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Abstract

This paper connects coalgebra with a long discussion in the foundations of game theory
on the modeling of type spaces. We argue that type spaces are coalgebras, that universal
type spaces are final coalgebras, and that the modal logics already proposed in the economic
theory literature are closely related to those in recent work in coalgebraic modal logic. In
the other direction, the categories of interest in this work are usually measurable spaces or
compact (Hausdorff) topological spaces. A coalgebraic version of the construction of the
universal type space due to Heifetz and Samet [4] is generalized for some functors in those
categories. Since the concrete categories of interest have not been explored so deeply in
the coalgebra literature, we have some new results. We show that every functor on the
category of measurable spaces built from constant functors, products, coproducts, and the
probability measure space functor has a final coalgebra. Moreover, we construct this final
coalgebra from the relevant version of coalgebraic modal logic. Specifically, we consider the
set of theories of points in all coalgebras and endow this set with a measurable and coalgebra
structure.

1 Introduction: Type Spaces

This paper is a first exploration of the application of ideas and results from coalgebra to the
foundational area of game theory concerned with type spaces. Type spaces are mathematical
structures used in modeling settings where agents are described by their types, and these types
give us “beliefs about the world”, “beliefs about each other’s beliefs about the world”, “beliefs
about each other’s beliefs about each other’s beliefs about the world”, etc. That is, the formal
concept of a type space is intended to capture in one structure an unfolding infinite hierarchy
related to interactive belief.

The 1994 Nobel Prize in Economic Sciences was awarded to John C. Harsanyi, John F. Nash
Jr., and Reinhard Selten “for their pioneering analysis of equilibria in the theory of non-
cooperative games.” In addition to his work on equilibria, Harsanyi will also be remembered

∗Due to lack of space, we have not included all proofs in this version. Between the CMCS meeting and the

posting of the ENTCS volume from it, we expect that a version of the paper will be available on our web pages.
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for his introduction of type spaces in a a three-part paper published in 1967 and 1968 [3]. He
showed how to convert a game with incomplete information into one with complete yet imperfect
information. This matter is not relevant to our paper, but three related points are noteworthy.
First, Harsanyi’s notion of types goes further than what we described above: an agent’s type
gives us their beliefs about the types of the other agents. Second, despite this circularity, the
informal concept of a type (as a “pool” from which all players can be picked) is widespread in
areas of non-cooperative game theory and economic theory. And finally, the formalization of
type spaces was, and to some extent still is, an open area. That is, Harsanyi did not really
formalize type spaces in his original paper; this was left to later researchers. Getting back to
our very rough informal description above, what exactly are “beliefs”? And how can a structure
contain types which give rise to beliefs about other types? What is the relation of this to the
infinite hierarchy of beliefs about beliefs about · · · beliefs about the world? Can we characterize
the space of all possible types? So there is a collection of papers on this matter, starting with
Böge and Eisele’s paper [1] from 1979. Again, we are not much concerned with these conceptual
matters in this paper. Most of the important papers for our study are technical contributions
dealing with the matter of universal type spaces. A universal type space is intended to capture
all possible types, so it is an answer to our third question above.

There are some clear conceptual clues that coalgebra could be connected to type spaces.
The first is that the notion of “belief” in the game theory literature is typically a probabilistic
one. If we replace “belief” with “knowledge” above, then we have a very-well-studied notion,
the formalization of knowledge by possible worlds semantics. The mathematical structures for
possible worlds semantics are sets W of worlds with two functions, one giving for each world
w ∈W some set of “atomic propositions” true at w, and the other giving for each w some set of
worlds which are said to be “possible from w”. These structures are essentially the coalgebras
in the category Set of sets of the functor F (W ) = A×P(W ), where A is the power set of the set
of atomic propositions and P is the power set functor on sets. Perhaps the primary contribution
of coalgebra to this area to date is to show that modal logic, the natural logical language for the
structures, generalizes to coalgebraic versions of modal logic. We’ll return to this point shortly.

The second clue has to do with the role of the universal type space in this field. Types
are taken to be elements of the universal type space. In the universal type space all possible
types are uniquely represented, and the idea is that two types with exactly the same beliefs
about the underlying world of “nature” plus the types of the other players are taken to be
undistinguishable. This is the same ideology as we find concerning final coalgebras, in which
(as is well known) points with the same behavior are identified.

Returning to type spaces, we recall that the usual modeling of belief in game theory is
via probability. So we would expect that type spaces should be probabilistic versions of Kripke
models. One should replace the functor P with something like ∆, where

∆(W ) = {µ |µ is a probability measure on W}. (1)

Indeed, this is the case: most proposals in the literature do end up studying certain mappings
from a space X to some variation of the functor ∆ applied to X. This is our third clue of the
connection. But note that (1) leaves a lot lacking: if W is just a set, how do we know that it
has any probability measures? Does it matter which σ-algebra we use? And if W is an object
in some other category, say measurable spaces or compact metric spaces, then what structure
do we put on ∆(W )?
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We intend this paper to be a contribution to this area by connecting it with coalgebra. Here
are the main conceptual claims of the paper, as well as the main results:

⋆ The original notion of a Harsanyi type space may be taken to be a coalgebra of a functor
F on MeasI , where Meas is the category of measurable spaces and measurable maps, and
I is a discrete category (of agents). But this reformulation is not obvious, because the
original notion had an extra condition that the agents “know their own type.” We discuss
this in Section 2.

⋆ Universal type spaces are final coalgebras.

⋆ The constructions of universal type spaces in the literature are related to constructions found
in coalgebra. However, there are differences due primarily to the fact that the work is
going on in categories like Meas rather that Set. Putting things differently, the universal
type space constructions could be generalized, and this could be of interest in coalgebra.

⋆ There are versions of coalgebraic modal logic for functors of interest, and one can prove
the existence of final coalgebras by considering the satisfied theories in these logics. This
construction parallels the construction of a final coalgebra on Set for F (W ) = A× P(W )
(or rather A × Pfin(W ), using the finite power set functor) using the set of descriptions
of all modal theories of all possible worlds. We work a formulation of coalgebraic modal
logic based on the one due to Jacobs [6], following work of Rößiger [9, 10]. But we do
differ from these papers in that our final coalgebras are not connected to logical theories,
but to the theories realized in coalgebras. In the economic literature, this construction is
due to Heifetz and Samet [4].

⋆ We formulate a notion of “measure polynomial functor” on Meas. We prove a new result in
Section 3: every such polynomial has a final coalgebra with carrier consisting of sets of
sets of sentences in a logic. The method also works for polynomial functors on Set, as we
show in Section 5.2. Our work also gives a new proof of the result of Kupke, Kurz, and
Venema [7] that the Vietoris polynomial endofunctors on the category of Stone spaces
have final coalgebras. Our proof is probably implicit in [7]; their paper derives the result
from the study of a great deal of structure, and we have not (yet) needed to do the
analogous work in our settings.

1.1 Background notions

A measurable space is a pair M = (M,Σ), where M is a set and Σ is a σ-algebra of subsets of
M . The sets in Σ are called measurable sets or events. Usually Σ contains all singletons {x};
we shall almost always assume a weaker condition that for each x ∈M , {x} is the intersection
of the measurable subsets of M containing x. A collection B of subsets of M generates a σ-
algebra Σ if Σ is the smallest σ-algebra including B. A measure on M is a σ-additive function
µ : Σ → [0,∞]. The measure µ is a probability measure if µ(M) = 1.

A morphism of measurable spaces f : (M,Σ) → (N,Σ′) is a function f : M → N such
that for each A ∈ Σ′, f−1(A) ∈ Σ. This gives a category Meas. Meas has products and
coproducts; indeed it has much more structure. There is an endofunctor ∆ : Meas → Meas
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defined by: ∆(M) is the set of probability measures on M with the σ-algebra generated by
{βp(E) : p ∈ [0, 1], E ∈ Σ}, where

βp(E) = {µ ∈ ∆(M) |µ(E) ≥ p}.

Here is how ∆ acts on morphisms. If f : M → N is measurable, then for µ ∈ ∆(M) and
A ∈ Σ′, (∆f)(µ)(A) = µ(f−1(A)). That is, (∆f)(µ) = µ ◦ f−1. For more on the functorial
aspects of ∆, including important points on a related monad, see Giry [2].

We also note some additional structure. First, there is a natural transformation δ : Id → ∆
defined by δM (m)(E) = 1 if m ∈ E and 0 if m /∈ E. We also write δm instead of δM (m); this
is the Dirac measure supported at m.

Lemma 1.1 For each p ∈ [0, 1], βp may be regarded as a predicate lifting. That is βp takes
measurable subsets of each space M to measurable subsets of ∆(M), and it is natural in the
sense that if f : M → N , then for all measurable E ⊆ Y , βp(f−1(E)) = (∆f)−1(βp(E)).

Lemma 1.2 Suppose that the collection B of sets generates Σ. Then the σ-algebra on ∆(M)
is the generated by the sets of the form {βp(E) |E ∈ B and p ∈ [0, 1]}.

We also need at some point to look more closely at products in Meas. Given two measurable
spaces, A and B, their product is the cartesian product of the sets A and B, endowed with the
σ-algebra generated by the “rectangles” obtained as cartesian product of a measurable subset
of A times a measurable subset of B. With this σ-algebra, both projections are measurable. For
a subset E ⊆ A×B, the sections of E are the sets: Ea = {b : (a, b) ∈ E}, Eb = {a : (a, b) ∈ E}.
Each section of a measurable subset of the product is measurable.

If µ is a probability measure on A and ν a probability measure on B, we can define the
probability measure µ× ν on A×B by (µ× ν)(E) =

∫

µ(Eb)dν =
∫

ν(Ea)dµ.
Going in the other direction, a probability measure µ on A×B induces via the projections,

a measure on each of the factor spaces. These measures are called marginals, and denoted by
marAµ = (∆πA)µ = µ ◦ π−1

A ; marBµ = (∆πB)µ = µ ◦ π−1
B .

Lemma 1.3 Let µ be a probability measure on a product measurable space A×B. If marBµ =
δb0 for some b0 ∈ B then µ = marAµ× δb0 .

2 Formulation of Type Spaces as Coalgebras

The first constructions of Harsanyi type spaces were based on a hierarchy of beliefs. In this
hierarchical approach, as seen for example in [8], types are constructed by detailing the players’
beliefs about nature, about the other players’ beliefs about nature, etc. Since each type gives
a probability measure on the set of all types, there is a function from types to probability
measures on states of nature and types. As we noted before, this is almost a coalgebra, except
that there are some extra conditions imposed on these functions.

At this point, we need to formulate the category of interest. Fix a set I of players. We
assume that 0 /∈ I and we then define I0 = I ∪ {0}. This “0” stands for “nature”, and so I0
includes nature as one of the players (but one who won’t have beliefs about the other players).
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We consider I and I0 as discrete categories. Usually I is finite, but nothing we do hinges on
this.

We shall be interested in MeasI . The objects here are familes X = (Xi)i∈I of measurable
spaces, and the morphisms are also tuples of measurable maps. Fix a measurable space M to
represent the “states of nature”, and write X0 for M . Each player should have beliefs about
nature and about the beliefs of the other player. This leads to the following definition.

Let C : MeasI → Meas be the functor given by

CX =
∏

i∈I0

Xi

At first glance, it might look like what we want is to consider for each xi ∈ Xi, a probability
measure on CX. However, this is not what we want because it misses an important intuition
concerning type spaces. This is that players should know their own types. In other words, each
player i should only have beliefs about the (joint distribution on) other players’ beliefs; i’s own
beliefs should not even enter in. Thus we define functors Ui : MeasI → Meas given by

Ui(X) = Π{Xj | j ∈ I0, j 6= i}.

Ui acts the obvious way on morphisms. Note that Ui depends on the space M of nature, even
though our notation does not mention this.

Now CX = UiX × Xi up to isomorphisms. The fact we mentioned above, about player i
knowing her own type is modeled in [4] by adding the condition that the corresponding measure
on CX has marginal δxi

on Xi. Here is where Lemma 1.3 plays a role allowing us to recast type
spaces as coalgebras: it is essentially the same to consider measures on UiX and measures on
CX for which the marginal on Xi is a Dirac measure on a point (and we can easily tell which
point that would be).

Finally our main innovation and the one that lets us model type spaces as coalgebras is to
work in MeasI , rather than working with the product of the different spaces considered.

Let F : MeasI → MeasI be defined by

F(X) = (∆Ui(X))i∈I

As before ∆ is the probability measure space functor, and once again, our notation elides the
underlying space M of nature.

This way, instead of having a family of functions in Meas, each one of them with a condition
on one of its marginals, any morphism in MeasI works as a coalgebra structure. The particular
functor we use automatically takes care of the condition on marginals.

Definition A Harsanyi type space (over M) is a coalgebra for the functor F in the category
MeasI . A universal type space is a final coalgebra for F in MeasI .

The points of CX are called states of the world. A point of Xi is called an i-type.

Our main result here is that there is a universal Harsanyi type space. Our proof follows
that of Heifetz and Samet [4]. (However, they did not formulate type spaces as coalgebras.) In
order to make the ideas more transparent, and also because the method is much more general,
we shall temporarily forget about all of the machinery involved in the multi-player setting.
Instead, we consider functors on Meas built using ∆. We show in Section 3 below that each
such functor has a final coalgebra.
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3 Coalgebraic Modal Logic for Functors on Measurable Spaces

3.1 Syntax and Semantics

Definition The class of measure polynomial functors is the smallest class of functors on Meas

containing the identity, each measurable spaces M and closed under products, coproducts, and
∆.

For a measure polynomial functor T , we define Ing(T ), the ingredients of T , by the following
recursion: For a “constant” space M , Ing(M) = {M, Id}, Ing(Id) = {Id} Ing(U × V ) = {U ×
V } ∪ Ing(U) ∪ Ing(V ), and similarly for U + V ; Ing(∆S) = {∆S} ∪ Ing(S). Each T has only
finitely many ingredients.

Syntax We define just below a language L(T ). The language is sorted, and the sorts are the
ingredients of T . We write ϕ : S to mean that ϕ is a formula of sort S; when we need it, we let
FormS denote the set of such formulas.

1. If M ∈ Ing(T ) and A is a measurable subset of M , then A : M .

2. true Id : Id .

3. If S ∈ Ing(T ) and ϕ,ψ : S, then also ϕ ∧ ψ : S and ¬ϕ : S.

4. If U × V ∈ Ing(T ), ϕ : U , and ψ : V , then 〈ϕ,ψ〉 ∈: U × V .

5. If U+V ∈ Ing(T ) (V +U ∈ Ing(T )) and ϕ : U , then inlU+V ϕ : FormU+V (inrV +Uϕ : V + U).

6. If ∆S ∈ Ing(T ) and ϕ : S and p ∈ [0, 1], then βpϕ : ∆S.

7. If ϕ : T , then [next]ϕ : Id .

Semantics Let c : X → TX be a coalgebra of T . The semantics assigns to each S ∈ Ing(T )
and each ϕ : S a subset [[ϕ]]cS ⊆ SX.

[[A]]cM = A
[[true Id ]]c

Id
= X

[[ϕ ∧ ψ]]cS = [[ϕ]]cS ∩ [[ψ]]cS
[[¬ϕ]]cS = −[[ϕ]]cS
[[〈ϕ,ψ〉U×V ]]cU×V = [[ϕ]]cU × [[ϕ]]cV

[[inlU+V ϕ]]cU+V = Pinl UX+V X([[ϕ]]cU )

[[inrU+V ϕ]]cU+V = Pinr UX+V X([[ϕ]]cV )
[[βpϕ]]c∆S = βp([[ϕ]]cS)
[[[next]ϕ]]c

Id
= c−1([[ϕ]]cT )

The notation Pf(A) indicates throughout the paper the image under f of the set A. We
check easily that [[ϕ]]cS is always a measurable subset of SX. In the sequel, we shall omit the
superscripts on the pairing, inl , and inr operators, since they are mostly clear from the context.
We also will occasionally omit the superscript c and the sort subscript when dealing with the
semantics of ϕ : S on a particular coalgebra c : X → TX.

Remark As we mentioned, if M is a measurable space, then the measurable subsets of M are
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taken as formulas. This departs from most of the treatments in coalgebraic modal logic, where
one would take the elements ofM as formulas; these formulas are then interpreted by singletons.
Our treatment here makes for a more expressive language. We feel that when dealing with a
space like [0, 1], one might want to have a set denoting a subinterval or a measurable subset of
it. Also, there is a technical advantage: at various points, it will be good to know that the set
of interpretations of formulas of all sorts coincide with the measurable subsets. To get this, one
clearly must start with the measurable subsets of the constants. The only price we pay for this
is that we require that all spaces be separative: that is, for each x ∈M , {x} is the intersection
of all measurable A containing x. (However, with more work this requirement may be lifted:
see Section 5.1.)

Lemma 3.1 Coalgebra morphisms preserve the semantics. That is, if f : b→ c is a morphism
of coalgebras b : X → TX and c : Y → TY , and if ϕ : S, then (Sf)−1([[ϕ]]cS) = [[ϕ]]bS .

3.2 The description operations, and the canonical spaces

For each coalgebra c : X → TX and each x ∈ SX, we define

dc
S(x) = {ϕ : S |x ∈ [[ϕ]]cS}.

In the terminology of this paper’s title, each such set dc
S(x) is a satisfied theory.

For each S ∈ Ing(T ), we define S∗, the canonical domain of sort S, to be the following
measurable space. In each case, the underlying set is

S∗ = {dc
S(x) | for some c : X → TX, x ∈ SX}.

Note that each S∗ is a set; indeed it has cardinality at most 2cλ, where c = 2ℵ0 is the cardi-
nality of the continuum, and λ is the is maximum of the cardinalities of the sets of measurable
subsets of the constant functors in Ing(T ). Usually we will use letters like s for elements of S∗.
For the σ-algebra, we first take the boolean algebra of subsets of S∗ of the form

|ϕ|S = {s ∈ S∗ |ϕ ∈ s}. (2)

This is a boolean algebra because the language has boolean operations interpreted classically.
Then the σ-algebra on each S∗ is the one generated by this boolean algebra. (Incidentally, each
S∗ is separative: s =

⋂

{|ϕ|S | s ∈ |ϕ|S}.)

Lemma 3.2 For all c : X → TX, all S ∈ Ing(T ):

1. For all ϕ : S, [[ϕ]]cS = (dc
S)−1(|ϕ|).

2. dc
S : SX → S∗ is measurable.

7



3.3 The maps rS : S∗ → S(Id∗)

We introduce some notation for the statement below and for the sequel. For ϕ : S, let

ϕ = PrS(|ϕ|).

Lemma 3.3 There is a family of measurable maps rS : S∗ → S(Id∗) indexed by the ingredients
of T such that the following hold:

a. For all coalgebras c : X → TX the diagram below commutes:

SX

dc

S

��

Sdc

Id

##H

H

H

H

H

H

H

H

H

S∗
rS

// S(Id∗)

(3)

b. rS is injective.

c. The σ-algebra on S(Id∗) is generated by the sets ϕ for ϕ : S.

Proof The maps rS : S∗ → S(Id∗) are defined by recursion on Ing(T ).
For S = Id , we take rS to be the identity on Id∗.
For the constant functor M , recall that we are assuming that M is separative. It follows

that for each m ∈ M∗ there is a unique x ∈ M such that m ⊇ {A ∈ M : x ∈ A}. (Note that
since we have boolean connectives even in the formulas of constant sort, we in fact will not have
equality here.) We define rM : M∗ → M so that rM (m) is the unique x with this property.
Then rM is a bijection preserving measurability in both directions.

Products We define
rU×V (s) = 〈rU (π1(s)), rV (π2(s))〉. (4)

Before going further, we must explain this notation a bit. If s ∈ (U × V )∗, then s contains
formulas of the form 〈ϕ,ψ〉 where ϕ : U and ψ : V . But s contains formulas not of this shape:
boolean combinations of formulas of the form 〈ϕ,ψ〉. So by π1(s) we mean the set of ϕ : U
such that for some ψ : V , 〈ϕ,ψ〉 ∈ s. Similar remarks apply to π2(s), of course. We omit all
the details of the verification of (a)–(c), only noting one equation that we establish here and
use later:

r−1
U×V (ϕ× ψ) = |〈ϕ,ψ〉|. (5)

Coproducts We omit in this extended abstract all details concerning the coproduct con-
struction.
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From descriptions of measures to measures on descriptions The inductive step for
∆S is the most involved in this lemma. So assume that we have rS for S.

Let s ∈ (∆S)∗. To define r∆Ss, it is enough by the induction hypothesis, part (c), to define
its value on each subset of S(Id∗) of the form ϕ, where ϕ here ranges over formulas of sort S.

We provisionally define r∆Ss on each set ϕ by

r∆Ss(ϕ) = max{p |βpϕ ∈ s}. (6)

We now establish an important property of this provisional definition. Let c : X → T (X)
be a coalgebra, and let µ ∈ ∆S(X) be such that s = dc

∆S(µ). We claim that

µ({y ∈ SX | dc
S(y) ∈ |ϕ|}) = r∆Ss(ϕ). (7)

Note that {y ∈ SX | dc
S(y) ∈ |ϕ|} is measurable by Lemma 3.2. Let q be the value on the left,

and let p be the value on the right. By Lemma 3.2, q = µ([[ϕ]]cS). So µ ∈ [[βqϕ]]c∆S . Since
s = dc

∆S(µ), βqϕ ∈ s. Thus q ≤ p. But in the other direction, note that βpϕ ∈ s by definition of
p. And again since s = dc

∆S(µ), µ ∈ [[βpϕ]]c∆S . That is, µ([[ϕ]]cS) ≥ p. Thus q ≥ p. We conclude
that p = q, establishing (7).

We now use the induction hypothesis Sdc
Id

= rS ◦ dc
S and the injectivity of rS to re-write

(7) as
∆Sdc

Id(µ)(ϕ) = µ((Sdc
Id )−1(ϕ)) = r∆Ss(ϕ).

So we may now officially define r∆Ss = ∆Sdc
Id

(µ) for any µ with s = dc
∆S(µ). We are sure

to get a measure this way. Moreover, the definition is independent of the particular µ. (For
suppose that if ν, too, is such that s = dc

∆S(ν), then for all ϕ, ∆Sdc
Id

(ν)(ϕ) = max{p |βpϕ ∈ s}.
But then ∆Sdc

Id
(µ) and ∆Sdc

Id
(ν) agree on the generators of the σ-algebra on ∆S(Id∗). So we

would have ∆Sdc
Id

(µ) = ∆Sdc
Id

(ν), as desired.)
And we now know that each triangle as in (3) commutes. We emphasize that (6) holds

for all ϕ : S. We continue by checking that r∆S is measurable. The σ-algebra on ∆S(Id∗) is
generated by the sets

βp(ϕ) = {µ ∈ ∆S(Id∗) |µ(ϕ) ≥ p},

for ϕ : S and p ∈ [0, 1]. The inverse image under r∆S of this set is {s ∈ (∆S)∗ |βpϕ ∈ s} =
|βpϕ|∆S , and this is measurable in (∆S)∗. Reading this the other way, we can see that the
σ-algebra on ∆S(Id∗) is generated by the sets Pr∆(|ψ|), as ψ runs through formulas of sort
∆S.

We conclude by checking the injectivity of r∆S . Suppose that r∆Ss = r∆St. Then the two
sets s and t agree on all formulas of the form βpϕ. An easy induction shows that they agree on
all boolean combinations of such formulas. So s and t agree on all formulas of sort ∆S. Thus
they are the same set. ⊣

3.4 The canonical model of L(T )

At this point, we are almost ready to define the canonical model. We need a preliminary concept
first. For each s ∈ Id∗, let

next−1(s) = {ϕ : T | [next]ϕ ∈ s}. (8)
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Lemma 3.4 For each s ∈ Id∗, next−1(s) ∈ T ∗. Moreover, this defines a measurable injective
function next−1 : Id∗ → T ∗.

We define c∗ : Id∗ → T (Id∗) to be

rT ◦ next−1 : Id∗ → T ∗ → T (Id∗) (9)

Note that c∗ is injective. We shall show that c∗ is a final T -coalgebra. As our title indicates,
we build final coalgebras from satisfied theories.

In the statement and proof of the Truth Lemma below, recall that for ϕ : S, ϕ denotes
PrS(|ϕ|).

Lemma 3.5 (Truth Lemma) For all formulas ϕ of L(T ), ϕ = [[ϕ]]c
∗

S . That is, the diagram
below commutes:

FormS

|−|S
��

[[ ]]c
∗

S

&&L

L

L

L

L

L

L

L

L

L

P(S∗)
PrS

// P(S(Id∗))

Proof By induction on ϕ.
The base case concerns a measurable subset A of some M ∈ Ing(T ). Recall that rM :

M∗ → M has the property that rM ◦ dM = IdM and that |A|M = {dM (x) |x ∈ A}. So
PrM (|A|M ) = {x |x ∈ A} = A = [[A]]M .

The steps for true Id and the boolean connectives are easy. We omit the inductive step for
inlϕ : U + V .

The inductive step for 〈ϕ,ψ〉 : U × V is similar. Our induction hypothesis is that ϕ = [[ϕ]]c
∗

U

and ψ = [[ψ]]c
∗

V . Equation (5) tells us that r−1
U×V (ϕ × ψ) = |〈ϕ,ψ〉|. This means that ϕ × ψ =

〈ϕ,ψ〉. Hence

〈ϕ,ψ〉 = ϕ× ψ = [[ϕ]]c
∗

U × [[ψ]]c
∗

V = [[〈ϕ,ψ〉]]c
∗

U×V .

Here is the inductive step for sentences βpϕ of sort ∆S. For all s ∈ (∆S)∗, we have the
following equivalences:

s ∈ |βpϕ|∆S

iff βpϕ ∈ s by (2)
iff max{q |βqϕ ∈ s} ≥ p
iff r∆S(s)(ϕ) ≥ p by (6)
iff r∆S(s)([[ϕ]]c

∗

S ) ≥ p by induction hypothesis

iff r∆S(s) ∈ [[βpϕ]]c
∗

∆S by the semantics of βpϕ

From the overall equivalence, we see that [[βpϕ]]c
∗

∆S = (Pr∆S)(|βpϕ|∆S), as desired.
We omit the inductive step for [next]ϕ. The argument is similar to what we have seen, and

it uses equations (2 and (8), and also the semantics of [next]ϕ in c∗.
This completes the proof. ⊣
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3.5 The Final Coalgebra Theorem

We end this section by proving that each measure polynomial functor T has a final coalgebra.

Lemma 3.6 dc∗

Id
= Id Id

∗.

Proof If ϕ : Id , then by the Truth Lemma, [[ϕ]]c
∗

Id
= ϕ. And since the map rId in Lemma 3.3

is also the identity, this is exactly |ϕ|. So we see that

dc∗

Id (s) = {ϕ | s ∈ [[ϕ]]c
∗

Id} = {ϕ | s ∈ |ϕ|} = s.

⊣

Lemma 3.7 For each coalgebra c : X → TX, the diagrams below commute:

X
c

//

dc

Id

��

TX

dc

T

��

Tdc

Id

$$H

H

H

H

H

H

H

H

H

Id∗

next−1

// T ∗
rT

// T (Id∗)

Hence dc
Id

is a morphism of coalgebras.

Proof The verification of the square is easy, and the triangle comes from Lemma 3.3. ⊣

Theorem 3.8 c∗ : Id∗ → T (Id∗) is a final coalgebra of T .

Proof Let c : X → TX be a T -coalgebra. By Lemma 3.7, dc
Id

is a coalgebra morphism. For
the uniqueness, suppose that f is any morphism. Since f preserves descriptions, dc∗

Id
◦ f = dc

Id
.

But by Lemma 3.6, dc∗

Id
= Id Id

∗ . So f = dc∗

Id
◦ f = dc

Id
, just as desired. ⊣

4 The Universal Harsanyi Type Space

In this section, we show how to adapt our work to the case of Harsanyi type spaces considered as
coalgebras on MeasI . To make the notation more manageable, we assume that I = {1, 2, 3}. Let
M be a fixed separative measurable space. Let Pr1, Pr2, and Pr3 be the obvious projections
Pr i : MeasI → Meas. Let U1, U2, and U3 be the functors Ui : MeasI → Meas given as
follows: U1(X1,X2,X3) = M ×Pr2×Pr3, U2(X1,X2,X3) = M ×Pr1 ×Pr3, U3(X1,X2,X3) =
M × Pr1 × Pr2. Let Ti = ∆Ui. So we are interested in the functor F : MeasI → MeasI given
by (T1, T2, T3).

We write Ing(F) for {M,Ui, Ti,Pr i | i = 1, 2, 3}.
We formulate our language L to have formulas of sort S for S ∈ Ing(F). L is defined as

follows: true Pr i
: Pr i. If A is a measurable subset of M , then A : M . If ϕ0 : M , ϕ2 : Pr2,

ϕ3 : Pr3, then 〈ϕ0, ϕ2, ϕ3〉 : U1. We have similar clauses for U2 and U3. We also have clauses
for the ∆ functors: if ϕ : Ui, then βpϕ : Ti. If ϕ : Ti, then [next]ϕ : Pr i. We also take boolean
conjunction and negation on all sorts. (This is not really needed for the M sorts.)

11



Let X = (X1,X2,X3), and let c : X → FX be a coalgebra of F. The semantics assigns
to each S ∈ Ing(F) and each ϕ : S a subset [[ϕ]]cS ⊆ SX. Here are some representative cases.
[[true Pr i

]] = Xi. Suppose that ϕ0 : M,ϕ2 : Pr2 and ϕ3 : Pr3, then 〈ϕ0, ϕ2, ϕ3〉 : U1. We set
[[〈ϕ0, ϕ2ϕ3〉]]

c
U1

= [[ϕ0]]
c
M × [[ϕ2]]

c
Pr2

× [[ϕ3]]
c
Pr3

. Finally, suppose that ϕ : U3 so that βpϕ : T3.
Given [[ϕ]]cU3

⊆ U3(X), we set [[βpϕ]]cT3
= βp([[ϕ]]cU3

) ⊆ T3(X).
For a F-coalgebra X, and S ∈ Ing(F), we define dc

S so that dc
S(x) = {ϕ : S |x ∈ [[ϕ]]cS}. We

also define |ϕ|S and S∗ just as before, using the sets |ϕ|S as the generators of the σ-algebra on
S∗. Each dc

S is again measurable.
Much of the remaining constructions are similar to what we have already seen. The role of

Id∗ is played by (Pr∗1,Pr∗2,Pr∗3). This turns out to be the carrier of the final coalgebra for F.

Lemma 4.1 There is a family of measurable maps rS : S∗ → S(Pr∗1,Pr∗2,Pr ∗3) indexed by
Ing(F) such that the following hold:

a. For all coalgebras c : X → FX, rS ◦ dc
S = Sdc

(Pr
∗

1
,Pr

∗

2
,Pr

∗

3
).

b. rS is injective.

c. The σ-algebra on S(Pr ∗1,Pr∗2,Pr∗3) is generated by the sets ϕ for ϕ : S.

The proof follows closely the work outlined in Lemma 3.3. Notice that as defined here, all
the ingredients of F are functors from MeasI to Meas.

As the reader has probably guessed, the work here can be generalized to polynomials on
MeasI . These are I-indexed family of functors Ti : MeasI → Meas built from the projections,
constants for separative spaces, products and sums, and ∆. The work in this section generalizes
to show that each polynomial on MeasI has a final coalgebra. The details are not much more
than what we have seen.

5 Further Variations and Extensions of the Basic Construction

We have already seen the main construction of final coalgebras for the polynomials on Meas

built from separative spaces. We also saw (by example) how to generalize this to systems,
thereby building the universal Harsanyi type spaces. The rest of the paper offers variations and
extensions of the basic technique.

5.1 Extension: Non-separative Spaces

The main point of working with separative spaces is that the points of such a space may be
recovered from the σ-algebra (as the set of all singleton intersections) and from the satisfied
theories in our language. This allowed us to have a language for the measurable subsets of
various spaces. In the absence of separativity, we need to do more work. For each S ∈ Ing(T ),
we need two different sorts of formulas. We call these Formpt(S) and Formset(S), for the points
and sets of sort S, respectively. If M ∈ Ing(T ) is a constant functor, then Formpt(M) is
the set of elements m ∈ M . In the semantics, we have [[m]] = {m}. (This is not in general
measurable.) Just as before, Formset(M) is the set of measurable subsets of M . For the product
construction, if ϕ ∈ Formpt(S), then [π1]ϕ ∈ Formpt(S × T ). There is also a [π2]ϕ construction,
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and also constructions for coproducts. These are as expected, as is the semantics in each case.
Where things are a little different is with ∆. Here if ϕ ∈ Formset(S) and p ∈ [0, 1], then
βpϕ ∈ Formpt(∆S). The reason for this is that a measure µ on S is specified by the values µ(E)
for events E, not points. We also take Formpt(∆S) and Formset(∆S).

In this setting, we have for each S and each coalgebra c two description functions. We define
the spaces S∗ by taking the points to be the satisfied theories of sort Formpt(S) and then by
endowing this set with a σ-algebra derived from the satisfied theories of sort Formset(S). To
keep this abstract short, we omit all the details here.

5.2 Variation: Finite Kripke Polynomials on Set

In this section, we check that the same method gives representations for final coalgebras for
functors on Set built from the identity functor, the finite power set functor, product and co-
product, fixed (finite or infinite) sets, and functions from a fixed set.

To avoid double subscripts or confusion with our notation P for the power set functor, we
shall use Q for the finite power set functor on Set. Being a functor, we shall apply Q to functions
as well as sets, writing, e.g., Qr(X) for the image r[X] of the finite set X under r.

Our syntax is constructed so that if A ∈ Ing(T ), then each element a ∈ A is a formula of
sort A. Further, if QS ∈ Ing(T ) and ϕ : S, then 2ϕ : QS.

In our semantics, we define [[a]]cA = {a}, and also

[[2ϕ]]cQS = P([[ϕ]]cS). (10)

One then checks that on each coalgebra, [[ϕ]] is always a set. Most of the rest of the results
go through with only minor changes, dropping the word “measurable” and anything having to
do with the measure space structure. The only differences are in Lemma 3.3 and the Truth
Lemma 3.5.

Lemma 5.1 For each S ∈ Ing(T ), there is a bijective map rS : S∗ → S(Id∗) such that for all
coalgebras c : X → TX, rS ◦ dc

S = Sdc
Id

.

The proof here is not an immediate adaptation from Lemma 3.3 above. The argument for
Lemma 5.1 is more along the lines of classical work in modal logic, as is the argument for the
key inductive step in the Truth Lemma below.

Lemma 5.2 (Truth Lemma) For all S ∈ Ing(T ) and all ϕ : S, ϕ = [[ϕ]]c
∗

S .

Theorem 5.3 For each Kripke polynomial functor T , c∗ : Id∗ → T (Id∗) is a final coalgebra.

5.3 Variation: Vietoris Polynomial Functors on Stone

We next consider the same general results for the Vietoris polynomial functors on the category
of Stone spaces. For all relevant definitions, see Kupke, Kurz, and Venema [7]. We shall use the
following definitions. If X is a Stone space, we let K(X) denote the set of compact subsets of
X. For any K ⊆ X, 2K denotes is the set of all compact subsets of K. Further, 3K denotes
the set of all compact subsets of X whose intersection with K is non-empty.
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Lemma 5.4 Let S be a basis of the Stone space X. Then the collection of sets

{2K |K ∈ S} ∪ {3K |K ∈ S}

is a basis of the topology on V(X).

We take a language having, for each Stone space X, all clopen subsets of X as formulas of
type X. We also take a modal operator 2 so that if ϕ is of type S, 2ϕ is of type VX. The
semantics is

[[2ϕ]]cVS = 2[[ϕ]]cS . (11)

Since Stone spaces are closed under topological function spaces, we may also add the obvious
syntax for functors from a given space D. One then checks that on each coalgebra X, [[ϕ]]S is
always a clopen subset of SX.

We define S∗ as before, and we give it the topology generated by the sets |ϕ|S . So each set
|ϕ|S is clopen. This results in a Stone space.

Lemma 5.5 There is a family of continuous maps rS : S∗ → S(Id∗) indexed by the ingredients
of T such that the following hold:

a. For all coalgebras c : X → TX the diagram below commutes:

SX

dc

S

��

Sdc

Id

##H

H

H

H

H

H

H

H

H

S∗
rS

// S(Id∗)

(12)

b. rS is injective.

c. The sets ϕ = PrS(|ϕ|) for ϕ : S form a basis of the topology on S(Id∗).

Proof By induction on S. We shall only give the induction step for VS. So assume that we
have rS so that all the properties in our lemma hold. We need rVS . Let y ∈ (VS)∗. We set

rVS(y) = PrS

(

⋂

{|ϕ| |ϕ : S and y ∈ |2ϕ|}

)

. (13)

For the remainder of this proof, we only use ϕ to range over formulas of type S. Using the ϕ
notation and the injectivity of rS , we may rewrite (13) as

rVS(y) =
⋂

2ϕ∈y

ϕ.

First of all, we must check for each y ∈ (VS)∗ that that
⋂

{|ϕ| : y ∈ |2ϕ|} is a compact
subset of S∗; then the fact that rS is continuous implies that the image of this set is also
compact. Fix y and also c : X → TX, and let Y ∈ VS(X) be such that y = dc

VS(Y ). Notice
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that whenever ϕ is such that 2ϕ ∈ y, we have Y ⊆ [[ϕ]]cS . (To see this, note that y ∈ |2ϕ|. And
then Y ∈ [[2ϕ]]c

VS . By our semantics in (11), Y ⊆ [[ϕ]]cS .) We claim that

PdS(Y ) =
⋂

y∈|2ϕ|

|ϕ|. (14)

To see this, let z ∈ Y . As we know, whenever ϕ is such that 2ϕ ∈ y, we have z ∈ [[ϕ]]cS ; in other
words, dS(z) ∈ |ϕ|. Since ϕ is arbitrary, dS(z) belongs to the right side of (14). In the other
direction, suppose that z ∈ S∗ is such that z belongs to |ϕ| whenever x ∈ |2ϕ|. We claim that
for some w ∈ Y , z = dS(w). For if not, then for each w ∈ Y there is some ψw : S such that
ψw ∈ z and ¬ψw ∈ dS(w). It follows that

Y ⊆
⋃

w∈Y

[[¬ψw]]cS .

The semantics of each sentence is a clopen, hence open, set. Since Y is compact, there is
a finite set Y0 ⊆ Y such that Y ⊆ [[

∨

w∈Y0
¬ψw]]. In other words, Y ∈ [[2

∨

w∈Y0
¬ψw]]VS .

Since y = dc
VS(Y ), we see that y contains 2

∨

w∈Y0
¬ψw. But then by the definition of z,

dS(z) ∈ |
∨

w∈Y0
¬ψw|. That is, for some w ∈ Y0, dS(z) ∈ |¬ψw|. This contradicts the fact that

ψw ∈ dS(z).
So at this point, we know (14). Recall the general fact that the image of a compact set

under a continuous map is compact. These imply that the definition of rVS(x) in (13) is a
compact subset of S∗. We still must show that for all coalgebras c, rVS ◦ dc

VS = VSdc
Id

. The
argument at this point is the same as the one in Lemma 5.1.

Next, we show that rVS is injective. Suppose that y 6= y′ belong to (VS)∗. We claim first
that there must be some ψ : S such that 2ψ ∈ y′ and 2ψ /∈ y (or vice-versa). For if y and y′

agreed on all 2ϕ formulas, then they would agree on all boolean combinations of such formulas,
and hence they would be equal. So fix 2ψ ∈ y′ \ y. Also, fix c : X → TX, and let Y ∈ VS(X)
be such that y = dc

VS(Y ). Then since 2ψ /∈ y, let z ∈ Y be such that z /∈ [[ψ]]cS . By (14),
dS(z) ∈

⋂

2ϕ∈y |ϕ|. So rS(dS(z)) ∈ rVS(y). However, since 2ψ ∈ y′, we have
⋂

2ϕ∈y′ |ϕ| ⊆ |ψ|.
Recall that dS(z) /∈ |ψ|. A fortiori, dS(z) /∈

⋂

2ϕ∈y′ |ϕ|. Finally, since rS is injective, it follows
that rS(dS(z)) /∈ rVS(y′). We conclude that rVS(y) 6= rVS(y′). This concludes the verification
that rVS is injective.

We check now that rVS is continuous. By Lemma 5.4, we need only consider the sets 2ϕ
and 3ϕ for ϕ : S and check that the inverse images under rVS of such sets are open in (VS)∗.
Then for all y ∈ (VS)∗,

rVS(y) ∈ 2ϕ iff rVS(y) ⊆ ϕ
iff y ∈ |2ϕ|

So the inverse image of 2ϕ is the open set |2ϕ|. It also follows from the calculation above that

rVS(y) ∈ 3ϕ iff rVS(y) /∈ 2¬ϕ
iff y /∈ |2¬ϕ|
iff y ∈ |¬2¬ϕ|

We conclude that the inverse image of 3ϕ is open.
Finally, the collection S of sets ϕ for ϕ : VS includes the collections of sets 2ϕ and 3ϕ.

Also, S is closed under intersection. So it forms a basis of the Vietoris topology on V(S(Id∗)) =
(VS)(Id∗). ⊣
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5.4 Other spaces

We are confident that the technique here extends to other kinds of concrete categories, such as
compact Hausdorff spaces and the Borel probability measure with the weak ∗-topology. This
case had been studied in relation to type spaces beginning with [1]. Indeed, we hope to expand
the technique as much as possible in the coming months.

5.5 Conclusion and future directions

This paper has had two overall points. First, we connect work in the economics/game theory
area with coalgebras. We feel that most, if not all, of the contructions of universal type spaces
and related objects may be obtained by our method. We intend that the final version of our
paper will show this. The more common method in the area is to construct an ωop-limit and
then follow this by a subspace construction. Though we did not discuss the matter here, we feel
that the our method is somewhat simpler. As we have indicated, it generalizes easily to other
settings. We also already generalized known results from particular functors to polynomials.
Since the theories here are connected to logic, it should be possible to formulate logical systems
for all the functors involved and prove completeness theorems. But this we leave to future work.

The construction of using satisfied theories to obtain final coalgebras is quite old in the area
of coalgebra and its predecessors. For coalgebras per se, one can find it in Rutten [11]. The
technique is perhaps implicit in Kurz, Kupke, and Venema [7]; this paper also contains a note
that Jacobs’ final coalgebra result in [6] for Kripke polynomials on Set contains an error. Our
result does not use maximal consistent sets in a logical system but rather the satisfied theories.
This is simpler, though of course one must do more work to get completeness results. From the
side of coalgebra, perhaps what is most original here is taking a language for sets as opposed
to (or, in addition to) a language of points. The interplay of the two languages is well worth
studying.
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