages, where the modalities are either one of the knowledge or belief modalities
which we have already seen, or an operation coming from this subject itself.

The notion of a belief set is intended to model the set of sentences believed by some agent.
So to incorporate the reasoning of the agent, one usually works on top of some logical system
or other and then requires belief sets to be closed under deduction in the system; they need
not be consistent, however. They certainly need not be complete either: we might have ϕ /∈ K
and ¬ϕ /∈ K as well. The AGM theory of belief revision deals with changes to an agent’s
belief set when presented with a new sentence ϕ. The main point is that ϕ might conflict with
what the agent believes, and so the theory is exactly about this issue. The theory is named
for its founding paper, the celebrated Alchourrón, Gärdenfors, and Makinson [1]. Overview
publications include Gärdenfors [35] and most notably for us, Chapter 4c by Hans Rott.

The AGM theory employs three basic operations and presents postulates concerning
them. Since belief sets are sets, the overall theory is second-order. Moreover, it is an interest-
ing issue to then construct and study semantic models of the AGM postulates, or of related
ones.

The first operation is called expansion. Intuitively, this is what happens when the agent
takes K as a given and simply adds ϕ as a new belief. We write K + ϕ for the result. The
postulates for expansion as follows:

(1) Closure K + ϕ is a belief set.
(2) Success ϕ ∈ K + ϕ
(3) Inclusion K ⊆ K + ϕ
(4) Vacuity If ϕ ∈ K, then K = K + ϕ.
(5) Monotonicity If J ⊆ K, then J + ϕ ⊆ K + ϕ.
(6) Minimality K + ϕ is the minimal set with (1) – (5).

It is easy to check that these postulates exactly capture the operation of taking the conse-
quences of K ∪ {ϕ} in the underlying logical system.

More interesting are the other two operations, contraction and revision. Intuitively, the
contraction of K by ϕ models the result of the agent’s giving up the belief in ϕ and doing this
without giving up too much. Revision models changing K to definitely include ϕ. There are
postulates for both operations, and we are only going to spell out those for revision. The rea-
son is that on top of the postulates for expansion, those of revision determine the contraction
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operation (and vice-versa). We write the revision operation as K ∗ϕ. The postulates are:

(1) Closure K ∗ϕ is a belief set.
(2) Success ϕ ∈ K ∗ϕ
(3) Inclusion K ∗ϕ ⊆ K + ϕ
(4) Preservation If ¬ϕ /∈ K, then K + ϕ ⊆ K ∗ϕ.
(5) Vacuity K ∗ϕ is inconsistent iff ¬ϕ is provable.
(6) Extensionality If ϕ and ψ are equivalent, then K ∗ϕ = K ∗ψ
(7) Subexpansion K ∗ (ϕ ∧ ψ) ⊆ (K ∗ϕ) + ψ
(8) Superexpansion If ¬ψ /∈ K ∗ϕ, then K ∗ (ϕ ∧ ψ) ⊇ (K ∗ϕ) + ψ.

The result of a contraction operation K − ϕ satisfying some postulates which we did not list
turns out to be the same as K ∩ (K ∗¬ϕ); this is called the Harper identity. And given a
contraction operation satisfying the postulates, one can define revision by the Levi identity
K ∗ϕ = (K − ¬ϕ) + ϕ; this operation will then satisfy the eight postulates above.

One important issue in the area is the relation between belief revision and the older topic
of conditional logics which began with Lewis’ book [59]. To see what this is about, assume
that we are working over a logical system with a symbol ⇒ that we want to use in the
modeling of some natural language conditional, say the subjunctive one. Then a belief set K
might well contain sentences ϕ⇒ ψ and ¬ϕ. So in this context, we would like or even expect
to have ψ ∈ K ∗ϕ. In other words, we ask about the condition

ϕ⇒ ψ ∈ K iff ψ ∈ K ∗ϕ.

This is called the Ramsey test. A key result in the subject is Gärdenfors’ Impossibility Theo-
rem: there is no operation of revision on belief sets which both satisfies the postulates of ∗
and also the Ramsey test. (The result itself depends on some non-triviality condition which
we ignore here.)

Although the literature on belief revision may be read as a discussion of changes in belief,
it may also be read as an extended discussion about the correspondence between various
axiom systems and types of semantic structures. These include structures akin to what we
have seen. In particular, the sphere systems of Grove (based on earlier work of Lewis) come
from belief revision theory.

7.1 Dynamic versions of revision theory

Moving now to a more semantical setting, we show how some of the operations which we have
already seen can be interpreted as belief change operators. We then present some dynamic
versions of AGM: the Katsuno-Mendelzon theory KM of belief update, de Rijke’s dynamic
modal logic DML and Segerberg’s dynamic doxastic logic DDL. These are all dynamic in
some sense, but not “epistemic” in that knowledge is not modeled via the Kripke (relational)
semantics, or any other semantics for that matter. We mention some of the difficulties and
problems encountered by classical belief revision theory.

Examples of belief change via dynamic epistemic logic Consider expressing and
changing uncertainty about the truth of a single fact p, and assume an information state where
the agent (whose beliefs are interpreted by the unlabeled accessibility relation depicted) may
be uncertain about p and where p is actually false (indicated by ‘designating’ the actual state
by underlining it). Figure ?? lists all conceivable sorts of belief change.
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In the top structure, uncertainty about the fact p (i.e., absence of belief in p and absence
of belief in ¬p) is changed into belief in ¬p. On the left, ¬Bp is true, and on the right B¬p. In
the second from above, belief in p is weakened to uncertainty about p, and in the third from
above we change from Bp to B¬p. Note that also in this semantic setting of Kripke-structure
transformation, belief revision can again be seen as a contraction followed by an expansion, so
we may in principle consider semantic alternatives for the Levi-identity. The last information
state transition in Figure ?? depicts factual change. The state with changed valuation has
suggestively been renamed from 1 to 00, although formally, of course, it is only the valuation
of a named state that changes. The ‘assignment’ or substitution p := ⊥ indicates that the
valuation of atom p is revised into the valuation of the assigned formula. As this is ⊥, the
new valuation of p (seen as a subset of the domain) is now the empty set of states.

Updates and the KM theory A topic in traditional belief revision comes under the
name of ‘update’. An update—unfortunately a clash cannot be avoided with the more general
meaning of that term in dynamic epistemic logic, where it incorporates belief revision as
well—is a factual change, as opposed to a belief change in the three previously distinguished
notions. The latter merely express a different agent stance towards a non-changing world,
but in an ‘update’ the world itself changes. The standard reference for updates in belief
revision is Katsuno and Mendelzon [48]. Recent investigations on updates (factual change) in
a dynamic epistemic setting are [104, 95, 49]. These ideas also deserve to be properly applied
to the belief revision arena.

We mention one of the motivating examples, mainly to contrast with the AGM postulates.
It is taken directly from [48].

Consider a belief set with two atomic propositions, b and m, standing for “there is a book
on the floor” and “there is a magazine on the floor”. Suppose that

K = ↑ {b ∧ ¬m,m ∧ ¬b},

where the arrow denotes the deductive closure in propositional logic. This models a situation
in which an agent believes that exactly one item is on the floor, but does not have a specific
belief of which it is. Suppose we wish to change the world by instructing a robot (as they have
it) to put the book on the floor. So we wish to consider K ∗ b or K+b. Now K+b =↑ {b∧¬m}.
As for K ∗ b, since ¬b /∈ K, we see from the Inclusion and (especially the) Preservation
postulates that K ∗ b = K + b anyways. In particular, ¬m ∈ K ∗ b. This seems like an
unintuitive result: given that we want to model a change in the world resulting from putting
the book on the floor, why should we believe afterwards that the magazine is not on the floor?
The KM theory addresses this by proposing AGM-like postulates on the matter of update,
the phenomenon illustrated in this example.

Belief change with dynamic non-epistemic logic The three ‘theory change operators’
⊕, 	, and � can be reinterpreted as dynamic modal operators. A straightforward way to
model these operators would be a logic in which [�ϕ]ψ expresses that after revision with ϕ,
(the agent believes) ψ. This approach was suggested by van Benthem in [94]9 and further
developed by de Rijke in [26]. They propose a semantical counterpart of a total order on the-
ories, in the form of ‘updating’ and ‘downdating’ relations between states or worlds, standing

9It is only one of many topics covered in that publication, namely Section 6, pages 714–715, ‘Cognitive
procedures over information patterns’. Note this work is similar to a 1991 technical report.
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for theories, and interpret the modal operator as a transition in such a structure according
to these relations. ‘Updating’ models expansion: it relates the current state to states that
result from expansion. ‘Downdating’ models contraction. It relates states that result from
contraction to the current state. Revision is indeed downdating followed by updating. In this
overview we focus on approaches that extend epistemic logics, therefore we do not give more
details on this non-epistemic approach.

Dynamic Doxastic Logic (DDL) In the approach by Segerberg and collaborators [60,
83, 82, 61], beliefs are represented explicitly. We now identify a theory K with the believed
formulas (or some subset of the believed formulas) in an epistemic state:

K = {ψ | M, s |= Bψ}.

As in [26] , DDL expresses belief change with dynamic modal operators [⊕ϕ], [	ϕ], and [�ϕ].
In a typical revision where we have that ¬ϕ ∈ K, ϕ ∈ K � ϕ, and ¬ϕ 6∈ K � ϕ, we now get

• M, s |= B¬ϕ

• M, s |= [�ϕ]Bϕ

• M, s |= [�ϕ]¬B¬ϕ

For contraction, we want that in case M, s |= Bϕ, after contraction ϕ is no longer believed,
i.e., M, s |= [	ϕ]¬Bϕ. Similarly, for expansion we aim to achieve M, s |= [⊕ϕ]Bϕ.

This approach is known as dynamic doxastic logic or DDL. Similar to [26] it presumes
a transition relation between states representing theories, but this is now differently realized,
namely using what is known as a Segerberg-style semantics wherein factual and epistemic
information— called the world component and doxastic component —are strictly separated.
A dynamic operator is interpreted as a transition along the lines of minimal theory change
set out by this given structure, with the additional restriction that the transitions describe
epistemic (doxastic) change only, and not factual change. This restriction is enforced by not
allowing the ‘world component’ to change in the transition relation but only the doxastic
component [60, p.18].

There are now two options: either we restrict ourselves to beliefs in objective (boolean,
non-epistemic) formulas, and we get what is known as basic DDL, as in [60, 83]. Or we
allow higher-order beliefs, as in the dynamic epistemics described in previous sections of our
chapter. We thus get ‘full’ or ‘unlimited’ DDL, also discussed in [60] but mainly in [61].

Incidentally, the semantic models of DDL are rather different from those in this chapter,
at least on the surface. They are more similar to neighborhood models, or topological models
for modal logics. These are too different from what we have seen to allow us to present them
in this chapter. Getting back to DDL and the systems we have presented, we know of no
publications offering detailed comparisons; surely this is because the work of this section is
so new. For this, and for discussion of recent work on DDL, see Leitgeb and Segerberg [55].

Problems of the classical theory Classical belief revision, and its dynamic versions
presented in the previous section, encounter a number of problems: the difficulties in extending
them to iterated belief revision; the multiplicity of belief revision policies; difficulties in dealing
with multi-agent beliefs and even more with higher-order beliefs, that is beliefs about other
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beliefs. We refer for details to Chapter 4c on the subject in this handbook. We are mainly
interested in higher-order beliefs and iteration. Our discussion amounts to a suggestion that
the work of this chapter can be useful in work on these matters.

If one drops the restriction to belief in objective formulas and allows higher-order beliefs,
then the standard AGM postulates lead to paradoxes. In particular, the Success postulate for
revision is problematic for sentences that involve doxastic modalities: we have already noted
in Section 5.2 that Moore sentences p ∧ ¬Kap are not successful. Similar examples apply to
formalisms which have the syntactic means to specify semantic properties of evident interest.
We now continue with the in-depth treatment of recent dynamic epistemic approaches to belief
revision. The hallmark of the approach is that the transition that interprets the dynamic
operators is constructed (as a state transformer) from the (specific action of announcing the)
revision formula, instead of assuming as given such a transition relation.

7.2 The dynamic logic of belief change

This section is mainly based on the work of J. van Benthem [98, 100] on the dynamic logic of
belief change and “preference upgrade” (with some additional input from Baltag and Smets
[15]). Essentially, this work uses the DEL paradigm to develop a logic for belief change that
completely solves the problems posed to belief revision by multi-agent beliefs and higher-
order beliefs, iterated revision, as well as partially addressing the problem of the multiplicity
of belief revision policies.

Static versus dynamic belief revision The first fundamental distinction underlying this
work is the one between static and dynamic belief revision (in the terminology of [15, 19]):
the first has to do with conditional beliefs, while the second has to do with the beliefs acquired
after a belief-changing action. The distinction is only significant when dealing with higher-
order beliefs: in the case of factual beliefs, the two types of revision coincide. Static belief
revision captures the agent’s changing beliefs about an unchanging world. But, if we take the
“world” as incorporating all the agents’ higher-order beliefs, then the world is in fact always
changed by our changes of belief (as shown above, using examples involving Moore sentences).
As a consequence, the best way to understand static belief revision with a proposition P is
as expressing the agent’s revised beliefs, after learning P , about what was the case, before the
learning. In contrast, dynamic belief revision captures the agent’s revised beliefs about the
world as it is after revision.

Static revision as conditional belief Classical AGM theory deals with changing beliefs
about an unchanging world. In our terminology, it is static belief revision. In a modal
logic setting, it is natural to formalize static revision as hypothetical belief change, using
conditional belief operators10 Bα

aϕ, as in Section 4.7: if K is agent a’s current belief set at
state s and ∗a is her belief revision operator, then writing s |= Bϕ

aψ is just a way of saying
that ψ ∈ K ∗ aϕ. Based on the above discussion, we can thus read a doxastic conditional
Bϕ
aψ as follows: if learning ϕ, agent a would come to believe that ψ was the case (before the
10It may seem that the failure of Ramsey’s test for AGM revision would conflict with a conditional belief

interpretation of AGM. But this is not the case. In the conditional belief setting, Gardenfors’ impossibility
result simply shows that “a conditional belief” is not the same as “a belief in a conditional”; more precisely,
there doesn’t exists any non-epistemic, non-doxastic notion of conditional that would validate this equivalence.
For more on this, cf. Leitgeb [54].
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learning). The semantics is given by plausibility models (or systems of Grove spheres, see
Section 2.4), as in Section 4.7, with a conditional belief Bϕ

aψ defined via the the most plausible
states (satisfying ϕ) and being epistemically indistinguishable from the current state). If we
translate the AGM postulates into the language of conditional beliefs, while taking into
account the concept of “(fully introspective) knowledge” and the limitations that it poses to
belief revision, we obtain the axioms of conditional doxastic logic CDL from Section 4.7.11 In
particular, observe that the AGM Success postulate is valid for static belief revision, even if
we allow doxastic modalities (and thus higher-order beliefs) in our language: it is always true
(even for Moore sentences ϕ) that, after learning that ϕ is the case, agents come to believe
that ϕ was the case (before the learning).

In contrast, a statement [!ϕ]Baψ involving a dynamic modality says that after learning
ϕ, agent a would come to believe that ψ is the case (in the world after the learning). Due to
Moore-type sentences, dynamic belief revision will not satisfy the AGM postulates (and in
particular, the Success postulate will fail).

Triggers of information change As van Benthem [98] observes, in order to understand
and formalize dynamic belief revision, it is essential to take into account the actual “learning
event” that “triggered” the belief change. For example, our beliefs about the current situation
after hearing a public announcement are different from our beliefs after receiving a fully
private announcement. In the public case, we may come to believe that the content of the
announcement is now common knowledge (or at least common belief); in the private case,
we may come to believe the opposite: that the content of the announcement forms now our
secret knowledge. In contrast, our beliefs about the triggering action are irrelevant as far
our static revision is concerned: our conditional beliefs about the current situation given
some hypothetical information do not depend on the way this information might be acquired.
This explains a fact observed in [98], namely that by and large, the standard literature on
belief revision (or belief update) does not mention in any way the explicit triggers (the actual
doxastic events) that cause the belief changes (dealing instead only with types of abstract
operations on beliefs, such as update, revision and contraction etc). The reason for this lies in
the static character of AGM revision, as well as its restriction (shared with the KM updates
and basic DDL) to one-agent, first-level, factual beliefs.

This is where the DEL paradigm can help: as already seen in this chapter, DEL explicitly
analyzes the triggers for information change, from simple announcements of facts to individual
agents to complex information-carrying events, involving many agents and their different
perspectives on the learning event.

Revision as relation change If we model static beliefs (including conditional beliefs) using
plausibility relations, then dynamic belief revision corresponds to relation change: the model
is modified by changing the plausibility arrows. Different types of dynamic belief revision
(induced by different triggering events) will correspond to different such changes. In other
words, we can model the triggers of belief revision as relation transformers, similarly to the
way we previously modeled knowledge updates as epistemic state transformers.

Hard versus soft information The second fundamental distinction made in [98] is be-
tween learning ‘hard facts’ and acquiring ‘soft information’. Unlike in the classical belief-

11The translation is carried out in detail in [15].
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revision setting, in an epistemic-logic setting we need to distinguish between the announce-
ments that lead to knowledge (in the absolute, un-revisable sense) of some hard fact and
the ones that only affect our beliefs. The first type is exemplified by the “truthful public
announcement” actions ! P , that we have already seen. The second type will correspond to
“soft” informational actions, of the kind that is more standard in belief revision. One can
also have more complex mixtures of hard and soft information, giving rise to more complex
belief-revision policies.

Defining, classifying, and axiomatizing belief-revision policies We mentioned PDL
in Section 4.9, and one reason for doing so is the work here. The natural language to define
relation changes is the set of programs of PDL: one can then redefine the plausibility relations
Ra (corresponding to the “at least as plausible as” relations ≤a in Section 4.7), via a clause
of the form

Ra := π(Ra),

where π(Ra) is any PDL program built using tests ?ϕ, the universal relation >, the old
plausibility relations Ra and regular operations on relations: union ∪, composition ; and
iteration ∗. In other words, one can use a relation transformer π(r) as in Section 4.9, and
redefine the plausibility relations via Ra := [[π(r)]](Ra). In their analysis of revision policies,
van Benthem and Liu [100] propose as a natural class of relation transformers the ones that
are definable in PDL without iteration, showing that these are particularly well-behaved.
In particular, one can read off the relational definition a set of reduction laws for each such
relation transformer, automatically providing a complete axiomatization of the corresponding
dynamic logic. It is important to note that the reduction laws that are immediately obtainable
through this method are for the safe belief 12 and knowledge modalities, not for conditional
belief. But one can derive reduction laws for conditional belief in many instances, using the
observation made in Section 4.8 concerning the definability of conditional belief in terms of
knowledge and safe belief.

Examples of definable revision policies and their reduction laws: We give here
only three examples of multi-agent belief-revision policies: truthful public announcements of
hard facts, lexicographic update and conservative upgrade. They were all introduced by van
Benthem in [98] as dynamic multi-agent versions of revision operators previously considered
by Rott [79] and other authors. In each case, we give here only one example of a reduction law,
namely the analogue for belief of the DEL Action-Knowledge Axiom which we mentioned in
Section 5.5.
1. Belief change under hard information Truthful public announcements !ϕ of hard
facts can be considered as a (limit-)case of belief revision policy. Instead of defining it by
world elimination as before, we can equivalently define it using the relation transformer

π(r) = ?ϕ; r; ?ϕ.

So the new accessibility relations are Ra := [[π(r)]](Ra), where Ra are the old relations. (See
Example 9 in Section 5.1.) The corresponding Reduction Axiom for belief is

[!ϕ]Baθ ↔ (ϕ→ Bϕ
a [!ϕ]θ) ,

12This is called the “preference modality” by van Benthem and Liu [100].
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which generalizes the Announcement-Knowledge Axiom from Section 5.1 to the case of beliefs.
There also exists a more general reduction law for conditional belief.
2. Public Announcements of Soft Facts: The “Lexicographic Upgrade” To allow
for soft belief revision, an operation ⇑ ϕ was introduced in [98], essentially adapting to public
announcements the ‘lexicographic’ policy for belief revision described in [79]. This operation,
called lexicographic update consists of changing the current plausibility order on any given
state model as follows: all ϕ-worlds become more plausible than all ¬ϕ-worlds, and within
the two zones, the old ordering remains. Following what we did at the end of Section 4.9 and
in Example 9 in Section 5.1, we are using the PDL relation transformer

π(r) = (?ϕ;>; ?¬ϕ) ∪ (?¬ϕ; r; ?¬ϕ) ∪ (?ϕ; r; ?ϕ)

where> is the universal relation. As before, the accessibility relationsRa change to [[π(r)]](Ra).
The important new step in verifying that this does what we want is

[[?ϕ;>; ?¬ϕ]] = {(w,w) : w ∈ [[ϕ]]}; {(u, v) : u, v ∈W}; {(w,w) : w ∈ [[¬ϕ]]}
= {(u, v) : u ∈ [[ϕ]] and v ∈ [[¬ϕ]]}.

The corresponding Reduction Axiom for belief is

[⇑ ϕ]Baθ ↔ (K̂aϕ ∧Bϕ
a [⇑ ϕ]θ) ∨ (¬K̂aϕ ∧Ba[⇑ ϕ]θ)

where again K̂ is the “epistemic possibility” operator (the ♦-like dual of the K operator).
As in the case of hard announcements, there also exists a more general reduction law for
conditional belief.
3. Public Announcements of Soft Facts: The Conservative Upgrade. The operation
↑ ϕ of conservative upgrade, as defined in [98], changes any model as follows: the best ϕ-worlds
come on top (i.e., the most plausible ϕ-states become the most plausible overall), and apart
from that, the old order remains. The reduction law for belief is the same as in the previous
case. The difference can be only be seen by looking at the reduction law for conditional belief.
See [98] for details.

7.3 Logics for doxastic actions: the action-priority update

The work of Aucher [4, 5], Baltag and Smets [16, 17, 19], and van Ditmarsch and Labuschagne
[109, 107, 110] can be considered as an attempt to extend to dynamic belief revision the unified
DEL setting based on action models. We focus on the approach by Baltag and Smets and
specifically on their ‘action-priority update’. This gives currently the most convincing picture
given the relational approach. It also goes some way towards addressing the problem of the
multiplicity of belief revision policies: as we will see below, the action-priority update unifies
and subsumes many different policies and types of revision, which come to be seen as the result
of applying the same update operation to different triggers given by specific learning events.
Indeed, in this interpretation, the triggering events for belief revision are doxastic actions,
modeled using action plausibility models, in a similar way to the way epistemic actions were
modeled using epistemic action models. The actions’ “preconditions” encode the information
carried by each action. The plausibility relations between actions are meant to represent the
agent’s (conditional) beliefs about the learning event at the moment of its happening.

We assume here the setting of plausibility models and the conditional doxastic logic CDL
from Section 4.7. The following definition gives the natural plausibility analogue of the
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action models from Section 5.4, by incorporating the main intuition underlying the AGM
belief revision: that new information has priority over old beliefs .

Definition [Action plausibility model] (Aucher) Let L be a logical language which extends
the language of CDL. An action plausibility model over L is a structure U = 〈Actions,≤, pre〉
such that 〈S,≤〉 is a plausibility frame and pre : S→ L is a precondition function that assigns
a precondition pre(σ) ∈ L to each σ ∈ S. As in Section 5.4, the elements of S are called action
points, and for each a ∈ A, ≤a is a plausibility relation on S. For σ, ρ ∈ S, we read σ ≤a ρ
as follows: agent a considers action σ as being at least as plausible as action ρ. A doxastic
action is a pointed action plausibility model (U, σ), with σ ∈ S.

Example 16 The truthful public announcement of a hard fact ϕ is modeled by a singleton
action model consisting of an action point σ, with identity as the plausibility relation for
every agent, and with precondition pre(σ) = ϕ. As in Section 5.4, we call this action model
Pub ϕ, and denote by ! ϕ the action corresponding to the point σ.13

Fully private announcements and fair-game announcements can be similarly modeled, es-
sentially by reading the arrows in their epistemic action models from Section 5.4 as plausibility
arrows.

Announcements of Soft Information. We can simulate public announcements of soft facts,
as described in the previous section, using action plausibility models. For instance, the
lexicographic update ⇑ ϕ has the following action model:�� ��σa∈A 44

oo a∈A
�� ��ρ a∈Aii

with pre(σ) = ϕ and pre(ρ) = ¬ϕ. The action point on the left corresponds to the case that
the announcement happens true; the action point on the right corresponds to the case that
the announcement is false.

The conservative upgrade ↑ ϕ can be similarly encoded, using a more complicated action
model.

Successful Lying. The action of an agent b’s “lying in a publically successful manner” by
can be modeled as follows: given a sentence ϕ, the model consists of two action points σ
and ρ, the first being the action in which agent b publicly lies that (he knows that) ϕ (while
in fact he doesn’t know it), and the second being the action in which b makes a truthful
public announcement that (he knows that) ϕ. The preconditions are pre(σ) = ¬Kbϕ and
pre(ρ) = Kbϕ. Agent b’s plausibility relation is simply the identity: she knows whether she’s
lying or not. The relation for any hearer c 6= b should make it more plausible to him that
b is telling the truth rather than lying: σ <c ρ. This reflects the fact that we are modeling
“typically successful lying”: by default, in such an action, the hearer trusts the speaker, so
he is inclined to believe the lie. �� ��σb 44

c6=b //
�� ��ρ a∈Aii

We call this model Lieb ϕ, and also denote the action corresponding to the point σ by Lieb ϕ,
and the action corresponding to the point ρ by Trueb ϕ.

13Technically, we should distinguish between this plausibility model and the corresponding action model in
Section 5.4, but we choose to use the same notation, relying on the context for deciding when to interpret it
as a plausibility model. The same applies to all the other plausibility action models in this section having the
same notation as an epistemic model.
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Definition [Execution, Action-Priority Update] Given a doxastic state (M, s) withM = (S,≤
, V ), and a doxastic action (U, σ) with U = (S,≤, pre), the result of executing (U, σ) in (M, s)
is only defined when M, s |= pre(σ). In this case, it is the doxastic state (M ⊗≤ U), (s, σ))
where M ⊗≤U = 〈S′,≤′, V ′〉 is a restricted anti-lexicographic product of the structures M and
U, defined by

S′ ≡ {(s, σ) | s ∈ S, σ ∈ S, and M, s |= pre(σ)}
(s, σ) ≤′a (t, ρ) iff σ <a ρ and s∼a t ; or else σ ∼=a ρ and s ≤a t
(s, σ) ∈ V ′p iff s ∈ Vp

where ∼a is the epistemic indifference (uncertainty) relation14 on states, and ∼=a is the equi-
plausibility relation on actions (defined by σ ∼=a ρ iff both σ ≤a ρ and ρ ≤a σ).

This is a generalization of one of the belief-revision policies encountered in the litera-
ture (essentially incorporating the so-called “maximal-Spohn revision” into plausibility ac-
tion models), as well as being a natural plausibility analogue of the product update from
Section 5.4. The new order is simply the anti-lexicographic order on (epistemically indistin-
guishable) pairs. The name comes from [16, 17, 19]. Van Benthem calls it “Action Priority
Update”: indeed, this construction gives priority to the action plausibility relation. This is
not an arbitrary choice, but is motivated by a specific interpretation of action models as en-
coding belief changes. In other words, the (strict) order on actions encodes changes of order
on states. The definition of execution is a consequence of this interpretation: it just says
that a strong plausibility order σ <a ρ on actions corresponds indeed to a change of ordering,
(from whatever the ordering was) between the original (indistinguishable) input-states s∼a t,
to the order (s, σ) <a (t, ρ) between output-states; while equally plausible actions σ ∼=a ρ
will leave the initial ordering unchanged: (s, σ) ≤a (t, ρ) iff s ≤a t. Giving priority to action
plausibility does not in any way mean that the agent’s belief in actions is stronger than her
belief in states; it just captures the fact that, at the time of updating with a given action, the
belief about the action is what is actual, it is the current belief about what is going on, while
the beliefs about the input-states are in the past.15

In a nutshell: the doxastic action is the one that changes the initial doxastic state, and
not vice-versa. The belief update induced by a given action is nothing but an update with
the (presently) believed action. If the believed action α requires the agent to revise some
past beliefs, then so be it: this is the whole point of believing α, namely to use it to revise or
update one’s past beliefs. For example, in a successful lying, the action plausibility relation
makes the hearer believe that the speaker is telling the truth; so she’ll accept this message
(unless contradicted by her knowledge), and change her past beliefs appropriately: this is
what makes the lying successful.

Example 17 Consider the situation in Section 2.3, in which Bao was told the face of the
coin, without Amina suspecting this. Assume moreover the coin lies heads up. This was

14Recall that, in a plausibility model, the epistemic uncertainty relation is defined by: s∼a t iff either s ≤a t
or t ≤a s.

15Of course, at a later moment, the above-mentioned belief about action (now belonging to the past) might
be itself revised. But this is another, future update.
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represented in Section 2.4 by the plausibility model (10):�� ��u:Ha,b ))

a

��

oo a //

a
DD

DD
DD

!!DD
DD

DD

�� ��x:T a,btt

a{
{{

{{
{

}}{{
{{

{{
a

���� ��v:Ha,b **
oo

a,b
//
�� ��w:T a,bxx

where the real state is the upper-left one.
Next, suppose Bao tells Amina: “I know the face of the coin”. Let us first assume this is an

evidently truthful statement, coming with a warranty of veracity of some sort or other. Then
Amina takes Bao’s statement as an announcement of a hard fact. So this action is represented
by Pub (KbH ∨ KbT), with the one-point action model described above (for truthful public
announcements of hard information); the action point will be called σ. Execute now this
doxastic action on the doxastic state given by (upper-left point in) the model (10) above.
We identify the old states u and x with the pairs (u, σ) and (x, σ), respectively, and then we
picture the result as �� ��u:Ha,b ))

oo a //
�� ��x:T a,btt

which fits our intuition about the agent’s beliefs: it is now common knowledge that Bao knows
the face of the coin.

What if Bao’s announcement was not evidently truthful? Amina may still believe it, but
she doesn’t know that it is true. We model using an announcement of a soft fact rather than
a hard one, corresponding to the lexicographic upgrade ⇑ (KbH ∨KbT). Using the two-point
action plausibility model for lexicographic update which we saw above, and computing the
execution of this doxastic action on the original doxastic state given by model (10) above, we
obtain: �� ��u:Ha,b )) OO

a

oo a //
aa

a
DD

DD
DD

DD
DD

DD

�� ��x:T a,btt==

a{
{{

{{
{

{{
{{

{{

OO

a

�� ��v:Ha,b **
oo

a,b
//
�� ��w:T a,bxx

Here and just below, we are identifying the old states with certain pairs to simplify the
representation.

What if, instead of making a truthful announcement, Bao chooses to lie? For instance
(in the initial situation, after he was secretely told that the coin lies heads up), suppose he
tells Amina: “I know the coin is lying tails up”. This is a lie. Let us assume it is a successful
one, so that Amina trusts Bao completely and therefore believes he is telling the truth. We
can represent this action using, as described above, the two-point action model Lieb (KbH)
for successful lying. If we now we execute this doxastic action on the original doxastic state
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from the model (10) above, we obtain�� ��u:Ha,b ))

a

��

a //

a
DD

DD
DD

!!DD
DD

DD

�� ��x:T a,btt==

a{
{{

{{
{

{{
{{

{{

OO

a

�� ��v:Ha,b **
oo

a,b
//
�� ��w:T a,bxx

in which the upper left-hand state is the real one. Again, this fits our doxastic intuitions:
Amina is deceived and believes the upper right-hand state to be the real one. However, this
false belief is revisable: a new public announcement Pub KbH (in effect, saying that Bao has
lied and that in fact he knows the coin lies heads up) would correct Amina’s wrong belief,
making her know that the real state is the left-hand one.

Action-Priority Update Generalizes Product Update Recall the definition of the
epistemic indistinguishability relation ∼a in a plausibility model: s∼a t iff either s ≤a t or t ≤a
s. It follows that Action Priority Update implies the Product Update rule from Section 5.4:

(s, σ) ∼a (t, ρ) iff s∼a t and σ∼a ρ.

The logic of doxastic actions As in Section 5.5, we can consider a signature-based lan-
guage, where a doxastic signature is a finite (fixed) plausibility frame Σ, together with an
ordered list without repetitions (σ1, . . . , σn) of some of the elements of Σ. As in Section 5.5,
each signature induces a syntactic action model, and it gives rise to a dynamic-doxastic logic
L(Σ). The language is obtained by augmenting either the language of conditional doxastic
logic CDL from Section 4.7, or the language of the logic of knowledge and safe belief from
Section 4.8, with dynamic modalities for (signature-based) doxastic actions. The semantics
can be given in a similar way to the one in Section 5.5. We skip here the details, referring
to [16, 17, 19]. Just as in DEL, and similarly to the approach in the previous subsection,
one can automatically read off a set of Reduction Axioms for knowledge and safe belief, thus
obtaining a complete proof system. But Baltag and Smets also derive in [17] general (though
very complex) Reduction laws for conditional belief.

The Action-Safe-Belief Axiom As for DEL, we only present here the most important
reduction axiom, namely the appropriate generalization of the Action-Knowledge Axiom to
the logic of doxastic actions. In fact, there are two such laws: one for knowledge, the other
for safe belief. But the reduction law for knowledge is essentially the same as the Action-
Knowledge Axiom in Section 5.5. So we only state here an “Action-Safe-Belief Axiom”, saying
that, for every basic action α, we have:

[α]�aϕ↔

pre(α)→
∧

α′<aα

Ka[α′]ϕ ∧
∧

α′′∼=aα

�a[α′′]ϕ


where <a is the strict plausibility order on (syntactic) actions (in the action model induced
by the signature) and similarly ∼=a is the equi-plausibility relation on (syntactic) actions.
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This axiom could be thought of as the “fundamental law of dynamic belief revision”: it
allows us to compute or predict safe beliefs after a learning event in terms of knowledge and
safe beliefs before the event. In plain words, it says that: a sentence ϕ will be safely believed
after a doxastic event iff, whenever the action can take place, it is known that ϕ will become
true after all more plausible events and at the same time it is safely believed that ϕ will
become true after all equi-plausible events.

Unifying Diverse Belief-Revision Policies As seen in the examples above, the Action-
Priority Update can simulate the various belief revision policies considered in the previous
section. More generally, the power of the action model approach is reflected in the fact
that many different revision policies can be recovered, in a uniform manner, as instances
of the same type of update operation. In this sense, the DEL approach can be seen as a
change of perspective: the multiplicity of possible revision policies considered in the Belief
Revision literature is replaced by the multiplicity of possible action models; the differences
are now viewed as differences in input, rather than having different programs. For a computer
scientist, this resembles currying in the lambda-calculus: if every “operation” is encoded
as an input-term, then one operation (functional application) can simulate all operations.16

In a sense, this is nothing but the idea of Turing’s universal machine, from the theory of
computation. Note that, by incorporating the Product Update from Section 5.4, the Action-
Priority Update gains all its dynamic features and its advantages: in addition to simulating
a range of individual belief-revision policies, it can deal with an even wider range of complex
types of multi-agent learning and communication actions. It may thus be realistic to expect
that, within its own natural limits, Action Priority Update could play the role of a “universal
qualitative machine” for dynamic interactive belief-revision. The problem of finding these
natural limits remains open.

Notes The action plausibility models were first introduced by Aucher [4, 5], as an adap-
tation of the DEL framework of Baltag, Solecki and Moss to the case of dynamic belief
revision. Aucher used an equivalent definition, inspired from the work of Spohn [85], de-
scribing plausibility models in terms of ordinal plausibility functions, interpreted as “degrees
of belief”. This lead Aucher, and then van Ditmarsch and Labuschagne [109, 107, 110], to
propose and study various types of product update, of a different, more “quantitative” flavor
than the Action-Priority update presented above; these proposals are based on using various
binary operations on ordinals to compute the degree of belief of an updated state in terms
of the corresponding degrees of belief of the input-state and of the action. None of these
specific proposals seem to correspond to the Action-Priority update (although it is easy to
see that this type of update can be computed via a special ordinal function, so in a sense it is
subsumed by the general “quantitative” approach). Aucher introduced a doxastic logic, with
operators Bn

aϕ for each ordinal degree of belief n, and completely axiomatized the dynamic
logic corresponding to his proposal of product update. This work was generalized by van
Ditmarsch [107], who also gave a good presentation of the various proposals in the literature,
as well as of the various problems encountered. A recent breakthrough in the field was the
work of van Benthem [98] on the relational approach to belief “upgrades”, partially based

16Note that, as in untyped lambda-calculus, the input-term encoding the operation (i.e, the action model)
and the static input-term to be operated upon (the state mode) are essentially of the same type: epistemic
plausibility models for the same language (and for the same set of agents).
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on previous work by van Benthem and Liu [100] on preference upgrades. At the same time,
Baltag and Smets [15, 16, 17, 19] developed their own relational approach to dynamic belief
revision, introducing the Action-Priority Update and the Action-Safe-Belief Axiom. Both
van Benthem, and Baltag and Smets, used a qualitative logical language (either based on
conditional belief operators, or on knowledge and safe belief operators) rather than one based
on degrees of belief. Baltag and Sadrzadeh [14] gave an algebraic axiomatization of a type of
dynamic belief revision. In more recent work (still to appear), Baltag and Smets [18] develop
a probabilistic version of dynamic belief revision, based on combining their previous work on
safe belief and the Action-Priority update with the work of van Fraasen [31], Boutilier [22] and
Parikh [2] on using Popper’s counterfactual probability functions to deal with belief revision.

8 Conclusion

As we end this chapter, we step back to try to understand what makes this particular subject
of epistemic logic and information update what it is. We especially want to compare what is
going on here to what is discussed in other chapters, especially Chapters 4c and 3b.

In a sense, our treatment of epistemic phenomena is ultra-semantic. Beginning in Sec-
tion 2, we depicted representations and treated them as abstract semantic objects. Even
before this, we stated openly that our modeling was slanted towards justifiable belief. This
stance implicitly allowed us to ignore reasons to believe and instead focus on models of the
phenomena of interest. All throughout our section on examples, we emphasized that one
must test models and semantic definitions against intuitions, that the proof of the pudding is
in the eating. Indeed, our subject is not a single pudding at all but rather a whole buffet of
delectable semantic desserts. We also made it clear that the chefs used an artificial sweetener,
relational models, and so those allergic to logical omniscience might prefer the fresh fruit. But
except for this, the models work extremely well: the predictions of the logical languages match
the intuitions. And one can use the formal tools as a real aid in building representations.

At the same time, our work is unexpectedly syntactic. We saw a series of logical languages
crafted to exploit the key semantic features of the models. Whenever one hears about “en-
coding” in this subject, it is this: the semantic objects quickly become the sites for semantic
evaluation in languages which are richer than one might have at first expected. The easiest ex-
ample is the relational (Kripke) semantics itself. Having a set of Carnapian state descriptions
living alone is at this time fairly mundane. Even adding one or more accessibility relation and
calling things “possible worlds” does not go far in relating the worlds to one another. But
once one has languages with modal operators, statements evaluated at one world in general
must refer to other worlds. Thus the worlds really are related: since the logical language has
iterated modal sentences, what is true here is in general influenced by what is true far away.

The models in this chapter also incorporate dynamics, social features such as common
knowledge, and conditional operators. In each case, the languages are taken to be immedi-
ately higher-order: we have knowledge about knowledge, belief about beliefs, announcements
about announcements, etc. What makes the subject work is that the formal semantics of the
languages refer to the structure of the models, and at the same time the intuitive concepts
of interest correspond most closely to statements in the formal languages. One aspect of our
work which might be unexpected is the emphasis on particular logical systems for specialized
phenomena. We presented a logic of public announcements in Section 5, but this is just the
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tip of the iceberg. One can formulate specialized logics for other epistemic actions. The point
again is that we have semantic objects corresponding to these actions (this seems to be an
innovation coming from this subject) and then the resulting logical systems take on an inter-
est of their own, qua syntactic systems. And on the opposite pole from the specialized logics
are the very general ones which incorporate arbitrary actions in some sense: these logical
languages are unexpectedly syntactic in the sense that their very formulation is trickier than
usual, as is their semantics. But the arrows inside of relational models are the same kind of
thing as the arrows between the models, and this is why dynamic epistemic logic works.

One should compare the situation with the belief revision literature surveyed in Chap-
ter 4c. The AGM postulates deal with several operations, most notably revision. These came
first, and then later people were concerned with concrete models of them, with representations
of theory-change operations, and the like. There is much less of an emphasis on matching
the predictions of models to intuitions, mainly because the intuitions are often not as clear,
and also because notions like a theory change operation are more abstract than a completely
private announcement in our sense. It also took longer for the matter of iterated revision to
become central. So the subject developed in a different way from ours. At the same time,
there are interesting similarities: as Table 1 in Chapter 4c shows, the history of work in
belief revision might be organized according to the particular kinds of prior and posterior
belief states discussed. In our subject, the parallel is the extension of the ideas from “hard”
semantic updates to “soft” ones (in the terminology of Chapter 3b). Belief revision theory
is a much more active field than dynamic epistemic logic, and so one would expect to see a
further push towards varied semantic models. But overall, these parallels could be taken to
indicate hidden traces of functionalism in what we are doing, though clearly the emphasis on
models and languages here is the most prominent difference.

All of this could be said about other closely related topics, especially work on history-
based epistemic systems, interpreted systems, and related models which we surveyed in our
temporal reasoning Section 6.

Another difference between the main thrust of belief revision work and recent trends in
epistemic logic is the “social” aspect of the latter area. This is not true of the earliest work
in the subject, partly because philosophers have tended to look only at public information.
But as one can see from our chapter, the subject is now about public and private types of
information change: how they compare and contrast, and how they are integrated in larger
theories. This is clearly of interest in mathematical areas of the social sciences, but we feel it
is also of interest to philosophy. To be a person is to relate to others, and so to understand
knowledge we should pay special attention to multi-agent phenomena.

What connects the ultra-semantic and unexpectedly syntactic are the results on the logical
systems themselves. Details of representations often conceal significant conceptual decisions,
and results on logical languages and systems can help in the evaluation of different represen-
tations. By formulating sound principles, one uncovers (or highlights) hidden assumptions.
The matching completeness theorems indicate the right kind of “harmony” (see Chapter 3b).
Even more indicative is the fact that those logical systems typically have axiomatic presen-
tations that make intuitive sense. There is no mathematical reason why the axioms behind
logical systems should in any way be “nice.” Frequently they are not. But we would like
to regard the happy coincidences of axioms and intuitions in our subject as signposts which
indicate that we are on the right track and point the way ahead.
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