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Abstract
We combine ideas coming from several fields, including modal logic, coalgebra, and set theory.
Modally saturated trees were introduced by K. Fine in 1975. We give a new purely combinatorial
formulation of modally saturated trees, and we prove that they form the limit of the final ωop-
chain of the finite power-set functor Pf . From that, we derive an alternative proof of J. Worrell’s
description of the final coalgebra as the coalgebra of all strongly extensional, finitely branching
trees. In the other direction, we represent the final coalgebra for Pf in terms of certain maximal
consistent sets in the modal logic K. We also generalize Worrell’s result to M -labeled trees for
a commutative monoid M , yielding a final coalgebra for the corresponding functor Mf studied
by P. Gumm and T. Schröder. We introduce the concept of an i-saturated tree for all ordinals
i, and then prove that the i-th step in the final chain of the power set functor consists of all i-
saturated trees. This leads to a new description of the final coalgebra for the restricted power-set
functors Pλ (of subsets of cardinality smaller than λ).

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.2 Semantics of Programming
Languages, G.2.2 Graph Theory

Keywords and phrases saturated tree, extensional tree, final coalgebra, power-set functor, modal
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1 Introduction

Final coalgebras play a fundamental rôle in the theory of systems represented as coalgebras:
J. Rutten [18] demonstrated that the final coalgebra describes all possible behaviors of
states of systems. For Kripke structures considered as the coalgebras for the finite power-set
functor Pf two beautiful descriptions of the final coalgebra exist: as the set of all hereditarily
finite sets in the non-wellfounded set theory due to P. Aczel, see [2], and as the set of all
strongly extensional, finitely branching trees1 due to J. Worrell [21]. He used metric spaces:
he described the limit Pω

f 1 of the final chain of Pf as the set of all strongly extensional,
compactly branching trees. From that he derived the above description of the final coalgebra.
We give below two new descriptions that do not need topology, one combinatorial and one
using modal logic. We prove that the limit Pω

f 1 consists (a) of all saturated trees or (b) of
all maximal consistent theories of the modal logic K. And an alternative description of the
final coalgebra is: the set of all hereditarily finite (maximal consistent) theories. Related

1 Throughout the paper trees are directed graphs with a distinguished node called the root from which
every other node can be reached by a unique directed path, and they are always considered up to
isomorphism. Strong extensionality for trees is recalled in Section 2 below.
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descriptions were provided by S. Abramsky [1], A. Kurz and D. Pattinson [14] and by
J. Rutten [17, Theorem 7.4].

We also present a generalization in two directions: one uses finite multisets with mul-
tiplicities drawn from a given commutative monoid M , as introduced by H. P. Gumm and
T. Schröder [12]. Form the functor Mf of all such finite multisets; its coalgebras are la-
beled transition systems with actions from M \ {0}. We prove a direct generalization for
all monoids for which Mf preserves weak pullbacks: the final coalgebra for Mf consists of
all finitely branching, strongly extensional M -labeled trees. For general monoids this result
is not true, but we prove that the final coalgebra for Mf is the coalgebra of extensional,
finitely branchingM -labeled trees modulo an equivalence generalizing M. Barr’s equivalence
for Pf , see [7].

The other direction of generalization of the final coalgebra for Pf is from finite subsets
to subsets of cardinality less than λ, where λ is an infinite cardinal. The corresponding
power-set functor Pλ has the final coalgebra of all strongly extensional λ-branching trees,
as proved by D. Schwencke [19]. We present a different proof based on the description of the
final chain Pi1 of the (full) power-set functor P. We introduce the concept of an i-saturated
tree for every ordinal i (where ω-saturated is the above concept), and we describe Pi1 as
the set of all strongly extensional i-saturated trees.

2 Extensional and saturated trees

For an endofunctor H of Set recall that a coalgebra is a set A together with a morphism
a : A → HA. A coalgebra homomorphism into b : B → HB is a morphism f : A → B with
b·f = Hf ·a. The final coalgebra, if it exists, is denoted by νH; by Lambek’s Lemma [15]
its coalgebra structure is an isomorphism νH

∼−−→ H(νH). For example Kripke struc-
tures (W,R, l) where R ⊆ W × W and l : W → 2AP are precisely the coalgebras for
HX = PX × 2AP where AP is a fixed set of atomic propositions and P is the power-
set functor. In the present paper we restrict ourselves to the case AP = ∅. Then Kripke
structures are simply graphs, or coalgebras for P. And the finitely branching graphs are
coalgebras for the finite power-set functor Pf .

In this and the next section we describe the final coalgebra for Pf . Lambek’s Lemma
implies that P does not have a final coalgebra, but we describe the final chain of P in
Section 5.

Recall from [7], dualizing the initial chain of [4], the final chain of H which is the chain
W : Ordop → Set determined (uniquely up-to natural isomorphism) by its objects Wi,
i ∈ Ord, and connecting morphisms wi,j : Wi →Wj (i ≥ j) as followsW0 = 1,Wi+1 = HWi,
and Wi = limj<iWj for limit ordinals i and wi+1,j+1 = Hwi,j , whereas (wi,j)j<i is a limit
cone for limit ordinals i. If this chain converges at some ordinal i, i.e., the connecting map
HWi → Wi is an isomorphism, then its inverse yields the final coalgebra for H. The finite
steps of the final chain of H are called the final ωop-chain of H.

I Remark 2.1. Recall that coalgebras for P are simply graphs. When speaking about
morphisms between graphs (in particular trees) we always mean coalgebra homomorphisms
f : A→ B. That is, f preserves edges, and for every edge from f(a) to b in B there exists
an edge from a to a′ in A with b = f(a′). Quotients of graphs are, as usual, represented by
epimorphisms, that is, surjective morphisms.

I Definition 2.2. A tree is extensional if distinct children of any node define non-isomorphic
subtrees.



J. Adámek, S. Milius, L. S. Moss, L. Sousa 3

The extensional modification of a tree t is the smallest quotient of t which is extensional.
It is obtained from t by recursively identifying isomorphic subtrees whose roots have a joint
parent.

I Example 2.3. The extensional modification of the complete binary tree is the single path.

I Notation 2.4. For every tree t denote by ∂nt the extensional tree obtained by cutting t
at level n (i.e. deleting all nodes of depth > n) and forming the extensional modification.
For all trees t and u, we write t ∼n u to mean that ∂nt = ∂nu (remember that we identify
isomorphic trees).

I Remark 2.5. The final ωop-chain of Pf can be described as follows:

Pn
f 1 = all extensional trees of depth ≤ n with the connecting maps ∂n : Pn+1

f 1→Pn
f 1.

Indeed, the unique element of 1 can be taken to be the root-only tree. Given a set
M ⊆Pn

f 1, we identify it with the tree tupling of its elements and obtain a tree in Pn+1
f 1.

The first connecting map from Pf1 to 1 is obviously ∂0, and given that the n-th connecting
map is ∂n : Pn+1

f 1 → Pn
f 1, it follows that the next connecting map, Pf∂n, is (with the

above tree tupling identification) precisely ∂n+1.

I Definition 2.6. Two trees t and u are called Barr equivalent, notation t ∼ω u, provided
that t ∼n u holds for all n < ω.

I Remark 2.7. The set B of all finitely branching extensional trees is a coalgebra for Pf :
the coalgebra map is the inverse of tree tupling. This coalgebra is weakly final, and a final
coalgebra can be described as its quotient:

I Theorem 2.8 (see [7]). The final coalgebra for Pf can be described as the quotient B/∼ω
of the coalgebra of all finitely branching, extensional trees modulo Barr-equivalence.

I Definition 2.9 (see [21]). For trees t and s a tree bisimulation is a relation R ⊆ t× s such
that the roots are related, two related child nodes always have related parents, and R is a
bisimulation w.r.t. P; i.e., given related nodes a R b then for every child a′ of a in t there
exists a child b′ in s with a′ R b′, and vice versa.

I Example 2.10. The first two trees in the picture below are Barr-equivalent trees. The
third and fourth trees are two extensional trees (the third tree has n children of the n-th
node) that are bisimilar. In fact, every tree without leaves is bisimilar to the infinite path.
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I Definition 2.11 (see [21]). A tree t is called strongly extensional if distinct children of
any node are not bisimilar. Equivalently, every tree bisimulation R ⊆ t× t satisfies R ⊆ ∆t,
where ∆t is the diagonal relation on t.
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I Example 2.12. (1) Every finite extensional tree is strongly extensional.
(2) The infinite path is a strongly extensional tree. This is the only strongly extensional

tree without leaves: for every tree t without leaves the relation

x R y iff x and y have the same depth

is a tree bisimulation. Thus, the third tree in Example 2.10 shows an extensional tree which
is not strongly extensional.

I Definition 2.13. Given a tree t, the subtree of t rooted at the node x is denoted by tx.
A tree t is called saturated provided that for all nodes x of t and all trees s, if for all n,
there are children xn of x with s ∼n txn

(n < ω), then there is some fixed child y of x with
s ∼ω ty.

I Example 2.14. (1) Every finite tree is saturated.
(2) More generally: all finitely branching trees are saturated. Indeed, given xn as above,

there exists k < ω with xn = xk for infinitely many n, and then s ∼n txk
for infinitely

many n, proving s ∼ω txk
.

(3) The left-hand tree of Example 2.10 is not saturated. We obtain a saturated tree by
adding a new child whose subtree is the infinite path.

(4) For every set A ⊆ ω the following tree rA is saturated and strongly extensional: take
an infinite path and add a leaf at depth n iff n+ 1 lies in A. We know from item (2) that
rA is saturated, and strong extensionality is obvious.

I Lemma 2.15. Given saturated, strongly extensional trees t and u with t ∼ω u, we have
t = u. Therefore there exist precisely 2ℵ0 saturated, strongly extensional trees and they have
branching at most 2ℵ0 .

Proof. (a) For every child z of the root of u there exists a child y of the root of t with
ty ∼ω uz. Indeed, since t ∼n u for every n there exist children xn with txn

∼n uz (n < ω)
and then y exists since t is saturated. Conversely, for every y there exists z with ty ∼ω uz.
By continuing to lower nodes we conclude that the relation R ⊆ t×u defined recursively by

y R z iff
{

either y and z are the roots
or y and z have R-related parents and ty ∼ω uz

is a tree bisimulation. Clearly, the opposite relation Rop is a tree bisimulation, too, and, as
Pf preserves weak pullbacks, so are the composite relations Rop ◦R ⊆ t× t and R ◦Rop ⊆
u× u. Since t and u are strongly extensional, we conclude Rop ◦R ⊆ ∆t and R ◦Rop ⊆ ∆u.
Finally, since R and Rop are total relations, the last two inequalities are equalities, and this
implies that R is the graph of an isomorphism from t to u, i.e., t = u.

(b) The number of saturated, strongly extensional trees is at least 2ℵ0 by Example 2.14(4).
It is at most 2ℵ0 because every saturated strongly extensional tree t is determined by the
set M = {tx;x a child of the root of t}, and M is determined, due to (a), by the sequence
of sets Mn = {∂ns; s ∈ M} for n < ω. Since Mn is finite, the number of these sequences is
at most 2ℵ0 .

The last statement follows since every subtree of a saturated tree is saturated. J

Recall Worrell’s description of the limit Pω
f 1 = lim

n<ω
Pn
f 1 of the final chain of Pf as the

set of all compactly branching trees [21]. Here is a new combinatorial description:

I Theorem 2.16. The limit Pω
f 1 of the final ωop-chain of Pf can be described as the set

of all saturated, strongly extensional trees. The limit cone is (∂n)n<ω.



J. Adámek, S. Milius, L. S. Moss, L. Sousa 5

Proof. Let S be the set of all saturated, strongly extensional trees. We prove that ∂n : S →
Pn
f 1 (see Remark 2.5) is a limit cone. For definiteness, we denote the connecting morphism

of the final ωop-chain by ∂′n : Pn+1
f 1→Pn

f 1. It is obvious that ∂n = ∂′n·∂n+1, thus (∂n) is
a cone on the final ωop-chain.

(a) The cone ∂n is collectively monic by Lemma 2.15.
(b) For every compatible family rn ∈Pn

f 1 we prove that there exists t ∈ S with ∂nt = rn

for every n. Compatibility means rn = ∂′n(rn+1) for n < ω. Let r̂n+1 be the tree obtained
by cutting rn+1 at depth n. Since rn is extensional, the above equation tells us that rn is
a quotient of r̂n+1. Let en : r̂n+1 → rn be the corresponding epimorphism. Define a tree t
to have as nodes of depths k = 0, 1, 2 . . . all sequences x̄ = (x̄k, x̄k+1, x̄k+2 . . . ) of nodes
x̄n ∈ rn of depth k with en(x̄n+1) = x̄n for all n ≥ k. Thus the sequence of roots of
r0, r1, r2 . . . is the root of t. And edges are defined componentwise: there is an edge from
(x̄k, x̄k+1, x̄k+2 . . . ) to (ȳk+1, ȳk+2, ȳk+3, . . . ) iff (x̄n, ȳn) is an edge of rn for all n ≥ k + 1.
It is easy to verify that t is a well-defined tree.

(b1) We prove ∂nt = rn. To this end it suffices to establish that there is an epimorphism
of graphs from the cutting of t at level n to rn (the desired equality then follows since rn is
extensional). Consider the n-th projection. This is surjective:

For every node z ∈ rn there exists a node x̄ ∈ t with z = x̄n. Indeed, put x̄n = z, and
since en is an epimorphism, choose x̄n+1 ∈ e−1

n (x̄n), etc. Then x̄ = (x̄n, x̄n+1, x̄n+2 . . . ) has
the required property.

It is clear that the projection is a graph morphism: it preserves edges by the definition
of t. And analogously to the argument of surjectivity above, for every x̄ in t and every edge
from z = x̄n to z′ in rn there exists an edge from x̄ to x′ in t with z′ = (x̄′)n.

(b2) t is strongly extensional. Indeed, given a tree bisimulation R ⊆ t× t, we prove that
x̄ R ȳ implies x̄ = ȳ. Let k be the depth of x̄ and ȳ. From (b1) it follows that rnx̄n = ∂n(tx̄)
and rnȳn = ∂n(tȳ) for all n ≥ k. But x̄ R ȳ implies that R restricts to a tree bisimulation
between tx̄ and tȳ, thus, tx̄ ∼n tȳ. Consequently, rnx̄n = rnȳn . This implies x̄n = ȳn. (This is
clear from extensionality of rn in case k = 1. This finishes the proof of x̄ = ȳ if k = 1. For
k = 2, we conclude that x̄ and ȳ have the same parent, z̄, and apply the above to tz̄ in lieu
of t, etc.)

(b3) The tree t is saturated. Indeed, let s be a tree for which the condition of Defini-
tion 2.13 holds, taking x to be the root of t. (The proof for all other nodes x of t is completely
analogous.) That is, we have children x̄n of the root of t with s ∼n tx̄n

for n < ω. We prove
that the node ȳ of t with components ȳn =

(
x̄n
)n for all n ≥ 1 fulfils s ∼ω ty.

Firstly, we need to verify that ȳ is a node: en(ȳn+1) = ȳn. Both of these nodes are
children of the root of rn, thus, by extensionality we only need to prove that they define the
same subtree of rn. Let t̂x̄n

be the cutting of tx̄n
at level n− 1, then from (b1) we know

that rnȳn is the image of t̂x̄n under the n-th projection t → rn. Since rnȳn
is extensional,

this proves ∂ntx̄n
= rnȳn

and analogously for n+ 1. Moreover, from tx̄n
∼n s ∼n+1 tx̄n+1 we

deduce tx̄n
∼n tx̄n+1 . Consequently,

rnȳn = ∂ntx̄n+1 and rn+1
ȳn+1 = ∂n+1tx̄n+1 .

We also have ∂′nrn+1
ȳn+1 = rnen(ȳn+1) because the right-hand tree is extensional, and it is the

image of r̂n+1
ȳn+1 under en. Consequently, rnen(ȳn+1) = ∂′n∂n+1tx̄n+1 = ∂ntx̄n+1 . This proves

rnen(ȳn+1) = rnȳn
, thus, en(ȳn+1) = ȳn by extensionality of rn.

Next, we need to verify s ∼n tȳ for every n < ω. Indeed, we have s ∼n tx̄n
, and to prove

tx̄n
∼n tȳ observe that the n-th projection t → rn maps the cutting of tȳ onto rnȳn , thus,

rnȳn = ∂tȳ. We already observed that rnȳn = ∂ntx̄n
, thus, ∂ntx̄n

= ∂ntȳ. J
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I Corollary 2.17 (J. Worrell). The final chain of Pf converges in ω + ω steps with the
step ω + n given by the set Pω+n

f 1 of all saturated, strongly extensional trees finitely branch-
ing up to level n− 1. Moreover, the final coalgebra for Pf is given by

Pω+ω
f 1 = all finitely branching, strongly extensional trees.

Indeed, for n = 1 we have Pω+1
f = Pf (Pω

f 1) and we identify, again, every finite
set M ⊆ Pω

f 1 of saturated trees with its tree-tupling. This is, by Example 2.14(2), a
saturated, strongly extensional tree which is finitely branching at the root—and conversely,
every such tree is a tree tupling of a finite subset of Pω

f 1. Analogously for n = 2: we have
Pω+2
f = Pf (Pω+1

f 1) and the resulting trees are precisely those trees in Pω
f 1 that are

finitely branching at levels 0 and 1, etc. The connecting maps are the inclusion maps. The
limit Pω+ω

f 1 = limn<ω Pω+n
f 1 is the intersection of these subsets of Pω

f 1 which consists of
all finitely branching, strongly extensional trees: they are saturated, see Example 2.14(2).

3 Modally saturated trees

K. Fine [10] introduced the concept of modal saturatedness for Kripke structures in modal
logic. In this section, we review all of the needed definitions, and we prove that modally
saturated trees are the same as saturated trees.

(a) We work with modal logic formulated without atomic propositions. The sentences ϕ
of modal logic are then given by

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | �ϕ

We use the usual abbreviations:

⊥ = ¬> ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ = ¬ϕ ∨ ψ � ϕ = ¬ � ¬ϕ.

A sentence has depth n if n is the maximum of nested � in it.
(b) We interpret modal logic on Kripke structures. Since we have no atomic sentences,

our Kripke structures are just graphs G = (G,→), where → is a binary relation on the set
G. The main semantic relation is the satisfaction relation |= between the node set of a given
graph and the sentences of the logic. This is defined as follows:

a |= > always
a |= ¬ϕ iff it is not the case that a |= ϕ

a |= ϕ ∧ ψ iff a |= ϕ and a |= ψ

a |= �ϕ iff for all neighbors b of a, b |= ϕ

Given a tree t we write t � ϕ if the root satisfies ϕ.
(c) A theory is a set S of sentences. We write a � S if a � ϕ for all ϕ ∈ S and call a

a model of S.
(d) Turning to the proof system, the modal logic K extends the propositional logic

(Hilbert’s style) by one axiom �(ϕ → ψ) → (�ϕ → �ψ), called K, and one deduction rule:
if ϕ ∈ K then �ϕ ∈ K. We write ` ϕ if ϕ can be derived in this logic.

This logic is sound and complete. That is, ` ϕ holds iff for every node a of any graph,
a � ϕ.

(e) A theory S is inconsistent if for some finite {ϕ1, . . . , ϕn} ⊆ S, ` ¬
∧
ϕi. S is

consistent if S is not inconsistent. Or, equivalently, S has a model. If, moreover, S ∪ {ϕ} is
inconsistent for every sentence ϕ /∈ S, then S is maximal consistent.

(f) �S denotes the theory {�ϕ : ϕ ∈ S}, and �kS = �(�k−1S) for k ≥ 2.
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I Definition 3.1. We define canonical sentences χ of depth n by recursion on n, as follows:
(a) > is the only canonical sentence of depth 0, and
(b) canonical sentences of depth n+ 1 are precisely the sentences

∇S = (
∧
�S) ∧ �

∨
S

where S is a set of canonical sentences of depth n. We use the conventions that
∧
∅ = >,∨

∅ = ⊥, and we often identify sentences ϕ and ψ when ` ϕ↔ ψ in K.

I Example 3.2. We have two canonical sentences of depth 1.

∇∅ = > ∧ � ⊥ = �⊥ and ∇{>} = �> ∧ �> = �>

distinguishing whether the given node has a neighbor or not.

I Theorem 3.3 (K. Fine [10] and L. Moss [16]). For every node a of a graph and every n ∈ N
there exists a unique canonical sentence χ of depth n satisfied by a. Moreover, for every
canonical sentence χ of depth n and every sentence ψ of depth at most n, either ` χ → ψ

or ` χ→ ¬ψ.

I Corollary 3.4. The sentences of depth at most n form a finite set (up to logical equivalence
in K.

Proof. Observe first that there are only finitely many canonical sentences of depth n. Let
ψ be any sentence of depth n. Let A be the set of all canonical sentences χ of depth n with
` χ → ψ and let B be the canonical sentences χ of depth n with ` χ → ¬ψ. So we have
`
∨
A→ ψ and `

∨
→ ¬ψ. By Theorem 3.3, we have

`
∨
A ∨

∨
B.

So by propositional logic we have `
∨
A↔ ψ. Thus, every sentence of depth n is equivalent

to a disjunction of canonical sentences of depth n from which the desired result follows. J

I Notation 3.5. (a) For every tree t we denote by χn(t) the unique canonical sentence of
depth n satisfied in the root. It is easy to prove that

χn+1(t) = ∇
{
χn(tx) : x child of the root of t

}
.

(b) For any graph G, and any a ∈ G, we denote by Sa the set of all sentences ϕ with
a � ϕ in G. For a tree t, we similarly denote by St the set of sentences satisfied by the root
of t.

(c) Recall from [8] that the canonical model of K is the graph C whose nodes are the
maximal consistent theories, and with S → S′ iff �S′ ⊆ S (equivalently, �S ⊆ S′). The
Truth Lemma (see [8], Lemma 4.21) is the statement that for all S ∈ C,

{ϕ : S |= ϕ in C} = S.

This lemma is easy to check by induction on ϕ.

I Corollary 3.6. For two trees t and s we have t ∼n s iff t � χn(s). Consequently, t ∼ω s
iff St = Ss.

I Proposition 3.7. The limit Pω
f 1 can be described as the set C of all maximal consistent

theories in K.
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Proof. We have described Pω
f 1 as the set of all saturated, strongly extensional trees. We

prove that t 7→ St is a bijection between this set and C. This finishes the proof. (a) For
every t ∈ Pω

f 1 the theory St is maximal consistent. Indeed, it is is obviously consistent.
Given ϕ /∈ S of depth n, we have t 2 ϕ and t � χn(t), thus, 6` χn(t) → ϕ. By Theorem 3.3
` χn(t)→ ¬ϕ. Therefore, St∪{ϕ} is inconsistent. (b) By the Truth Lemma, every maximal
consistent theory S is of the form St for some t: let t be the expansion of the canonical graph
C at S. Moreover, t can be taken as saturated and strongly extensional, since the saturation
operation on trees preserves modal theories (see Corollary 3.6). J

I Definition 3.8. A theory S is called hereditarily finite if it is maximal consistent and for
every k ∈ N there exist only finitely many maximal consistent theories S′ with �kS′ ⊆ S.
I Theorem 3.9. The set of all hereditarily finite theories is a final coalgebra for Pf via the
coalgebra map S 7→ {S′ : �S′ ⊆ S}.
Proof. We prove that the bijection t 7→ St of Proposition 3.7 has the property that for
t ∈ Pω

f 1 we have that t is finitely branching iff St hereditarily finite. From that our
theorem follows, since the coalgebra map above corresponds to the coalgebra map of νPf .
Indeed:

(a) If St is hereditarily finite, then t is finitely branching. It is sufficient to verify that
t is finitely branching at the root. Given a node x of depth k, we then apply this to tx: the
theory of this subtree is also hereditarily finite, since �kStx ⊆ St (indeed: if tx � ϕ then
t � �kϕ).

Every child a of the root of t fulfils �Sta ⊆ St. Thus, there are only finitely many such
theories Sta . Now let a and b be children of the root of t with Sta = Stb , whence ta ∼ω tb
by Corollary 3.6. So since ta and tb are saturated and strongly extensional, we have ta = tb
by Lemma 2.15. Therefore, the root has only finitely many children.

(b) If t is finitely branching, then St is hereditarily finite. Indeed, for every maximal
consistent theory S′ with �kS′ ⊆ St let s be a tree with S′ = Ss (see Proposition 3.7). Then
for every n ∈ N we have t � �kχn(s), i.e., some node of t of depth k satisfies χn(s). Since
we have only finitely many such nodes, one of them, say a, satisfies χn(s) for all n. That
is, ta ∼n s for n ∈ N, hence, Sta = S′, see Corollary 3.6. Since we have only finitely many
nodes a of depth k, we see that St is hereditarily finite. J

I Definition 3.10 (see [10]). A graph is called modally saturated if for every node a, given
a theory S such that

a � �
∧
S0 for every finite S0 ⊆ S (3.1)

there exists a neighbor b of a satisfying S.

I Theorem 3.11. A tree is saturated iff it is modally saturated.

Proof. (a) Let t be modally saturated. Let a be a node in t, and let s be a tree with the
property that there exist children xn of a with s ∼n txn

(n < ω). We prove s ∼ω tb for
some child b. The theory Ss fulfils (3.1): given S0 ⊆ Ss finite, let n be the maximum of the
depths of all ψ ∈ S0; then ` χn(s)→ ψ for all ψ ∈ S0 (see Theorem 3.3). By Corollary 3.6,
s ∼n txn

iff xn |= χn(s), and this implies xn � ψ for all ψ ∈ S0. Thus, a � �
∧
S0. Let b be

a neighbor of a satisfying Ss. Then tb � χn(s) for all n; i.e., s ∼ω tb by Corollary 3.6.
(b) Let t be saturated. Let a be a node of t and S be a theory satisfying (3.1). For every

natural number n define Sn to be a set of representatives of all ψ ∈ S of depth at most n
modulo logical equivalence in K. By Corollary 3.4 the sentences of depth n form a finite set
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(up to logical equivalence).So we have that Sn is finite. By (3.1) we see that for every n,
there exists a child bn of a such that

bn � ψ for all ψ ∈ Sn.

It is our task to prove that a has a child b satisfying S.
Let v be the graph whose nodes are all canonical sentences χ of depth any n = 0, 1, 2, . . .

such that a � �χ and ` χ → ψ for all ψ ∈ Sn. We make v a graph using the converse of
logical implication in K. So the neighbors of the node χ are all the nodes χ′ of depth n+ 1
with ` χ′ → χ. The root is >, and every node χ′ of v has indeed a unique parent (so v
is a tree): since a � �χ′, we have a child c of a with c � χ′ which by Theorem 3.3 implies
χ′ = χn+1(tc). Put χ = χn(tc), then ` χ′ → χ. (This is because ` χ′ → ¬χ cannot happen
due to c � χ′ and c � χ. Now use Theorem 3.3). Consequently, χ is a parent of χ′. And
the uniqueness of the parent is obvious: suppose ` χ → χ′ where χ′ ∈ v has depth n, then
tc � χ′, therefore χ′ = χn(tc).

The tree v is obviously finitely branching. And since each χn(tbn) lies in v and each of
these formulas has a different depth, they form an infinite set of nodes of v. By König’s
Lemma, v has an infinite branch

> = χ0 ← χ1 ← χ2 . . .

Each S ∪ {χn} is consistent. Indeed, by compactness it is sufficient to verify that Sk ∪ {χn}
is consistent for every k ≥ n: due to a � �χk we have a child c of a satisfying χk, then tc is a
model of Sk (due to ` χk → ψ for all ψ ∈ Sk) and of χn (due to ` χk → χn). Consequently,
S ∪ {χ0, χ1, χ2, . . . } is consistent: use compactness again. Let s be a tree which is model
of the last theory. Then s � χn which by Theorem 3.3 implies χn = χn(s) for every n. On
the other hand, since a � �χn, we have a child cn of a with cn � χn, thus, χn = χn(tcn

).
By Corollary 3.6 this proves s ∼n tcn . Since t is saturated, there exists a child b of a with
s ∼ω tb. Then S ⊆ Ss = Stb which concludes the proof: b satisfies S. J

4 Finite multisets with multiplicities in a commutative monoid

Here we follow the approach of P. Gumm and T. Schröder [12] who investigated finitely
branching Kripke structures with transitions having weights from a given commutative
monoid (M,+, 0). These are just coalgebras for the functor Mf : Set → Set (denoted
by Mω in [12]) assigning to every set X the set MfX of all finite multisets in X, i.e. all
functions A : X → M with A−1[M \ {0}] finite. Given a function h : X → Y , the functor
Mf assigns to every finite multiset A : X →M the finite multiset Mfh(A) sending y ∈ Y to∑
x∈X,h(x)=y A(x).

I Example 4.1. The Boolean monoid P = {0, 1} yields the finite power-set functor Pf .
The cyclic group C = {0, 1} yields a functor Cf which coincides with Pf on objects but is
very different on morphisms.

I Definition 4.2. By an M -labeled graph G is meant a graph whose edges are labeled
in M \ {0}. We denote by wG : G × G → M the corresponding “weight” function with
wG(x, y) 6= 0 iff y is a neighbor of x.

I Remark 4.3. (a) The coalgebras for Mf are precisely the finitely branching M -labeled
graphs. Indeed, given such a graph G, define the coalgebra structure G→MfG by assigning
to every vertex x the finite multiset wG(x,−) : G→M . Conversely, every finitely branching
M -labeled graph is obtained from precisely one coalgebra of Mf .
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(b) Coalgebra homomorphisms between two finitely branching M -labeled graphs G
and H are precisely the functions f : G→ H between the vertex sets such that

wH
(
f(x), y

)
=

∑
x′∈X,f(x′)=y

wG(x, x′) for all x ∈ G, y ∈ H. (4.1)

(c) We identify, once again, two M -labeled trees whenever they are isomorphic (as coal-
gebras for Mf ).

I Definition 4.4. An M -labeled tree is extensional if distinct children of any node define
non-isomorphic M -labeled subtrees.

We use ∼n and ∼ω in an obvious analogy to Notation 2.4 and Definition 2.6.

I Remark 4.5. The concepts of tree bisimulation and strong extensionality (see Definitions
2.9 and 2.11) also immediately generalize to M -labeled trees. We now generalize Theo-
rem 2.8, using B again for the coalgebra of all finitely branching extensional M -labeled
trees.

I Theorem 4.6. Let M be a commutative monoid. The coalgebra B/∼ω of all finitely
branching, extensional, M -labeled trees modulo Barr equivalence is final for Mf .

Sketch of proof. 2(1) B is weakly final. Indeed, for every finitely branching M -labeled
graph (A,α) we define a coalgebra homomorphism h : A → B by assigning to every vertex
a ∈ A the extensional modification of the tree expansion of a. Recall that the nodes of the
tree expansion of a are the paths a0, a1, . . . , ak of A starting in a, including the empty path,
a, which is the root. A child of a1, . . . , ak is any extension a1, . . . , ak, ak+1 and its weight in
the tree expansion of a is wG(ak, ak+1), see Definition 4.2.

(2) The final coalgebra is obtained from B by the quotient modulo the largest congruence.
This follows from the fact that the category of coalgebras for Mf is complete. Thus, by
Freyd’s Adjoint Functor Theorem a weakly final object always has the final object as the
quotient modulo the greatest congruence.

(3) The Barr equivalence is a congruence on B. That is, the quotient B/∼ω carries
a coalgebra structure for Mf such that the quotient map q : B → B/∼ω is a coalgebra
homomorphism.

(4) Every congruence ≈ on B is contained in ∼ω. That is, our task is to prove the
implication

t ≈ t′ implies ∂nt = ∂nt
′.

This follows by induction on n since ≈ being a congruence means that for the quotient map
q : B → B/≈ we have a coalgebra structure B/≈ making q a homomorphism. J

I Definition 4.7 (See [12]). A commutative monoid M is called

(a) positive if a+ b = 0 implies a = 0 = b and
(b) refinable if a1 + a2 = b1 + b2 implies that there exists a 2× 2 matrix with row sums a1
and a2, respectively, and column sum b1 and b2, respectively.

2 Full proofs are in the appendix.
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I Theorem 4.8. The following conditions on a commutative monoid M are equivalent
(a) The functor Mf weakly preserves pullbacks
(b) M is positive and refinable, and
(c) whenever a1 + · · ·+ an = b1 + · · ·+ bk, there exists an n× k-matrix whose vector of row
sums is a1, . . . , an and the vector of column sums is b1, . . . , bk.

In [12] this theorem is proved except that in lieu of (a) weak preservation of non-empty
pullbacks is requested. However, the functor Mf has a unique distinguished point in the
sense of V. Trnková [20], namely, the empty set ∅ ∈MfX. Since Mf∅ = {∅}, it follows from
the result in [20] that Mf preserves weak pullbacks iff it preserves the nonempty ones. Now
for (a) ⇐⇒ (b), see [12], Theorem 5.13, and concerning (b) ⇐⇒ (c), Proposition 5.10 of
loc. cit. states that refinability is equivalent to condition (c) with n, k > 1 and positivity of
M is equivalent to condition (c) with n > 1 and k = 0. For n = 1, condition (c) is trivial.

I Example 4.9 (See [12]). The Boolean monoid P = {0, 1} and the monoids (N,+, 0)
and (N, ·, 1) are positive and refinable. The cyclic group C = {0, 1} is refinable but not
positive. For every lattice L the monoid L = (L,∨, 0) is positive, and it is refinable iff L is
a distributive lattice.

I Theorem 4.10. LetM be a positive and refinable monoid. The coalgebra Bs of all strongly
extensional, finitely branching M -labeled trees is final for Mf .

I Remark 4.11. For the coalgebra B of extensionalM -labeled trees all strongly extensional
trees clearly form a subcoalgebra m : Bs ↪→ B. We prove that the composite of m with the
quotient homomorphism q : B → B/∼ω is an isomorphism q·m : Bs → B/∼ω. This proves
that Bs is final.

Sketch of proof. Since q·m is a homomorphism of coalgebras, it is sufficient to prove that
it is a bijection, then it is an isomorphism. In other words: we are to prove that Bs is a
choice class of ∼ω on the set B.

(1) Every tree t in B is Barr equivalent to a strongly extensional tree t/R̄. Indeed, recall
from Theorem 4.8 that Mf weakly preserves pullbacks. Thus the greatest bisimulation
R ⊆ t × t is an equivalence relation which is also the greatest congruence. And for the
greatest tree bisimulation R̄ contained in R, the strongly extensional tree t/R̄ is bisimilar
to t. Since B/∼ω is the final coalgebra, this proves that t ∼ω t/R̄.

(2) If two strongly extensional trees are Barr equivalent, then they are equal. Instead,
we prove in items (3) and (4) below that given trees t, s ∈ B then if t ∼ω s then t is bisimilar
to s. Thus, we obtain a tree bisimulation R ⊆ t× s and, by symmetry, a tree bisimulation
S ⊆ s × t. Since Mf weakly preserves pullbacks, S ◦ R ⊆ t × t is a tree bisimulation. This
proves in the case t and s are strongly extensional, that S◦R = ∆. By symmetry, R◦S = ∆.
Then R is a graph of an isomorphism from t to s, i.e., t = s.

(3) We consider the given trees t ∼ω s as elements of the coalgebra B of Theorem 4.6.
We know that ∼ω is the greatest congruence, hence, the greatest bisimulation on B. As
proved in [12], Lemma 5.5, this means that there exists a matrix m : B ×B →M such that
(a) wB(t, t′) =

∑
s′∈B

m(t′, s′) for all t′ ∈ B

(b) wB(s, s′) =
∑
t′∈B

m(t′, s′) for all s′ ∈ B, and

(c) m(t′, s′) 6= 0 implies t′ ∼ω s′.
Since M is positive, whenever m(t′, s′) 6= 0, we have wB(t, t′) 6= 0, that is, there exists a

child x of the root x0 of t with t′ = tx and wB(t, t′) = wt(x0, x). Analogously, m(t′, s′) 6= 0
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implies s′ = sy for some child y of the root y0 of s with wB(s, s′) = ws(y0, y). Since t and s
are extensional, the trees t′ ∈ B with wB(t, t′) 6= 0 are in bijective correspondence with the
children x of x0 in t via x 7→ tx. Analogously for s. Thus we can translate (a)–(c) as follows:
(a∗) wt(x0, x) =

∑
y∈s

m(tx, ty) for all x ∈ t

(b∗) ws(y0, y) =
∑
x∈t

m(tx, ty) for all y ∈ s, and

(c∗) m(t′, s′) 6= 0 implies that there exists a unique child x of x0 in t and a unique child y
of y0 in s with tx ∼ω ty, t′ = tx and s′ = sy.

(4) We prove that given trees t̄, s̄ ∈ B with t̄ ∼ω s̄, it follows that the relation R ⊆ t̄× s̄
defined recursively by x R y iff t̄x ∼ω s̄y and x and y are roots or have R-related parents is
a tree bisimulation. J

I Example 4.12. The above theorem does not generalize to all positive monoids. Indeed,
consider the monoid L = (L,∨, 0) for the lattice {0, a, b, c, 1} where a, b, c are pairwise
incomparable. Then strongly extensional finitely branching L -labeled trees do not form a
final coalgebra, since they are not a choice class of the Barr equivalence. The following trees
are easily seen to be Barr equivalent:

t :

•

•

•

•...

1

1

1

s :

•

• •

• • • •

• • • •

. . . . . .

. . . . . .. . . . . .

a c

a b b c

a b b c

Here s has as nodes the binary words, and the weights are, for all x ∈ {0, 1}∗, defined by
ws(x0, x00) = a, ws(x1, x11) = c and ws(x0, x01) = b = ws(x1, x10). It is obvious that t is
strongly extensional. To prove that so is s, let R ⊆ s× s be a tree bisimulation. Using the
conditions (a)–(c) in the preceding proof it is easy to verify that R ⊆ ∆s.

5 The final chain of P

Although the power-set functor P has no final coalgebra, one can describe its final chain
concretely: we now prove that the i-th step Pi1 consists of all i-saturated, strongly ex-
tensional trees. This generalization from saturated to i-saturated turns out the be quite
nontrivial. In addition, this allows us to describe the final chain of the restricted power set
functors Pλ (see Corollary 5.13).

I Notation 5.1. Recall that the subtree of t rooted at the node x is denoted by tx. We
define equivalences ∼i on the class of all trees for every ordinal i (cf. Notation 2.4 and
Definition 2.6) by transfinite induction:

s ∼0 t holds for all pairs s, t;
s ∼i+1 t holds iff for every child x of the root of s there is a

child y of the root of t with sx ∼i ty, and vice versa

and for limit ordinals i, s ∼i t means s ∼j t for all j < i.
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I Example 5.2. ∼ω is Barr equivalence, see Definition 2.6. The first and second trees in
Example 2.10 are trees s and t with s �ω+1 t which are Barr equivalent.

There exist, for every ordinal i, trees s and t with s ∼i t but s �i+1 t, see [5].

I Definition 5.3. We define the concept of i-saturated tree for every ordinal i by transfinite
induction: A tree t is i-saturated iff
(a) i = 0: t consists of the root only
(b) i = j + 1: tx is j-saturated for every child x of the root
(c) i a limit ordinal: given a tree s and a node x of t having children xj with s ∼j txj (j < i),
then x has a child y with s ∼i ty.

I Examples 5.4. (a) For i finite, a tree is i-saturated iff it has height at most i. And
s ∼i t holds iff ∂is = ∂it. Therefore, a tree is ω-saturated iff it is saturated in the sense of
Definition 2.13.

(b) An example of an (ω + 1)-saturated tree which is not ω-saturated is the left-hand
tree in Example 2.10.

(c) For every infinite cardinal λ, all λ-branching trees t are λ-saturated.

I Remark 5.5. For every tree s there exists a Barr-equivalent tree which is ω-saturated
and strongly extensional. We denote it by ∂ωs and call it the ω-saturation of s. In fact, for
the sequence rn = ∂ns of trees in Pn

f 1, which is clearly compatible, apply the construction
in the proof of Theorem 2.16: the resulting tree t in Pω

f 1 is Barr equivalent to s because
∂nt = rn = ∂ns for every n < ω. Put ∂ωs = t. We generalize this to all ordinals:

I Definition 5.6. By the i-saturation of a given tree s is meant an i-saturated, strongly
extensional tree ∂is with s ∼i ∂is.

I Example 5.7. (1) For i finite, Notation 2.4 yields the desired tree.
(2) An example of ω-saturation can be seen in Example 2.10: for the left-hand tree s the

second tree is ∂ωs.

I Remark 5.8. If t and u are bisimilar trees, then they are equivalent under all of the above
equivalences ∼i. This is easy to see by transfinite induction.

Also, if t is i-saturated, then every tree bisimilar to t is i-saturated (in fact, every tree
equivalent under ∼i is). In particular, the strongly extensional quotient of a tree t, which is
the quotient modulo the largest tree bisimulation R ⊆ t× t, is i-saturated whenever t is.

So even though a tree t is i-saturated it might not be its own i-saturation. Indeed, the
third tree in Example 2.10 is ω-saturated but its ω-saturation is the fourth tree.

I Proposition 5.9. Every tree has for every ordinal i a unique i-saturation.

I Remark 5.10. For infinite ordinals we will see that there is a canonical tree morphism di
from a tree s to its i-saturation ∂is. Moreover, if i = α+ n where α is a limit ordinal and
n < ω, then di is surjective when restricted to nodes of depths at most n.

Sketch of proof. (1) Uniqueness. Given i-saturated, strongly extensional trees t and u, we
need to prove that t ∼i u implies t = u. The step from i to i+ 1 is easy. For i = ω this was
established in Theorem 2.16. For all other limit ordinals i, this is proved analogously.

(2) Existence. For i < ω we have ∂is as in Section 2. The isolated steps are trivial:
given ∂i we define ∂i+1 by taking a tree s and letting s′ be the tree-tupling of all ∂isx,
where x ranges over the children of the root of s. Then the strong extensional quotient of s′
is ∂i+1s, see Remark 5.8.
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The canonical morphism is the composite di+1 = e·d′i where d′i : s → s′ is the tree
morphism acting on every maximal subtree sx as the corresponding canonical morphism
d

(sx)
i : sx → ∂isx, and e is the strong extensional quotient. This composite is, in the case
i = α+ n for a limit ordinal α, surjective on nodes of depths at most n+ 1 since each d(sx)

i

is surjective on nodes of depths at most n.
For limit ordinals i we construct, for every tree t, the i-saturation in two steps: first t′ will

be a possibly large tree (with a class of nodes) which is i-saturated and fulfils t ∼i t′. Then
∂it is the strong extensional quotient. This is an i-saturation of t because Remark 5.8 holds
clearly for large trees, too. And the resulting tree ∂it is small, in fact, it is λi-branching for
a specific cardinal λi analogously to 2ℵ0 for i = ω (see Lemma 2.15). J

I Theorem 5.11. The final chain of P can be described for all ordinals i by

Pi1 = all i-saturated, strongly extensional trees

with the connecting maps into Pj1 given by ∂j for all j < i.

Sketch of proof. For i finite this is obvious since Pi1 = Pi
f1, for i = ω use Theorem 2.16.

We proceed by transfinite induction for all infinite ordinals. If the statement holds
for i then it holds for i+ 1 provided that every set M ⊆ P(Pi1) = Pi+11 of trees is
identified with the tree-tupling tM of all members of M . Obviously, tM is (i+ 1)-saturated
and strongly extensional. Conversely, every (i+ 1)-saturated strongly extensional tree is
obtained by tree tupling via a unique set M . Thus, Pi+11 = P(Pi1) is the set of all
(i+ 1)-saturated, strongly extensional trees. If ∂j : Pi1 → Pj1 is the given connecting
map, then the connecting map P∂j corresponds to ∂j+1 when the above identification ofM
and tM is performed.

Thus, it remains to prove, for every limit ordinal α > ω, that the cone ∂i : Pα1 →
Pi1 (i < α) is a limit cone. This is technically more involved than the proof of Theorem 2.16
but the ideas are similar. J

I Remark 5.12. J. Worrell [21] proved that since Pλ preserves intersections of chains of
subobjects and is λ-accessible, the final chain converges in λ+ ω steps, where all steps after λ
are given by monomorphisms. We can describe the individual steps Pi

λ1 for all i < λ in
terms of trees. If i is an infinite ordinal then it has the form i = α+ n, n < ω and α a limit
ordinal.

I Corollary 5.13. The final chain of Pλ has the steps Pi
λ1 for all ordinals i < λ given by

Pi
λ1 = all i-saturated, strongly extensional trees whose i-saturation

is λ-branching at the first n levels for all i = α+ n.

The connecting maps are ∂j : Pi
λ1→Pj

λ1 for all j < i.

I Corollary 5.14. Let λ be an infinite cardinal. The final coalgebra for Pλ can be described
as the coalgebra of all strongly extensional, λ-branching trees.

Indeed, each such tree is λ-saturated, see Example 5.4. Thus, it lies in Pλ+ω
λ 1. Con-

versely, every tree in Pλ+ω
λ 1 is λ-branching because the connecting map Pλ+n+1

λ 1 →
Pλ+n
λ 1 is a monomorphism for every n < ω: this follows from Pλ being a λ-accessible

functor, see [21]. Consequently, the limit Pλ+ω
λ 1 = limn<ω Pλ+n

λ 1 is the intersection of the
subsets Pλ+n

λ 1 of Pλ
λ1. Since all tree in Pλ+n

λ 1 are λ-branching at the first n levels, it
follows that every tree in Pλ+ω

λ 1 is λ-branching.
A completely different proof has been presented by D. Schwencke [19].
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6 Conclusions and future work

We proved several results which generalize Worrell’s description [21] of the final coalgebra
of Pf as the coalgebra of all strongly extensional, finitely branching trees. We described the
final coalgebra for the functor Mf of finite multisets with weights from a given commutative
monoid M . This final coalgebra consists of all finitely branching strongly extensional M -
labeled trees. This holds for all positive and refinable monoids. Our proof is substantially
different from Worrell’s, since it is based on congruences on the coalgebra of all extensional
trees. We would like to generalize our work on saturated trees to the case of functors Mf .
And we plan to apply our methods to probabilistic transition systems.

For Pf we also described the limit Pω
f 1 of the final ωop-chain as the set of all saturated

strongly extensional trees, or the set of all maximal consistent theories in the modal logic K.
We proved that saturated trees are precisely those trees which are modally saturated in the
sense of K. Fine [10]. This also is related to (but quite different from) Worrell’s description
of Pω

f 1 by means of compactly branching trees. We then generalized saturatedness to i-
saturatedness and proved that the final chain Pi1 of the full power-set functor consists
of all strongly extensional i-saturated trees. From this we derived e.g. that the countable
power-set functor Pc has the final coalgebra consisting of all strongly extensional countably
branching trees. We leave as open problem the decision whether ω1 + ω is the smallest
ordinal for the convergence of the final chain of Pc.

We have characterizations of the initial algebras of the functors Mf . There are open
questions concerning the final chains for these functors: for the Boolean monoid, yielding Pf ,
the chain needs ω + ω steps, as proved by Worrell. However, for the monoid (N,+, 0), the
corresponding functor Nf is analytic, hence, the convergence needs only ω steps. We do not
know what happens in the case of a general monoid.
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A Proof of Theorem 4.6

(1) B is weakly final. Indeed, for every finitely branching M -labeled graph (A,α) we define
a coalgebra homomorphism h : A → B by assigning to every vertex a ∈ A the extensional
modification ta of the tree expansion of a. Recall that the nodes of the tree expansion of a
are the paths a0, a1, . . . , ak of A starting in a, including the empty path, a, which is the root.
A child of a1, . . . , ak is any extension a1, . . . , ak, ak+1 and its weight in the tree expansion
of a is wG(ak, ak+1), see Definition 4.2. We need to prove that the square

A
α //

h

��

MfA

Mfh

��

B
β
//MfB

commutes. Let a ∈ A be a vertex with

α(a) =
{

(a1,m1), . . . , (ak,mk)
}
.

Then β·h(a) is the extensional modification of the following tree r:

· · ·

ta1 tak

m1 mk

Since tai
are all extensional, the extensional modification r̄ of r is the tree whose neighbors

in B are precisely the trees s ∈ B for which the sum

k∑
i=1
s=tai

mi =
k∑
i=1

h(ai)=s

mi

is nonzero; the sum is then the weight of the edge from r̄ to s. But this precisely describes
the finite multiset Mfh(α(a)).

(2) The final coalgebra is obtained from B by the quotient modulo the largest congruence.
This follows from the fact that the category of coalgebras for Mf is complete. Thus, by
Freyd’s Adjoint Functor Theorem a weakly final object has always the final object as the
quotient modulo the greatest congruence.

(3) The Barr equivalence is a congruence on B. That is, the quotient B/∼ω carries
a coalgebra structure for Mf such that the quotient map q : B → B/∼ω is a coalgebra
homomorphism. To prove this, all we need to verify is that given a tree

t :
· · ·

t1 tk

m1 mk

then the class [t] modulo ∼ω is independent of the choice of representatives of the classes
[t1], . . . , [tk]. That is, given trees s1 ∼ω t1, . . . , sk ∼ω tk and forming their tree-tupling s
with the given weights m1, . . . ,mk, then s ∼ω t.
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Indeed, for every n the extensional modification ∂n+1t of the cutting of t at depth n+ 1
is obtained by forming the extensional modifications ∂nt1, . . . , ∂ntk of the cuttings of the
children and then taking the extensional modification of the following tree

· · ·

∂nt1 ∂ntk

m1 mk

Analogously for s. Therefore ∂nti = ∂nsi for all i = 1, . . . , k implies ∂n+1t = ∂n+1s, as
required.

(4) Every congruence ≈ on B is contained in ∼ω. That is, our task is to prove the
implication

t ≈ t′ implies ∂nt = ∂nt
′ for all n ∈ N.

To be a congruence means that for the quotient map q : B → B/≈ there is a commutative
square

B
β

//

q

��

MfB

Mfq

��

B/≈ //Mf (B/≈)

In other words, Mfq·β factorizes through q. More detailed: for every pair t ≈ t′ of trees of
the form

t =
· · ·

t1 tk

m1 mk

t′ =
· · ·

t′1 t′`

m′1 m′`

the multiset given by [ti] and mi is the same one as that given by [t′j ] and m′j . This means
that for every tree s ∈ B the two sums below are equal:

k∑
i=1
s≈ti

mi =
∑̀
j=1
s≈t′j

m′j . (A.1)

From this we derive ∂nt = ∂nt
′ as follows.

Case n = 0 is trivial: ∂nt is the root-only tree.
Case n = 1. We are to provem1+· · ·+mk = m′1+· · ·+m′l. For every s = ti0 , i0 = 1, . . . , k,

we have the equality in (A.1). In case the left-hand sum is nonzero, we thus have some j
with ti0 ≈ t′j . And we can express m1 + · · ·+mk as the sum of all non-zero sums

∑
s≈ti mi

where i0 ranges over a set of representatives (for ≈) of all indexes 1, . . . , k making the above
left-hand sum nonzero. By symmetry, this yields m1 + · · ·+mk = m′1 + · · ·+m′l, as desired.

Analogously for n = 2: here we take any ti0 with
∑
ti0≈ti

mi 6= 0 and find a corresponding
t′j ≈ ti0 (and vice versa). Then we apply the case n = 1 to the pairs ti0 , t′j . Etc. J



J. Adámek, S. Milius, L. S. Moss, L. Sousa 19

B Proof of Theorem 4.10

Since q·m is a homomorphism of coalgebras, it is sufficient to prove that it is a bijection,
then it is an isomorphism. In other words: we are to prove that Bs is a choice class of ∼ω
on the set B.

(1) Every tree t in B is Barr equivalent to a strongly extensional tree t/R̄. Indeed, recall
that since Mf weakly preserves pullbacks, the greatest bisimulation R ⊆ t× t is an equiva-
lence relation which is also the greatest congruence. The corresponding tree bisimulation R̄
(with xR̄y iff xRy and x and y are roots or have R-related parents) is also a congruence and
the quotient coalgebra t/R̄ is a tree. This yields a quotient homomorphism q : t→ t/R̄ whose
kernel is the greatest tree bisimulation on t. Consequently, t/R̄ is strongly extensional: given
the greatest tree bisimulation S on t/R̄, the corresponding quotient q′ : t/R̄→ (t/R̄)/S has
the property that q and q′·q have the same kernel equivalence, hence, S = ∆. And for every
coalgebra homomorphism q the elements x and q(x) are bisimilar. In particular, the roots
of t and t/R̄ are bisimilar. Since B/∼ω is the final coalgebra, this proves t ∼ω t/R̄.

(2) If two strongly extensional trees are Barr equivalent, then they are equal. Instead,
we prove in items (3) and (4) below that given trees t, s ∈ B then

if t ∼ω s then t is bisimilar to s.

Thus, we obtain a tree bisimulation R ⊆ t×s and, by symmetry, a tree bisimulation S ⊆ s×t.
Since Mf weakly preserves pullbacks, S ◦ R ⊆ t × t is a tree bisimulation. This proves in
case t and s are strongly extensional, that S ◦R = ∆. By symmetry, R ◦ S = ∆. Then R is
a graph of an isomorphism t

∼−−→ s.
(3) We consider the given trees t ∼ω s as elements of the coalgebra B. We know that

∼ω is the greatest congruence, hence, the greatest bisimulation on B. By Lemma 5.5 in [12]
there exists a matrix

m : B ×B →M

such that
(a) wB(t, t′) =

∑
s′∈B

m(t′, s′) for all t′ ∈ B

(b) wB(s, s′) =
∑
t′∈B

m(t′, s′) for all s′ ∈ B, and

(c) m(t′, s′) 6= 0 implies t′ ∼ω s′.
Since M is positive, whenever m(t′, s′) 6= 0 we have wB(t, t′) 6= 0, that is, there exists a

child x of the root x0 of t with

t′ = tx and wB(t, t′) = wt(x0, x).

Analogously, m(t′, s′) 6= 0 implies s′ = sy for some child y of the root y0 of s with

wB(s, s′) = ws(y0, y).

Since t and s are extensional, the trees t′ ∈ B with wB(t, t′) 6= 0 are in bijective corre-
spondence with the children x of x0 in t via x 7→ tx. Analogously for s. Therefore we can
translate (a)–(c) as follows:
(a∗) wt(x0, x) =

∑
y∈s

m(tx, ty) for all x ∈ t

(b∗) ws(y0, y) =
∑
x∈t

m(tx, ty) for all y ∈ s, and
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(c∗) m(t′, s′) 6= 0 implies that there exists a unique child x of x0 in t and a unique child y
of y0 in s with tx ∼ω ty, t′ = tx and s′ = sy.

(4) We prove that given trees t̄, s̄ ∈ B with t̄ ∼ω s̄, it follows that the relation R ⊆ t̄× s̄
defined recursively by

x R y iff t̄x ∼ω s̄y and x and y are roots or have R-related parents

is a tree bisimulation. The roots are clearly related. If x R y then put t := t̄x and s := s̄y
and let m̄ : t̄× s̄→M be the following matrix

m̄(x′, y′) =
{
m(tx′ , ty′) if x′ is a child of x and y′ a child of y
0 else

The property (c∗) tells us that m̄ is obtained from the matrixm by removing all zero columns
and zero rows. Therefore, (a∗) and (b∗) imply that m̄ has the desired row and column sums:

wt̄(x, x′) =
∑
y′∈s̄

m̄(x′, y′) for all x ∈ t

wt̄(y, y′) =
∑
x′∈t̄

m̄(x̄′, ȳ′) for all y′ ∈ s.

Moreover, since x and y have equal depth, say, k, we conclude that

m̄(x′, y′) 6= 0 implies x′, y′ have depth k + 1.

And (c∗) yields tx′ ∼ω sy′ . Therefore m̄(x′, y′) 6= 0 implies x′ R y′. J

C Proof of Proposition 5.9

(1) Uniqueness. Given i-saturated, strongly extensional trees t and u, we need to prove that

t ∼i u implies t = u.

This is obvious if i is finite. For i = ω this was established in Theorem 2.16. For all other
limit ordinals i this is proved analogously: if t ∼i u then the relation R ⊆ t × u given
recursively by

y R z iff y and z are roots or have R-related parents and ty ∼i tz

is a tree bisimulation. Thus t = u by strong extensionality. It remains to prove that if the
statement holds for i, then it holds for i+ 1. From t ∼i+1 u we conclude that for every
child x of the root of t there exists a child y of the root of u with tx = uy (due to tx ∼i uy)
and vice versa. This implies t = u.

(2) Existence. For i < ω we have ∂is as in Section 2. The isolated steps are trivial:
given ∂i we define ∂i+1 by taking a tree s and putting

s′ = tree-tupling of all ∂isx

where x ranges over the children of the root of s. Then the strong extensional quotient of s′
is ∂i+1s, see Remark 5.8.

The canonical morphism is the composite

di+1 = (s d′
i−−→ s′

e−−→ ∂i+1s),
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where d′i is the tree morphism acting on every maximal subtree sx as the corresponding
canonical morphism d

(sx)
i : sx → ∂isx, and e is the strong extensional quotient. This com-

posite is, in case i = α+ n for a limit ordinal α, surjective on nodes of depths at most n+ 1
since each d(sx)

i is surjective on nodes of depths at most n.
We now turn to limit ordinals i.
(2a) The ω-saturation ∂ωs. In the proof of Theorem 2.16 we provided for the sequence

rn = ∂ns, which is clearly compatible, an ω-saturated, strongly extensional tree t mapped
by the limit projections to rn for every n < ω. Let us denote this tree t by ∂ωs. Its nodes
of depth n have the form x = (x̄n, x̄n+1, x̄n+2, . . . ) of nodes x̄n ∈ ∂ns. The canonical tree
morphism

dω : s→ ∂ω(s)

assigns to every node x of s of depth n the node (x̄n, x̄n+1, x̄n+2, . . . ), where for k ≥ n the
node x̄k corresponds to x in the extensional quotient ∂ns of the cutting of s.

(2b) The i-saturation ∂is where i > ω is a limit ordinal. Observe first that the number
of all j-saturated strongly extensional trees is bound by the cardinal λj , where

λ0 = 1, λj+1 = 2λj and λj =
∏
k<j

λk if j is a limit ordinal.

(Indeed, for j = ω we have λω = 2ℵ0 and we use Lemma 2.15. The argument for general λj ,
j ≥ ω, is analogous.) We construct, for every tree t, the i-saturation in two steps: first t′ will
be a possibly large tree (with a class of nodes) which is i-saturated and fulfils t ∼i t′. Then
∂it is the strong extensional quotient of t′. This is an i-saturation of t because Remark 5.8
holds clearly for large trees, too. And the resulting tree ∂it is small.

The tree t′ is obtained from t by systematically adding new subtrees to given nodes x:
whenever we find a tree s and children xj of x with txj

∼j s for all j < i but with no child y
of x with ty ∼i s, we add s as a new subtree of x. The resulting tree is equivalent to the
original one under ∼i. We perform this extension as long as a pair (x, s) with the above
property can be found. The resulting (possibly large) tree t′ is i-saturated and t ∼i t′.

The morphism di : t → ∂it is the composite of the embedding t ↪→ t′ and the quotient
map t′ → ∂it. J

D Proof of Theorem 5.11

For i finite this is obvious since Pi1 = Pi
f1, for i = ω use Theorem 2.16.

We proceed by transfinite induction for all infinite ordinals. If the statement holds
for i then it holds for i+ 1 provided that every set M ⊆ P(Pi1) = Pi+11 of trees is
identified with the tree-tupling tM of all members of M . Obviously, tM is (i+ 1)-saturated
and strongly extensional. Conversely, every (i+ 1)-saturated strongly extensional tree is
obtained by tree tupling via a unique set M . Thus, Pi+11 = P(Pi1) is the set of all
(i+ 1)-saturated, strongly extensional trees. If ∂j : Pi1 → Pj1 is the given connecting
map, then the connecting map P∂j corresponds to ∂j+1 when the above identification ofM
and tM is performed.

Thus, it remains to prove, for every limit ordinal α > ω, that the cone

∂i : Pα1→Pi1 (i < α)

is a limit cone. This cone is clearly compatible and collectively monic: if t and u are α-
saturated, strongly extensional trees with ∂it = ∂iu for all i < α (that is, with t ∼α u), then
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t = u. Indeed, to prove this it suffices to present a tree bisimulation R ⊆ t × u. This is
completely analogous to the proof of Lemma 2.15: put y R z iff ty ∼α uz, first for the roots,
then successively for all nodes y ∈ t and z ∈ u with R-related parents.

Finally, given a compatible family ri of i-saturated, strongly extensional trees for ω ≤ i <
α, we will present an α-saturated, strongly extensional tree t with ri = ∂it for all ω ≤ i < α.
Compatibility means ∂jri = rj (i ≥ j). Let dij : ri → rj be the corresponding canonical
morphisms (see Remark 5.10). They form a chain of tree homomorphisms, and we denote
its limit by

s = lim
ω≤i<α

ri.

(1) Let us prove ∂is = ri for all infinite ordinals i < α. Since ri is i-saturated and
strongly extensional, all we need proving is

s ∼i ri (ω ≤ i < α).

We proceed by transfinite induction.
(1a) To prove s ∼ω rω, we establish

s ∼n rω+n for every n < ω.

This proves the statement because from rω = ∂ωr
ω+n we conclude rω ∼ω rω+n and then

s ∼n rω+n ∼ω rω. Consider the set An of all infinite ordinals i < α with distance at
least n from a limit ordinal, i.e., An = {i < α; i = β + k where β is a limit ordinal and
n ≤ k < ω}. Then s is a limit of all ri, i ∈ An, and by Remark 5.10 the connecting
morphisms dij : ri → rj have, for all i ≥ j in An, the property that they are surjective when
restricted to nodes of depth at most n. Therefore, the cuttings of ri at level n have, for all
i ∈ An, the same extensional quotient. Consequently, the cutting of s at level n also has
this extensional quotient. This proves s ∼n rω+n.

(1b) If the statement holds for i, we prove it for i+ 1. For every child x of the root
of s where x = (xk), the subtrees rk+1

xk+1
of rk+1 (ω ≤ k < α) are k-saturated and form a

chain whose limit is sx. By induction hypothesis, ri+1
xi+1

∼i sx. Thus, in order to establish
ri+1 ∼i+1 s, we only need to prove that for every child y of the root of ri+1 there exists
a child x of the root of s whose component i+ 1 is y: we then have ri+1

y ∼i sx as above.
In fact, express s as a limit of all rk+1 for k < α. By Remark 5.10 the connecting maps
are surjective on nodes of depth 1. Therefore, we can find a compatible collection of nodes
xk+1 ∈ rk+1 of depth 1 with xi+1 = y. This gives us the desired node x of s = lim rk+1 with
component y.

(1c) If the statement holds for all i < β, where β < α is a limit ordinal, we prove rβ ∼β s.
That is, rβ ∼i s for every i < β. This follows from ri ∼i s (induction hypothesis) since
rβ ∼i ri (recall that i < β implies that ri is the i-saturation of rβ).

(2) Finally, let t be the α-saturation of s. Then for every ω ≤ i < α we have t ∼i
ri because t ∼α s ∼i ri. Thus, t is the desired α-saturated, strongly extensional tree
(cf. Definition 5.6) with ∂it = ri for all infinite i < α. J
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