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Jiřı́ and his colleagues, and so we feel his influence strongly as we write this
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Abstract

Dans leurs précédents travaux [17, 18, 19], les auteurs ont proposé une
théorie générale des schémas de programmes récursifs et de leurs solutions.
Ces travaux généralisaient des approches plus anciennes, qui utilisaient les
ensembles ordonnés ou les espaces métriques en offrant une théorie utilisant le
concept de coalgèbre finale, d’algèbre d’Elgot, et une grande partie de ce que
l’on sait à leur sujet. La théorie donnait l’existence et l’unicité des solutions
de schémas de programmes récursifs non interprétés trés généraux. En outre,
nous donnions aussi une théorie des solutions interprétées. Cet article poursuit
le développement de la théorie. Il fournit des principes généraux qui sont
utilisés pour montrer que deux schémas de programmes récursifs dans notre
sens ont les solutions non interprétées identiques ou liées, ou qu’ils ont des
solutions correctement liés à l’interprétation, identiques ou liées.

1 Introduction

The theory of recursive program schemes (rps’s) is concerned with function defini-
tions such as

f(n) ≈ ifzero(n, one, f(pred(n)) ∗ n) . (1)

The intention is that (1) be a definition of the factorial function on the natural num-
bers in terms of other functions (ifzero, one, pred, and ∗) which are known to exist
before one writes (1). There are several aspects of the theory, including the study of
several kinds of semantics for schemes, connections with operational semantics and
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rewriting, and questions of the equivalence of functions defined by various kinds
of recursive program schemes. For example, using the fact that multiplication is
commutative, it should be the case that

g(n) ≈ ifzero(n, one, n ∗ g(pred(n))) (2)

again defines the factorial function. This kind of fact goes back very far. One early
source is Burstall and Darlington [7]. They write, “We may transform an equation
by using on its right-hand expression any laws we have about the primitives k, l, . . .
(commutativity, associativity, etc.), obtaining a new equation.”

Though it produced sources such as Courcelle [9], Guessarian [10], and Ni-
vat [23], the area is no longer as active as it once was. The authors of this paper
proposed in [17, 18, 19] a category-theoretic generalization of part of the theory, in-
cluding treatments of uninterpreted and interpreted recursion. The goal is to work
with as few assumptions as possible and to obtain a theory that covers as much as
possible in terms of standard examples and treatments of recursion. To see what has
been done, it is useful to make a digression to a form of recursion that differs from
what we have seen with the factorial function in (1) above.

Let C(I) be the set of non-empty compact subsets of the unit interval I = [0, 1].
We shall be interested in several operations on C(I):

s∗ = {1− x : x ∈ s}
E(s, t) = 1

3s ∪ (2
3 + 1

3 t)
F (s, t) = E(s, t∗)
G(s) = 1

3 + 1
3s

(3)

Here 1
3s = {1

3x : x ∈ s}, and adding a number like 1
3 or 2

3 to a given set means
adding the number to each element of it. So G(s) is like s but linearly squashed to
the interval [13 ,

2
3 ]. We shall be interested in functions on C(I) defined in terms of

E, F , and G by fixed-point equations or systems, such as

ϕ(s) ≈ E(s, ϕ(s)) (4)

This is not a recursion as it is usually studied: there are no base cases. However, it
turns out that there is a unique ϕ† : C(I) → C(I) with these properties; moreover,
ϕ† is continuous when C(I) is taken to be a metric space under the Hausdorff met-
ric. (We review the definition in Example 2.19(iii).) This falls out as a special case
of our theory from [17, 18, 19]. In fact, we treat (4) as an interpreted solution of a
very general form of recursive program scheme. Again, the main goal of our work
has been to put forward a theory of these general recursive program schemes, their
uninterpreted solutions, and also their interpreted solutions.
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The theory is not about metric spaces or topology, or even about functions on
the natural numbers. It is much more abstract, calling on ideas originating in recent
work in the field of coalgebra. In discussions of examples such as (4), all of the
topological work would go into showing that various spaces, maps, and functors
have certain very general properties; after that, the general theory takes over and one
need not look at the particular metric, or prove anything by recursion, etc. To see
some of the subtlety, note that χ(s) ≈ G(χ(s)) has a unique solution: χ†(s) = {1

2}
for all s. However, χ(s) ≈ χ(s)∗ has many solutions.

What is new in this paper is the consideration of equational properties of solu-
tions. To see what this is about, we consider (4) and an analogous function ψ(s)
given by

ψ(s) ≈ E(ψ(s), s) (5)

A few moments of thought shows that the following equation should hold:

ϕ†(s)∗ = ψ†(s∗) (6)

One hint that (6) is true comes from the observation that E(s∗, t∗) = E(t, s)∗.
Assuming that ϕ†(s)∗ = ψ†(s∗), we conclude that

ϕ†(s)∗ = E(ϕ†(s), s)∗ = E(s∗, ϕ†(s)∗) = E(s∗, ψ†(s∗)) = ψ†(s∗) .

But this is as circular as can be! (Correct reasoning may be found in Example 2.23.)
Here is another example: it is easy to check that

F (F (s, t), F (t, s)) = E(F (s, t), F (s, t))

And from this and the principle we quoted above in connection with Burstall and
Darlington [7] it should follow that the two functions defined below are equal:

ϕ(s) ≈ F (F (s, ϕ(s)), F (ϕ(s), s))
ψ(s) ≈ E(F (s, ψ(s)), F (s, ψ(s)))

One very specific goal of our work would be to show that the two functions just
above are indeed equal.

Contents. The next section is a summary of our previous work on recursive pro-
gram schemes. Although it may look long as a summary, we have cut all the corners
and only provided those definitions, results, and examples that are needed in the rest
of this paper. In addition, we re-arranged the order in which topics are introduced at
several places, because this seemed to make for a shorter presentation. Accordingly,
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Section 2 would not be a good way to learn the theory. Section 3 presents the laws
of first-order recursion as a kind of preparation for the work of the rest of the paper.
Section 4 is a treatment of several of the main laws of recursive program scheme
solutions in the uninterpreted setting, where one works with infinite trees only. On
our account as well as on the classical one, this study is needed before we can tackle
the more interesting case of equations on interpreted settings (Section 5); these are
the kinds of things we presented in our opening discussion.

J. Mersch’s work. Prior work in our direction comes from the dissertation and
paper of J. Mersch [14, 15]. His project begins with the logical language FLR0

proposed by Moschovakis [22] (a fragment of a larger language called FLR for
formal language of recursion) and studied by Hurkens et al [11]. Mersch extends
FLR0 to a language FLRS (formal language of recursive schemes) which inter-
prets fixed point terms and their uninterpreted semantics. He presents axioms and
rules of inference for equations between these fixed point terms. The axioms are
quite related to our work in Section 4. Our treatment is somewhat more general,
precisely because we are not restricted to working with terms in a particular syntax.
(In this sense, what we are doing is closer like the iteration theories of Bloom and
Ésik [5], and we foreshadow the connection in Section 3.) At the same time, be-
cause FLRS (like FLR before it) permits terms like x where x = x, the semantics
requires work that we did not pursue. The biggest difference between our work and
Mersch’s is that our main focus here is on interpreted schemes (Section 5). Follow-
ing this paper, one next step should be to take what we have done in this paper and
combine it with [14, 15] to study a formal language of interpreted recursive program
schemes.

2 Background

We illustrate our account by going back and forth between a very specific example
and a very general theory. The example is the rps

ϕ(x) ≈ E(x, ψ(Gx))
ψ(x) ≈ F (x, ϕ(Gx))

(7)

There are two possible interpretations. First, it might be that E, F , and G are
functions which are “known” and that (7) should uniquely define functions in terms
of them. This would be an interpreted rps. Our Introduction was about problems
in interpreted recursion. The uninterpreted interpretation of (7) regards E, F , and
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G as merely syntactic objects. Then (7) defines infinite trees ϕ† and ψ†, as shown
below:

ϕ†(x) =

E

x
��
��

F

//
//

F

Gx
��
��

E

//
//

E

GGx
��
��

F

//
//

F

GGGx
��
��

ψ†(x) =

F

x
��
��

E

//
//

E

Gx
��
��

F

//
//

F

GGx
��
��

E

//
//

E

GGGx
��
��

(8)

Our account begins with two signatures; these are just collections of symbols with
specified arities. In our example, these are: Σ, the signature with a unary symbol G
and two binary ones E and F ; and Φ, the signature with unary symbols ϕ and ψ.
We then associate to Σ and Φ two signature functors on Set. We illustrate this with
Σ. Regard it as a functor Σ : N → Set, where N is the discrete category on the
natural numbers. More to the point, each Σ(n) is the set of function symbols of arity
n. Let J : N→ Set be the inclusion functor defined by Jn = { 0, . . . , n− 1 }. For
any set X , and any n ∈ N, Set(Jn,X) is isomorphic to Xn. We usually identify
these sets. We associate to Σ the endofunctor HΣ : Set → Set given by

HΣ(X) =
∐
n∈N

Σ(n)× Set(Jn,X). (9)

with the action of HΣ on morphisms defined in the obvious way. Moreover, for
every endofunctor G of Set there is a bijective correspondence

Σ → G · J
HΣ → G

. (10)

We return to our example signatures Σ and Φ from above. We have associated
signature functors HΣ and HΦ on Set. Since these functors are so important, and
since they occur so often in our notation, we find it convenient to simplify our
notation and use single letters for them. To simplify notation, we shall write H
for HΣ and V for HΦ.

2.1 Iteratable functors

At this point, we step back and develop the overall theory. The basis for this theory
includes many standard definitions from category theory which we shall not review,
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such as algebras and coalgebras for functors, initial and final (terminal) objects,
monads and their Eilenberg-Moore and Kleisli categories; see Mac Lane [13], for
example.

Definition 2.1. Let A be a category with finite coproducts denoted by +. If H :
A → A is a functor and c is an object of A, then the functor H(−) + c is the sum
of H and the constant functor with value c. H is iteratable if for all c, H(−) + c
has a final coalgebra. In this case, we adopt special notation for a final coalgebra
for H(−) + c:

αc : Tc→ HTc+ c

Example 2.2. Of the many examples, we only mention those which are needed in
this paper. Further examples may be found in [17, 18]. Take A to be Set. Then every
signature functor HΣ is iteratable. For a set c, the final coalgebra Tc for HΣ(−)+ c
consists of all (finite and infinite) Σ-trees over c, i. e., rooted and ordered trees where
all inner nodes with n > 1 children are labeled by operation symbols from Σ(n)
and all leaves are labeled in Σ(0) or the set c.

Let CMS be the category of complete metric spaces, where distances are mea-
sured in the interval [0, 1], with non-expanding maps as morphisms. We take for the
coproduct the disjoint union, with points in different copies taken to have distance
1. Each homset CMS(X,Y ) is again an object, using the sup metric dX,Y on func-
tions. Also, for each space X and each ε < 1, we get a space εX by keeping the
points and scaling the metric by ε. Let Σ be a signature. We turn Σ into a functor
HΣ : CMS → CMS via

HΣ(X) =
∐
n∈N

Σ(n)× 1
3
CMS(Jn,X).

The product is the usual one, and J : N → CMS takes n to the discrete space on
{0, . . . , n− 1}. (The 1

3 comes from our examples in the introduction.)
Let CPO be the category of complete partial orders, i. e., posets (not necessar-

ily with a least element) where all ω-chains have joins; morphisms are the maps
preserving these joins, which are called continuous maps. Notice that products
and coproducts are in CPO are formed as in the category of sets; and each homset
CPO(X,Y ) is itself a cpo with the pointwise order. So for every signature Σ we
again have the associated signature functor given on objects by

HΣ(X) =
∐
n∈N

Σ(n)× CPO(Jn,X),

where J : N→ CPO maps every number n to the discrete cpo on {0, . . . , n− 1}.
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Returning to iteratable functors: we are so concerned with them in this paper
that from now on, the letters H , V , etc., denote iteratable endofunctors on some
underlying category with finite coproducts.

There is a rich general theory of iteratable functors. Everything we do depends
on some central results from this theory, and so we review them. LetH be iteratable
on A. For each object c, αc is invertible by Lambek’s Lemma [12], and we write
its inverse as [τc, ηc]. So τc : H(Tc) → Tc, and ηc : c → Tc. Moreover,
αc · τc = inlHTc+c and αc · ηc = inrHTc+c. (We are using inl and inr as the
coproduct injections in all categories.) Notice that τc gives Tc the structure of an
H-algebra. It turns out that T is a functor, α, η, and τ are natural transformations:
α : T → HT + Id , η : Id → T , and τ : HT → T . We define κ : H → T to be
τ ·Hη.

Further, there is a natural transformation µ : TT → T with many important
properties. First, (T, η, µ) is a monad, see e. g. [1, 20]. This monad is of course
defined from H , and to emphasize this we write TH for the monad; we also use this
notation for the functor part T of this monad. Similarly, we write ηH , µH , τH and
κH .

Proposition 2.3. The diagrams below commute.

HTT
τT //

Hµ

��

TT

µ

��

HT τ
// T

HT
τ //

κT
��

T

TT

µ

=={{{{{{{{

(We shall state but not re-prove any results from our earlier papers [17, 18, 19].)

2.2 First-order recursion and the Substitution Theorem

Recall that our purpose in this paper is to study equational properties of solutions to
recursive program schemes such as (7), repeated below:

ϕ(x) ≈ E(x, ψ(Gx))
ψ(x) ≈ F (x, ϕ(Gx))

We are discussing some general category-theoretic background used in our account
of rps solutions. The next step is to consider solutions of systems of equations, but
ones which are simpler than those just above. Consider first a first-order recursion
such as

x ≈ F (x)
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The “x” here is any object which we take to be a variable. We aim to solve this
equation for x, obtaining a tree over the signature consisting of a unary function
symbol F . Naturally enough, the solution is the infinite term

x† = F (F (F (F (· · ·))))

A bit more generally, we would like to consider systems whose solutions are not so
easily drawn, and also whose right-hand sides might contain other “variables”, that
is, other objects besides the variables and the function symbols from the signature
used on the right. For example,

x ≈ F (y, x)
y ≈ G(x, z)

(11)

Now our set of variables is {x, y}, the signature Σ on the right consists of two bi-
nary symbols F andG, and z is a fresh object. Write a for {x, y} and b for {z}; also
let H = HΣ and let (T, η, µ) be the monad associated to H as discussed in Sec-
tion 2.1 just above. Here is a result which guarantees the existence and uniqueness
of solutions to systems such as (11):

Theorem 2.4 ([1, 20]). Let f : a→ T (a+ b) factor through τa+b. Then there is a
unique f † : a→ Tb such that f † = µb · T [f †, ηb] · f . Moreover, f † factors through
τb.

Example 2.5. We continue our discussion of (11). The system itself is modeled by
the function f : a→ T (a+ b). This function is described in pictures as

f(x) =
F

y
��
��

x
//

//
f(y) =

G

x
��
��

z
//

//

Then f † is the unique function from a = {x, y} to Σ-trees over {z} such that

f †(x) =
F

f †(y)
��
�

f †(x)

//
/

f †(y) =
G

f †(x)
��
�

z
//

//
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f † may be pictured more explicitly:

f †(x) =

F

G
��

��

F

99
99

F

G
��
��

F

//
//

G

z
//

//

F
��
�� f †(y) =

G

F
��

��

z
99

99
9

zF

F

//
//

G
��
��

We next want to mention a result that shows that the account which we have
provided covers the phenomenon of substitution of variables by infinite trees.

Theorem 2.6 (Substitution Theorem [1]). Let f : a → Tb, and let f∗ : Ta → Tb
be µb · Tf . Then f∗ is the unique morphism with the following two properties:

(i) f∗ is a morphism of H-algebras:

H(Ta)
τa //

Hf∗

��

Ta

f∗

��

H(Tb) τb

// Tb

(ii) f = f∗ · ηa.

(−)∗ has the properties of a Kleisli operation. One indication that our theory is
on the right track is that we are able to prove the important properties of substitution.
These are familiar from the theory of finite terms on a signature. The important
point is that they hold in the infinite case. For that matter, the theory only requires
the apparatus of iteratable functors, and so it is much more general.

Consider the operation (−)∗ taking a morphism of the form f : a → Tb to the
associated f∗ : Ta→ Tb. It is not hard to show that the triple (T, η, (−)∗) satisfies
the properties of a Kleisli triple: (ηa)∗ = idTa; and if f : a→ Tb and g : b→ Tc,
then f∗ · ηa = f and (g∗ · f)∗ = g∗ · f∗.

A final note: our review here is developing things in a different order than in
papers in the literature. It is more convenient to define the Kleisli operation before
the monad multiplication µ, and indeed to use the operation to define multiplication
by µa = (idTa)∗.
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2.3 Second-order Substitution

A moment’s look at (7) and (11) shows that Theorem 2.6 is not strong enough to
provide an account of solutions to recursive program schemes such as (7). To see
the point clearly, consider the difference between the following two equations:

x ≈ F (x,G(x)) (12)

ϕ(x) ≈ F (x, ϕ(G(x))) (13)

Equation (12) is a first-order recursion as we have studied in our last section. Its
solution would essentially be a single tree x† satisfying x† = F (x†, G(x†)). On the
other hand, the solution to (13) is more complicated, since it asks not for a single
tree but rather a function ϕ† from trees (on F and G) to trees. It would satisfy
ϕ†(x) = F (x, ϕ†(G(x))). That is, the required property does not concern a single
tree but rather a function. This equation (13) is a recursive program scheme, and
an account of these schemes we must be different from an account of first-order
recursion. We provided a treatment in our papers [17, 18, 19], and we review it in
the next section.

We first need an account of second-order substitution, i. e., substitution of oper-
ation symbols from one signature in a tree by trees over another signature. In fact,
such an account follows from the characterization of TH as the free completely it-
erative monad on H , see [1, 16]. We shall not recall that notion and the main result
here. Instead we merely state Theorem 2.9. It is an easy consequence of the freeness
result in loc. cit.

Definition 2.7. Let H and K be iteratable endofunctors of A. A natural trans-
formation σ : H → TK is called ideal if it factors as τK · σ′ for some natural
transformation σ′ : H → KTK .

Example 2.8. The canonical natural transformation κ = τ ·Hη : H → T is ideal.

Theorem 2.9. LetH andK be iteratable endofunctors. Then for every ideal natural
transformation σ : H → TK there exists a unique monad morphism σ : TH → TK

such that σ · κH = σ.

Let us explain how the monad morphism from Theorem 2.9 provides a modeling
of second-order substitution. Let Σ and Γ be signatures (considered as functors
N → Set). Each symbol f ∈ Σ(n) is considered as a flat tree in n variables. A
second-order substitution gives an “implementation” to each such f as a Γ-tree in
the same n variables. We model this by a natural transformation s : Σ → TΓ · J ,
i. e., a family of maps sn : Σ(n) → TΓ{ 0, . . . n − 1 }, n ∈ N. By the bijective
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correspondence (10), this gives rise to a natural transformation σ : HΣ → TΓ. We
are only interested in non-erasing substitutions, those where s assigns to each Σ-
symbol a Γ-tree which is not just single node tree labelled by a variable. Translated
along (10) that means precisely that σ is an ideal natural transformation. Thus, from
Theorem 2.9 we get a monad morphism σ : TΣ → TΓ. For any set X of variables,
the action of σ is that of second-order substitution: σX replaces every Σ-symbol in
a tree t from TΣX by its implementation according to σ. More precisely, let t be a
tree from TΣX . If t = x is a variable from X , then σX(t) = x. Otherwise we have
t = f(t1, . . . , tn) with f ∈ Σ(n) and ti ∈ TΣX , i = 1, . . . , n. Let

sn(f) = t′(0, . . . , n− 1) ∈ TΓ{ 0, . . . , n− 1 }.

Then σX would satisfy the following equation

σX(t) = t′(σX(t1), . . . , σX(tn)).

Example 2.10. Suppose that Σ consists of two binary symbols + and ∗ and a con-
stant 1, and Γ consists of a binary symbol b, a unary one u and a constant c. Fur-
thermore, let σ be given by s : Σ → TΓ · J as follows:

s0 : 1 7→
u

c

s2 : + 7→

b

0 u

1

��
�� //

//

∗ 7→

b

u 1

0

��
�� //

//

and else sn is the unique map from the empty set. For the set X = {x, x′ }, the
second-order substitution morphism σX acts for example as follows:

∗

+ 1

x x′

��
�� //

//

��
�� //

//
7→

b

u u

b c

x u

x′

��
�� //

//

��
�� //

//

The rest of this section contains some technical results which we shall use later
in the paper. It may be omitted on first reading without loss of continuity.
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Lemma 2.11 ([17, 18]). If H and K are iteratable endofunctors, σ : H → TK ,
σ′ : H → KTK , and σ = τK · σ′, then for the unique induced monad morphism σ
the diagram below commutes:

HTH

τH

��

σ′∗σ // KTKTK
KµK

// KTK

τK

��

TH
σ

// TK

(The symbol ∗ denotes parallel composition of natural transformations.)

We would like to turn Theorem 2.9 into a statement about the assignment H 7→
TH . However, it is not clear how to formulate a result of this type. First of all,
iteratability is a special property not enjoyed by all endofunctors on a given category
A. Further, it is not even known in general whether the iteratability of a functor H
implies that of TH . The best we can say seems to be the following result, one which
we shall use.

Proposition 2.12. Let H , J and K be iteratable endofunctors of A. Then for all
ideal natural transformations s : H → T J and t : J → TK we have the following
Kleisli laws for (T , κ( ), ( )):

(i) s · κH = s,

(ii) κH = idT H , and

(iii) t · s = t · s.

Proof. The three properties follow easily from the universal property of TH as
stated in Theorem 2.9.

In the following result we denote by It[A,A] the category of iteratable endo-
functors on A and natural transformations, and we write CIM(A) for the category
of completely iterative monads on A and monad (homo)morphisms.

Corollary 2.13. The assignment H 7→ TH extends to a functor

T : It[A,A] → CIM(A)

which assigns to any natural transformation n : H → K between iteratable endo-
functors the monad morphism Tn = κK · n.

We need the following properties of T .
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Corollary 2.14. Let H , J and K be iteratable endofunctors on A, and let n : H →
J .

(i) The diagram below commutes:

HTH n∗T n
//

τH

��

JT J

τJ

��

TH
T n

// T J

(ii) For every ideal natural transformation t : J → TK the equation t·Tn = t · n
holds.

Proof. Part (i) follows from Lemma 2.11, and part (ii) is immediate from Proposi-
tion 2.12(iii) and Corollary 2.13.

2.4 Recursive program schemes

As we near the end of our preliminary sections, we discuss our formulation of re-
cursive program schemes in terms of notation we have already introduced.

Definition 2.15 ([17]). Let V andH be endofunctors on A. Assume thatH , V , and
H +V are all iteratable. A recursive program scheme (or rps, for short) is a natural
transformation

e : V → TH+V .

We sometimes call V the variables, and H the givens. The rps e is called guarded
if there exists a natural transformation f : V → HTH+V such that the diagram on
the left below commutes:

V
e //

@A
f

//

TH+V

(H + V )TH+V

τH+V

OO

HTH+V

inl∗T H+V

OO

V
e† //

e

��

TH

TH+V

[κH ,e†]

;;wwwwwwwww
(14)

A solution of e is an ideal natural transformation e† : V → TH such that the
right-hand triangle above commutes.
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Theorem 2.16 ([17]). Every guarded rps has a unique solution.

Example 2.17. We return to (7), repeated below:

ϕ(x) ≈ E(x, ψ(Gx))
ψ(x) ≈ F (x, ϕ(Gx))

Let Σ be the signature that contains a unary operation symbol G and a binary one
F—so we have Σ1 = {G }, Σ2 = {E,F } and Σn = ∅ else. The signature Φ of
recursively defined operations consists of two unary symbols ϕ and ψ. Consider the
recursive program scheme above as a natural transformation r : Φ → TΣ+Φ ·J with
the components given by

r1 : ϕ 7→ E(0, ψ(G0)) ψ 7→ F (0, ϕ(G0))

(we write trees as terms above) and where rn, n 6= 1, is the empty map. The
bijective correspondence (10) yields a natural transformation e : HΦ → THΣ+HΦ .
This is our formulation of (7) as a recursive program scheme in the sense of this
paper.

Continuing, we may turn the trees in (8) into a natural transformation e† : HΦ →
THΣ . It is not hard to finally check that ϕ† is the solution to ϕ in our sense; that is,
e† = [κHΣ , e†] · e.

2.5 Completely iterative algebras

The notion of solution in Theorem 2.16 is that of an uninterpreted solution to an
rps. We are especially interested in interpreted solutions, and to study those we
must work on algebras with enough “solutions to equations” in which to interpret
recursive program schemes. Our work has isolated two main classes of algebras for
this, completely iterative algebras and Elgot algebras.

Definition 2.18. Let H : A → A be an endofunctor. A flat equation morphism in
an object A (of parameters) is a morphism of the form e : X → HX + A. Let
a : HA→ A be an H-algebra. We say that e† : X → A is a solution of e in (A, a)
if the square below commutes:

X

e

��

e† // A

HX +A
He†+A

// HA+A

[a,A]

OO

(15)

A is a completely iterative algebra (cia) if every flat equation morphism in A
has a unique solution in A.
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Example 2.19. We only give a few very specific examples; for more, see Milius [16]
and Adámek et al [2].

(i) Let H be iteratable on A. For each object a, (Ta, τa : HTa → Ta) is a cia
for H; see Milius [16].

(ii) Let H : CMS → CMS be a signature endofunctor as in Example 2.2. Then
any non-empty H-algebra (A, a) is a cia. More generally, recall that a con-
tracting endofunctor H of CMS is one for which there exists a constant
ε < 1 such that every derived map CMS(X,Y ) → CMS(HX,HY ) is
an ε-contraction, i. e., we have dHX,HY (Hf,Hg) ≤ εdX,Y (f, g) for every
f, g : X → Y . Then every non-empty algebra for H is a cia; see [2]. In fact,
given any flat equation morphism e : X → HX + A in CMS, we know that
CMS(X,A) is itself an object in the category, and it is not difficult to prove
that the assignment s 7→ a · (Hs + A) · e is a contracting function from it
to itself, see [2]. Then, by the Banach Fixed Point Theorem, there exists a
unique fixed point of that contracting function, viz. a unique solution e† of e.

(iii) Here is a specific case of the last point which is related to one of our ex-
amples in the introduction. Let I be the unit interval, and let C(I) be the
complete metric space of non-empty compact subspaces of I with the Haus-
dorff metric h; for two compact subsets s and t of I , h(s, t) = max{ d(s →
t), d(t → s) }, where d(s → t) = maxx∈s miny∈t d(x, y). We take the sig-
nature Σ with binary E and F , and unary G. For the algebra of interest, we
take (C(I), a : HC(I) → C(I)) given by the operations back in (3) in our
introduction. In a little more detail, we mean that for sets s and t in C(I),
a(E, s, t) is 1

3s ∪ (2
3 + 1

3 t), etc. This gives a cia. Note that although we have
an operation (−)∗ in (3), this is not the interpretation of any symbol in our
signature. This is not an accident: we may solve x = G(x) uniquely in C(I)
(the solution is {1

2}) and we may even solve x = E(x, x) uniquely (the solu-
tion is the Cantor set). But we cannot solve x = x∗ uniquely. So this function
x 7→ x∗ must be treated on a different level.

(iv) More generally, it is well-known that for a complete metric space X the non-
empty compact subspaces of X with the Hausdorff metric form a complete
metric space (C(X), h); see, e.g. [4]. Furthermore, if fi : X → X , i =
1, . . . , n, are contractions of the space X with contraction factors ci, i =
1, . . . , n, then it is easy to show that the map

aX : C(X)n → C(X) (Ai)i=1,...,n 7→
n⋃

i=1

fi[Ai] (16)
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is a contraction with contraction factor c = maxi ci (the product C(X)n is,
of course, equipped with the maximum metric). In other words, given the
fi, we obtain on C(X) the structure aX of an H-algebra for the contracting
endofunctor H(X, d) = (Xn, c · dmax). Thus, if X is not empty and thus has
a compact subset, then (C(X), aX) is a cia for H .

As an illustration we come back to (iii) above and show that the Cantor “mid-
dle third” set cmay be obtained via the cia structure on a certain space. Recall
that c is the unique non-empty closed subset of the unit interval which satis-
fies c = 1

3c∪ (2
3 + 1

3c). So here we take X = I and we note that the algebraic
structure a on C(I) is given as in (16) above, e. g. a(E, s, t) = f(s) ∪ g(t)
for the 1

3 -contracting functions f(x) = 1
3x and g(x) = 1

3x+ 2
3 on I .

Now consider the formal equation

x ≈ E(x, x) .

It gives rise to a flat equation morphism e : 1 → H1 + C(I) which maps
the element x of the trivial one point space 1 to the element (E, x, x) of H1.
The unique solution e† : 1 → C(I) picks a non-empty closed set c satisfying
c = E(c, c) = f [c] ∪ g[c]. Hence e† picks the Cantor set.

(v) Continuing with our last point, for each non-empty closed s ∈ C(I), there is
a unique c(s) with c(s) = E(s, c(s)). In addition c is a continuous function.
The argument is similar as above. But here we study the recursive program
scheme (4) and solve this in (C(I), a) in the appropriate sense.

2.6 Complete Elgot algebras

In many settings, one studies a fixed point operation on a structure like a com-
plete partial order. And in such settings, one typically does not have unique fixed
points. So completely iterative algebras are not the unifying concept capturing pre-
cisely what is needed to solve recursive program schemes. Instead, we shall need
a weakening of the notion of a cia. This notion is that of a (complete) Elgot alge-
bra, which was introduced in [2]. An Elgot algebra is a triple (A, a, ( )†), where
a : HA → A is an H-algebra and ( )† is an operation taking a flat equation mor-
phism e : X → HX +A to a solution e† : X → A. Two properties are required of
( )†. But since our work does not explicitly call on these properties, we shall not
mention them.

Example 2.20. We mention some important examples of Elgot algebras.
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(i) Every cia for H is an Elgot algebra, see [1, 16].

(ii) Let H be a locally continuous endofunctor on the category CPO; i. e., ev-
ery derived map CPO(X,Y ) → CPO(HX,HY ) is continuous. It is shown
in [2] that any H-algebra (A, a) with a least element ⊥ is an Elgot algebra
when to a flat equation morphism e : X → HX + A the least solution e†

is assigned. More precisely, define e† as the join of the following increas-
ing ω-chain in CPO(X,A): e†0 is the constant function ⊥; and given e†n let
e†n+1 = [a,A] · (He†n +A) · e.

(iii) Finally here is a specific case that we shall use later in our examples. Let Σ
be the signature consisting of a constant one, two unary symbols succ and
pred, a binary symbol ∗ and a ternary symbol ifzero. This gives rise to a sig-
nature functor HΣ on CPO as explained in Example 2.2. Now consider the
set N⊥ = {⊥, 0, 1, 2, . . .} with the so-called flat cpo structure, i. e., x ≤ y iff
x = y or x = ⊥. We interpret the operation symbols from Σ by the usual op-
erations on N—the constant 1 and the successor, predecessor, multiplication
and conditional functions—extended to ⊥ in the obvious way. ThenN⊥ is an
HΣ-algebra, whence an Elgot algebra for that functor.

Theorem 2.21 ([2]). The category Alg†H of ElgotH-algebras is isomorphic to the
Eilenberg-Moore category AT of monadic algebras for the free completely iterative
monad T on H .

It follows that for every Elgot algebra (A, a, ( )†) there is an associated struc-
ture ã : TA → A of an Eilenberg-Moore algebra, which we call evaluation mor-
phism to remind us that in the special case of a signature functor HΣ of Set this
morphism evaluates every Σ-tree over A in the algebra A.

2.7 Standard interpreted solutions

We now summarize the theory of standard interpreted solutions to our formalization
of recursive program schemes. For more on it, see [17, 18, 19].

Let A = (A, a, ( )†) be an Elgot algebra for an iteratable endofunctor H . We
consider A as an Eilenberg-Moore algebra ã : THA → A. Let e : V → TH+V

be a guarded recursive program scheme, and let e† : V → TH be its unique (unin-
terpreted) solution. The standard interpreted solution of e is e‡A : V A → A, given
by

e‡A = ã · (e†)A (17)
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This solution extends the given algebraic structure a : HA → A in the sense
that there is an operation (−)+ taking solutions to flat equations under which
(A, [a, e‡A], (−)+) is an Elgot algebra for H + V . For the associated evaluation

morphism [̃a, e‡A] : TH+VA→ A we have two important properties:

[̃a, e‡A] = ã · [κH , e†]A (18)

e‡A = [̃a, e‡A] · eA (19)

In addition, there is an important characterization result for interpreted solutions
on CMS and CPO.

Theorem 2.22. Let H be a contracting endofunctor on CMS, let A be a non-empty
H-algebra, and let e : V → TH+V be a guarded rps. The standard interpreted
solution e‡A : V A→ A of e in A is the unique fixed point of the continuous function

R on CMS(V A,A) defined by R(f) = [̃a, f ] · eA:

R(f) = V A
eA //TH+VA

[̃a,f ]
//A (20)

On CPO, if H is locally continuous and A is an H-algebra with a least element, an
rps e : V → TH+V gives rise to a continuous operation R defined again by (20),
and the standard interpreted solution e‡A of e in A is the least fixed point of R .

Example 2.23. At this point, we return to a discussion in the Introduction. Although
we did not say it at the time, we were concerned with interpreted solutions of rps’s
in a particular object in CMS. Let Σ be a signature with binary symbols E and F ,
let H = HΣ be the associated endofunctor on CMS, and let A = C(I) be the H-
algebra as in Example 2.19(iii). (This means that the interpretation of the symbolsE
and F are the functions with the same name given in (3).) Let V be the endofunctor
obtained in the same way from a unary operation ϕ (or ψ, respectively). We are
concerned with the two rps’s ϕ(s) ≈ E(s, ϕ(s)) and ψ(s) ≈ E(ψ(s), s). These
equations correspond to two rps’s V → TH+V and, by Theorem 2.22, the standard
interpreted solutions are given by two operations ϕ†, ψ† : A→ A. Our goal here is
to show (6), repeated below:

ϕ†(s)∗ = ψ†(s∗) (21)

For this, consider χ(s) ≈ F (χ(s), s) as an rps e : V → TH+V . By Theorem 2.22,
e‡A : V A → A is given by the unique non-expanding f : A → A such that for all
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s ∈ C(I),
f(s) = F (f(s), s) = E(f(s), s∗).

Now we claim that g and h also satisfy this, where g(s) = ϕ†(s)∗ and h(s) =
ψ†(s∗). This will verify (21). These functions g and h are non-expanding since the
( )∗ operation preserves distances. What we do know, by Theorem 2.22 again, is
that g(s) = E(s, ϕ†(s))∗ and h(s) = E(ψ†(s∗), s∗). We reason as follows:

g(s) = E(s, ϕ†(s))∗ = E(ϕ†(s)∗, s∗) = E(g(s), s∗)
h(s) = E(ψ†(s∗), s∗) = E(h(s), s∗)

This completes our verification.

3 Equational properties of first-order recursion

The main point of this paper is to consider properties of recursive program scheme
solutions. It therefore makes sense to write the general properties of the dagger
operation which we just defined. These are the equational properties studied in
iteration theory [5]. However, please note that these are the properties of ideal
morphisms, where a morphism f : a → Tb is ideal if it factors through τb; more
precisely, f = τb · f ′ for some f ′ : a → HTb. As we stated in Theorem 2.4,
for ideal f : a → T (a + b), there is a unique f † : a → Tb such that f † =
µb · T [f †, ηb] · f . We are interested in the operation f 7→ f †, and the point of
this section is to isolate the relevant algebraic laws concerning it and the rest of the
category-theoretic machinery which we have been studying.

This section offers a preparation for Section 4 below. But the work here is not
really needed for in Section 4. Much of the content of this section was known in
slightly different formulations in other papers. For example, for the base category
A = Set, Moss [21] studies laws of an iteration operator which makes sense even
for non-ideal morphisms (one has a fixed element ⊥ for “ungrounded” recursions
solving equations of the form x = x). The laws there are somewhat more compli-
cated to state, but they are more fully equational since they do not depend on the
notion of an ideal morphism. Also, a completeness result is found in [21] for inter-
pretations of the resulting logical system. In recent work by Adámek, Milius and
Velebil [3] equational laws of an iteration operation which applies to all equation
morphisms in iterative monads are studied for more general base categories than
Set.
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3.1 Preliminaries

This section presents four laws of the dagger operation in Sections 3.2–3.5. The
verification of some of these use some general facts which we now quote.

Proposition 3.1. Let f : a→ Tb and h : d→ a. Then (f · h)∗ = f∗ · Th.

Proof. f∗ ·Th ·ηd = f∗ ·ηa ·h = f ·h. Appealing to Theorem 2.4, we only need to
check that f∗ ·Th is a morphism of H-algebras. But f∗ ·Th · τd = f∗ · τa ·HTh =
HTf∗ ·HTh · τb = HT (f∗ · Th) · τb.

Proposition 3.2. Let inr : a → a + b be a coproduct injection. Then T inr =
(ηa+b · inr)∗. Similarly, T inl = (ηa+b · inl)∗.

Proof. By naturality of η, T inr · ηa = ηa+b · inr. And by naturality of τ , T inr is an
H-algebra morphism.

3.2 The fixed point identity

For all ideal f : a→ T (a+ b), [f †, ηb]∗ · f = f †.

Proof. The definition of f † (in this paper) is that it is the unique morphism such that

f † = µb · T [f †, ηb] · f

Since [f †, ηb]∗ = µb · T [f †, ηb], we see that f † = [f †, ηb]∗ · f , as desired.

3.3 The pairing identity

Let f : a → T (a + b + c) and g : b → T (a + b + c) be ideal. Then [f, g] is also
ideal, and

[f, g]† = [[h, ηc]∗ · f †, h†],

where h : b→ T (b+ c) is [f †, ηb+c]∗ · g.

Proof. We omit the verification that [f, g] is ideal. Instead, we shall verify that

[[h†, ηc]∗ · f †, h†] = [[h†, ηc]∗ · f †, h†], ηc]∗ · [f, g]. (22)

The pairing identity then follows from the fact that [f, g]† is uniquely determined
(cf. Theorem 2.4). To simplify notation, let

k = [[h†, ηc]∗ · f †, h†].
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Then (22) reduces to the following two identities:

[h†, ηc]∗ · f † = [k, ηc]∗ · f
h† = [k, ηc]∗ · g

(23)

In order to show these, we consider the diagram below:

a
f†

//

f

��

T (b+ c)

[h†,ηc]∗

%%LLLLLLLLLLLLLLLL b
hoo

h†

��

T (a+ b+ c)
[k,ηc]∗

//

[f†,ηb+c]
∗

99rrrrrrrrrrrrrr
Tc

The triangles on the left and right commute by the fixed point identity. For the
central triangle, we calculate using the Kleisli laws of (−)∗:

[h†, ηc]∗ · [f †, ηb+c]∗ = ([h†, ηc]∗ · [f †, ηb+c])∗

= [[h†, ηc]∗ · f †, [h†, ηc]∗ · ηb+c]∗

= [k, ηc]∗

The first equation of (23) follows from the commutativity of the left and center. For
the second equation of (23), we use the triangles on the right and in the center:

[k, ηc]∗ · g = [h†, ηc]∗ · [f †, ηb+c]∗ · g = [h†, ηc]∗ · h = h†.

This completes the proof.

Example 3.3. Let A = Set, let Σ be a signature with binary operations symbol F
and G, and let H : Set → Set be the endofunctor corresponding to Σ. Let a = {x},
let b = {y}, and let c be arbitrary. Let f : a→ T (a+b+c) and g : b→ T (a+b+c)
be described by

f(x) =
F

y
��
��

x
//

//
g(y) =

G

x
��
��

y
//

//

(In this example, we are going to omit all of the injections.) Then [f, g]† is essen-
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tially given by the infinite trees

[f, g]†(x) =

F

G
��

��

F

99
99

F

G
��
��

F

//
//

G

G

//
//

F
��
�� [f, g]†(y) =

G

F
��

��

G

99
99

G

F
��
��

G

//
//

F

F

//
//

G
��
��

The pairing identity gives us a two-step procedure for finding these trees. First, we
find f † : a→ T (b+ c) and h = [f †, ηb+c]∗ · g : b→ T (b+ c). These are given by

f †(x) =

F

y
��
��

F

//
//

F

y
��
��

F

//
//

F

y
��
��

F

//
//

F

y
��
��

h(y) =

G

y
//

//

F
��
��

F
��
��

F

y
��
��

F

//
//

F

y
��
��

F

//
//

F

y
��
��

(24)

We obtained f † by “solving” f , and in doing this we think of y as a constant. Then
we obtained h by plugging f †(x) for x in g(y). And now we solve h in the same
way, obtaining [f, g]†(y). Finally, substitute this tree [f, g]†(y) for y in f †(x), and
we obtain [f, g]†(x). All of these points follow from the pairing identity.

3.4 The parameter identity

Let f : a→ T (a+b) be ideal, and also let g : b→ Tc. Then [T inl ·ηa, T inr ·g]∗ ·f
is ideal, and

([T inl · ηa, T inr · g]∗ · f)† = g∗ · f †.

Proof. Again, we omit the verification that the desired morphism is ideal, and we
only check that its solution is g∗ · f †. To shorten the notation, let

i = [T inl · ηa, T inr · g].
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We need only verify that the outside of the diagram below commutes.

a
f

//

f†

��

T (a+ b) i∗ //

[f†,ηb]
∗

ww
ww

w

{{ww
ww

w [g∗·f†,g]∗

��

T (a+ c)

BC
[g∗·f†,ηc]∗

ooTb
g∗

// Tc

We check that the inside parts commute. The leftmost triangle commutes by the
fixed point identity. The central triangle commutes since g∗ · [f †, ηb]∗ = (g∗ ·
[f †, ηb])∗ = [g∗ · f †, g∗ · ηb]∗ = [g∗ · f †, g]∗. The most interesting verification is

[g∗ · f †, ηc]∗ · i∗
= [g∗ · f †, ηc]∗ · [T inl · ηa, T inr · g]∗
= [g∗ · f †, ηc]∗ · [ηa+c · inl, (ηa+c · inr)∗ · g]∗
= ([g∗ · f †, ηc]∗ · [ηa+c · inl, (ηa+c · inr)∗ · g])∗
= [[g∗ · f †, ηc]∗ · ηa+c · inl, [g∗ · f †, ηc]∗ · (ηa+c · inr)∗ · g]∗
= [g∗ · f †, ([g∗ · f †, ηc]∗ · ηa+c · inr)∗ · g]∗
= [g∗ · f †, η∗c · g]∗
= [g∗ · f †, g]∗

We used Proposition 3.2 in asserting T inr = (ηa+c · inr)∗.

Example 3.4. Let f : a → T (a + b) be given similarly as in Example 3.3, and let
g : b → Tc be given by g(y) = F (z, z). Then [T inl · ηa, T inr · g]∗ · f is given by
x 7→ F (F (z, z), x). We may of course solve this directly. The parameter identity
tells us that we would get the same tree as if we took the tree for f †(x) from (24)
and substituted F (z, z) for y.

3.5 The functorial dagger implication for base morphisms

Let f : a→ T (a+ c) and g : b→ T (b+ c) be ideal, and let h : a→ b. Suppose
that T (h+ id c) · f = g · h. Then, f † = g† · h.
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The proof goes by examining the diagram below:

a
f

//

h

��

T (a+ c)

T (h+idc)
��

b
g

//

g†

��

T (b+ c)

[g†,ηc]∗wwooooooooooooo

Tc

Both parts commute, and by Proposition 3.1, [g†, ηc]∗ · T (h+ id c) = [g† · h, ηc]∗.

Example 3.5. For a very quick example, let a = {x, y}, b = {z}, and h : a → b
the constant function, and f and g given by

x ≈ F (x, y, w)
y ≈ F (y, y, w)

and z ≈ F (z, z, w),

respectively. The functorial dagger implication applies because T (h+id c)·f = g·h.
It tells us that f †(x) = g†(z) = f †(y).

Summary. The point of this section was to provide examples of equational prop-
erties of interest concerning a simple kind of recursive definition, namely first order
recursion. The identities in this section are not so surprising, since they correspond
to the laws of iteration theory [21]. What is more interesting is that the same kind
of laws hold when we move to the more involved setting of rps solutions. We wish
to emphasize, however, that the properties we establish below for rps solutions do
not follow from the earlier work: the definitions of guardedness differ, as do points
in the formulations of the identities themselves. We are not aware of any unified
treatment of the work in this section with what we do in Section 4 below.

4 Equational properties of uninterpreted rps solutions

Let us reiterate what we have done so far in this paper. We began with a few puzzles
concerning particular interpreted recursions. Then we launched into a much broader
discussion of both interpreted and uninterpreted recursion in Section 2. In this sec-
tion we will study equational laws of the operation of taking the unique solution of a
guarded rps. The laws we will establish are inspired by the laws studied in iteration
theory [5], and so we use the same names for our laws here. Notice however, that
these laws are new for rps solutions in the setting that we study in the present paper.
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4.1 The fixed point identity

Let e : V → TH+V be a guarded rps. Then [κH , e†] · e = e† (recall from Theo-
rem 2.9 that [κH , e†] denotes the unique extension of the ideal natural transformation
[κH , e†] to a monad morphism).

This identity is just a restatement of the definition of the solution natural trans-
formation e†.

4.2 The functoriality law

Suppose that we have an rps defining operations from a signature Φ recursively
from given operations from a signature Σ. The functoriality law states that we can
rename the symbols of Φ or permute argument variables of symbols from Φ without
changing the solution of our rps as long as we rename or permute on both sides of
the formal equations of the rps consistently. The categorical formulation of this fact
is this:

Proposition 4.1. Suppose that e : V → TH+V and f : W → TH+W are guarded
rps’s, and let n : V →W be a natural transformation such that the square

V
e //

n

��

TH+V

T H+n

��

W
f

// TH+W

(25)

commutes. Then f † · n = e†.

Proof. We need only show that f † · n solves e. Our candidate solution f † · n is
obviously an ideal natural transformation since f † is one. Now consider the diagram

V
n //

e

��

W
f†

//

f

��

TH

TH+W
[κH ,f†]

;;vvvvvvvvv

TH+V

T H+n

99ttttttttt BC
[κH ,f†·n]

OO

All its inner parts commute; the upper left-hand part commutes by hypothesis, the
upper right-hand one since f † is a solution of f , and the lower part commutes by
Corollary 2.14(ii).
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Example 4.2. Let A = Set and let Σ be a signature with one binary operation
symbol F and one unary symbol G. Let Φ be a signature with a unary symbol ϕ,
and let Ψ have one binary symbol ψ. Let H , V , and W be the endofunctors on Set
associated to Σ, Φ and Ψ, respectively. Consider the guarded rps’s e : V → TH+V

and f : W → TH+W given by the formal equations

ϕ(x) ≈ F (x, ϕ(Gx)) and ψ(x, y) ≈ F (x, ψ(Gy,Gx)) ,

respectively. Let n : V → W be the natural transformation with components nX

given by nX(ϕ, x) = (ψ, x, x). Clearly, n makes the square (25) in Proposition 4.1
commute. The solutions e† : V → TH and f † : W → TH are given by

ϕ†(x) =

F

x
��
��

F

//
//

F

Gx
��
��

F

//
//

F

GGx
��
��

ψ†(x, y) =

F

x
��
��

F

//
//

F

Gy
��
��

F

//
//

F

GGx
��
��

F

//
//

F

GGGy
��
��

(26)

Obviously, we have ϕ†(x) = ψ†(x, x). This follows from the functoriality law.

4.3 The parameter identity

Suppose again that we have an rps defining operations from a signature Φ recur-
sively from given operations from a signature Σ. Let us assume that we want to
substitute the symbols from Σ by terms or even infinite trees over another signature
Γ. There are two ways to obtain a solution for operations of Φ as Γ-trees: either
one first substitutes the symbols from Σ in the rps and then solves the resulting
rps, or one first solves the rps with givens Σ and then substitutes all Σ-symbols.
Proposition 4.3 below states that these two ways to solve our given rps are the same.

Proposition 4.3. Let H , K and V be iteratable endofunctors on A, and let e :
V → TH+V be a guarded rps. For any ideal natural transformation n : H → TK

consider the ideal natural transformation

s ≡ H + V
n+κV

//TK + T V
[T inl,T inr]

//TK+V
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and form the rps

n • e ≡ V
e // TH+V s // TK+V .

Then n • e is a guarded rps, and its solution is related to that of e by

(n • e)† = n · e† .

Proof. Observe first that s is indeed an ideal natural transformation since n and κV

are ideal natural transformations and by Lemma 2.11 applied to T inl and T inr:

H

n′

��

inl //

n

""E
EE

EE
EE

EEGF

@A
s′·inl

//

H + V

n+κV

��

V
inroo

κV

||zz
zz

zz
zz

z
V ηV

��

ED

BC
s′·inr

oo

KTK τK
//

inl∗T inl

��

TK inl //

T inl
$$IIIIIIIII TK + T V

can

��

T Vinroo

T inr
zzuuuuuuuuu

V T VτV
oo

inr∗T inr

��

LTL
τL

// TL LTL
τL

oo

(27)

In this diagram, L isK+V , and the middle vertical arrow is s. Also, s′ : H+V →
(K+V )TK+V is defined so that the two outside parts commute. All the inner parts
commute, easily. And so we see that s = τK+V · s′. This shows that s is an ideal
natural transformation.

Now to see that n • e is guarded, we use the diagram below, where we use L for
K + V .

V
e //

@A
//

TH+V s // TL

(H + V )TH+V

τH+V

OO

s′∗s // LTLTL
LµL

// LTL

τL

OO

HTH+V

inl∗T H+V

OO

(KT inl·n′)∗s
// KTLTL

KµL
//

inl∗T L∗T L

OO

KTL

inl∗T L

OO

Its left-hand part commutes since e is guarded, the upper square commutes by
Lemma 2.11, and the lower right-hand square is obvious. For the remaining lower
left-hand square it suffices to consider the two parallel components on the left and
right-hand side of ∗ separately. The right-hand component clearly commutes, and
the left-hand one also does by the left-most part of Diagram (27) above. The outside
of the figure shows the desired guardedness.
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Next, we prove that n · e† solves n • e. Then, the desired result follows by the
uniqueness of solutions. In fact, it is clear that n·e† is an ideal natural transformation
since e† is one and by applying Lemma 2.11 to n. Consider the diagram

V
e† //

e

��

GF

@A
n•e

//

TH n // TK

TH+V

s
��

[κH ,e†]

;;wwwwwwwww

TK+V

[κK ,n·e†]

<<yyyyyyyyyyyyyyyyyyyyy

The left-hand part is the definition of n • e. The upper left triangle commutes since
e† is a solution of e. Thus, we are done if we show that the lower right-hand part
commutes. By Proposition 2.12(iii), it suffices to show that the following square

H + V
[κH ,e†]

//

s

��

TH

n
��

TK+V

[κK ,n·e†]
// TK

(28)

commutes. We consider the two coproduct components of Diagram (28) separately.
For the left-hand component, the upper right passage gives n ·κH = n, and we need
only show that the lower left passage also yields n. To see this, consider

H + V
s // TK+V

[κK ,n·e†]
// TK

H

inl

OO

n
// TK

T inl

OO

κH=id

77nnnnnnnnnnnnnn

The square commutes by definition of s, and the triangle by Corollary 2.14(ii). We
conclude with the right-hand component of Diagram (28). The upper right passage
yields n · e†. To see that the lower left passage yields the same thing, consider

H + V
s // TK+V

[κK ,n·e†]
// TK

V

inr

OO

κV
//@A BC

n·e†

OO

T V

T inr

OO

n·e†

77nnnnnnnnnnnnnn
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Its left-hand square commutes by the definition of s, the right-hand triangle
commutes by Corollary 2.14(ii), and the lower part commutes due to Proposi-
tion 2.12(i).

Example 4.4. Let A = Set, let Σ be a signature that consists of a unary symbol
G and a binary one F , and let Φ have only the unary symbol ϕ. Furthermore, let
Γ consist of two binary operation symbols + and ∗. Suppose that H , V and K
are the endofunctors of Set associated to Σ, Φ and Γ, respectively. We specify
n : H → TK by instead giving an associated Σ → TΓ · J and then using the
correspondence in (10). In pictures, we take

F 7→

+

∗
��
��

1
//

//

∗

0
��
��

0
//

//
G 7→

+

0
��
��

0
//

//
(29)

Finally, let the guarded rps e : V → TH+V be given by the formal equation

ϕ(x) ≈ F (x, ϕ(Gx)) , (30)

whose solution e† : V → TH is shown in (26) above as ϕ†(x). The rps n • e is
given by replacing in the right-hand side of (30) all Σ-symbols according to (29),
i. e., n • e is described by the formal equation

ϕ(x) ≈ (x ∗ x) + ϕ(x+ x) ,

where we write + and ∗ in infix notation as usual. The solution (n • e)† is essen-
tially given by the infinite tree

+

∗
��

��
�

+
??

??
?

∗

x
��
��

x
//

//
+

∗
��

��
�

+
??

??
?

∗

+
��
��

+
//

//

+

x
))
))

x
��
��

+

x
��
��

x
))
))

+

The parameter identity confirms that we get the same tree when we form n · e†, i. e.,
we take ϕ†(x) and perform second-order substitution (i. e., substitution of operation
symbols from Σ by Γ-trees) according to (29).
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4.4 The pairing identity

Let H , V and W be iteratable endofunctors of A. Suppose we have a guarded rps
factoring as

V +W
[e,f ]

//

[e∗,f∗] ''NNNNNNNNNNN TH+V +W

HTH+V +W

τH+V +W ·(inl∗id)

OO

(31)

We wish to compute the solution of [e, f ] by first solving f : W → T (H+V )+W ,
which is also a guarded rps, and then plugging into e the solution f † : W → TH+V

for W . More formally, we consider the rps

g ≡ V
e //TH+V +W

[κH+V ,f†]
//TH+V . (32)

The solution g† : V → TH is an ideal natural transformation, and so we can form
the monad morphism [κH , g†] : TH+V → TH . The pairing identity now states that
the equation

[e, f ]† = [g†, [κH , g†] · f †] : V +W → TH (33)

holds.

Proposition 4.5. For a guarded rps [e, f ] as above, the rps g from (32) is guarded,
and the pairing identity (33) holds.

Proof. Throughout this proof we write G as an abbreviation for H + V , and we
write σ for [κG, f †]. In order to prove that g is guarded, we establish below that the
outside of the following diagram commutes:

V
e //

@A
e∗

//

TG+W σ // TG
ED��GF

g

(G+W )TG+W

τG+W

OO

[GηG,f†
′
]∗σ

// GTGTG
GµG

// GTG

τG

OO

HTG+W

inl∗id

OO

HηG∗σ
// HTGTG

inl∗id∗id

OO

HµG
// HTG

inl∗id

OO

We must explain f †′. The unique solution f † : W → TG is an ideal natural trans-
formation, and so we have f †′ : W → GTG with τG · f †′ = f †. Now all inner
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parts of the above diagram commute: the left-hand part due to the guardedness of
[e, f ], the upper right-hand square commutes by Lemma 2.11, and the two lower
right-hand squares are obvious.

Next, we show (33). For this, we show that [g†, [κH , g†] · f †] is a solution of
[e, f ], and then appeal to the uniqueness of solutions. We shall first establish that f †

factors as τG · (inl ∗ id) · f †′′, where

f †
′′ ≡ V

f∗
//HTG+W Hσ //HTG ,

Let K be a shorthand for G+W , and consider the diagram

W
f†

//GF

@A

f

//

f∗

��

TG

HTK

inl∗id

��

Hσ//

HηG∗σ --

HTG

HηGT G

##FFFFFFFF HTG inl∗id // GTG

τG
=={{{{{{{{

HTGTG

HµG

OO

inl∗id∗id
III

$$III

KTK

τK

��

[GηG,f†
′
]∗σ

// GTGTG

GµG

OO

TK

BC
σ

OO

We are to show that the upper part commutes. The left-hand part commutes by
(31), the lower part commutes due to Lemma 2.11, and all other remaining parts
are clear. The outward shape commutes since f † solves f . It then follows that the
desired upper part also does.

In order to complete the proof we have to show that the triangle

V +W
[g†,[κH ,g†]·f†]

//

[e,f ]
��

TH

TH+V +W [κH ,g†,[κH ,g†]·f†]

66mmmmmmmmmmmmmm
(34)

commutes. We consider its coproduct components separately. For the left-hand
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component, consider the diagram

V
g†

//

g
''OOOOOOOOOOOOO

e

��

TH

TH+V
[κH ,g†]

99ssssssssss

TH+V +W

BC
[κH ,g†,[κH ,g†]·f†]

OO

[κH+V ,f†]

77ooooooooooo

(35)

Its left-hand triangle is the definition (32) of g, and its upper part commutes since
g† is a solution of g. To see that the lower right-hand part commutes, it suffices by
Proposition 2.12(iii) to show that the following diagram commutes:

H + V +W
[κH+V ,f†]

//

[κH ,g†,[κH ,g†]·f†] ))SSSSSSSSSSSSSSSS TH+V

[κH ,g†]
��

TH

But this is trivial; for the left-hand component H + V use Proposition 2.12(i), and
for the right-hand one nothing needs to be shown.

Finally, we show that the right-hand component of Diagram (34) commutes. To
this end consider the commutative diagram

W
f†

//

f

��

TH+V
[κH ,g†]

// TH

TH+V +W

[κH+V ,f†]

88rrrrrrrrrr BC
[κH ,g†,[κH ,g†]·f†]

OO

The left-hand triangle commutes since f † solves f , and the right-hand part com-
mutes as we have already seen in Diagram (35). This completes our proof.

Example 4.6. Let A = Set and let Σ be a signature with a unary symbol G and two
binary ones E and F . Let Φ and Ψ be signatures expressing unary symbols ϕ and
ψ, respectively. Finally, let U , V and W be the signature functors of Set associated
to Σ, Φ and Ψ, respectively. Consider the rps [e, f ] : V + W → TU+V +W given
by the recursive definition in (7) again, repeated below:

ϕ(x) ≈ E(x, ψ(Gx))
ψ(x) ≈ F (x, ϕ(Gx))

32



The pairing identity tells us that we can solve this recursive program scheme in a
step-by-step fashion. We take first the solution f † : W → TU+V of the second
equation in (7), where ϕ is considered as a given operation symbol, i. e., f † essen-
tially is described by the (Σ + Φ)-tree

F

x
��
��

ϕ
//

//

ϕ

GG

x

(36)

This is the same as the right-hand side of ψ(x) in (7) because in this right-hand side
no “recursive call” to ψ is made. The guarded rps g : V → TU+V expresses the
following recursion

ϕ(x) ≈ E(x, F (Gx,ϕ(GGx))) . (37)

That is, we have plugged in (36) for ψ(x) in (7). The solution g† : V → TU yields
the uninterpreted solution for ϕ(x) and is given by the infinite tree ϕ†(x) shown on
the left in (8) above. Plugging g† into f † corresponds to plugging ϕ†(x) into (36).
In this way, we obtain the uninterpreted solution for ψ(x), shown on the right in
(8).

4.5 A derived property: the Bekić-Scott law

Using the properties we have established in the previous sections we will now derive
a simplified but often useful version of the pairing identity which we will call the
Bekić-Scott law.

Definition 4.7. Let H , V and K be endofunctors with H +K iteratable. We call a
natural transformation e : V → TH+K guarded by H if there exists a factorization
e∗ of e of the form

V
e //

@A
e∗

//

TH+K

(H +K)TH+K

τH+K

OO

HTH+K

inl∗T H+K

OO
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Let H , V and W be iteratable endofunctors of A. Suppose we have a guarded
rps e : V → TH+V and an rps f : W → TH+V +W which is guarded by H . We
wish to compute the uninterpreted solution of the guarded rps

[e′, f ] : V +W → TH+V +W ,

where

e′ ≡ V
e //TH+V T inl

//TH+V +W .

In fact, one first solves e and f to obtain e† : V → TH and f † : W → TH+V , and
then plugs the solution e† into f †. More formally, the Bekić-Scott law states that

[e′, f ]† = [e†, [κH , e†] · f †] : V +W → TH . (38)

Proposition 4.8. Let e and f be rps’s as above. Then the Bekić-Scott law (38) holds.

Proof. To see that [e′, f ] is a guarded rps we consider the coproduct components
separately. Indeed, nothing has to be shown for the right-hand component f as it is
guarded by H . And for the left-hand component we have the commutative diagram

V
e //

@A
e∗

//

TH+V T inl
// TH+V +W
ED��GF

e′

(H + V )TH+V

τH+V

OO

inl∗T inl
// (H + V +W )TH+V +W

τH+V +W

OO

HTH+V

inl∗id

OO

HT inl
// HTH+V +W

inl∗id

OO

Here e∗ is defined so that the left-hand region commutes; we obtain e∗ from the
guardedness of e. The upper right-hand square commutes by Corollary 2.14(ii), and
the lower right-hand square is obvious. So the outside of the figure commutes, and
we have the desired guardedness of [e′, f ].

The equation (38) follows immediately from the pairing identity (33) if we show
that for the rps g formed from e′ similarly as in (32) we have g† = e†. But in fact,
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here we have g = e:

V
e //

@A
g

//

TH+V

T inl

��

ED

BC
κH+V

oo

TH+V +W

[κH+V ,f†]
��

TH+V

In fact, the left-hand part is the definition of g, and the right hand part commutes by
Corollary 2.14(ii). Finally, use that κH+V = id holds by Proposition 2.12(ii).

Remark 4.9. Using the parameter identity we easily derive from (38) the following
equation

[e′, f ]† = [e†, (h · f)†] ,

where

h ≡ H + V +W
[κH ,e†]+κW

//TH + TW
[T inl,T inr]

//TH+W .

In fact, for n = [κH , e†] we have h · f = n • f , whence (h · f)† = n · f † by
the parameter identity, whence the above equation follows from the Bekić-Scott
law (38).

5 Properties of Standard Interpreted Solutions

In general, rps’s have many solutions in a given Elgot algebra. So to prove properties
relating solutions of different rps’s, we must fix on some canonical solution opera-
tion. Fortunately, we have isolated the concept of a standard interpreted solution of
an rps in an Elgot algebra, see Section 2.7.

In this section, we establish some properties of standard interpreted rps solu-
tions. The work here builds on what we did in the previous section, but we also
need a new definition and a result pertaining to it.

Definition 5.1. Let A be an object of A, and consider two iteratable functors H
and K on A, and an ideal natural transformation n : H → TK . Let A(H) =
(A, a, ( )∗) be an Elgot algebra for H , and let A(K) = (A, b, (−)+) be an Elgot
algebra for K. Let ã and b̃ be the associated Eilenberg-Moore structures for A(H)
and A(K), respectively. We say that A(H) and A(K) are n-related if ã = b̃ · nA.
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Proposition 5.2. Let H , K, and n : H → TK be as above, and let A(K) =
(A, b, ( )∗) be a K-Elgot algebra. Then there is an Elgot H-algebra A(H) which
is n-related to A(K). The H-algebra structure underlying A(H) is (A, a), where
a = b̃ · nA.

Proof. Let ã : THA → A be b̃ · nA. Then (A, ã) is an Eilenberg-Moore algebra
for TH . This follows from the fact that b̃ is an Eilenberg-Moore algebra for TK and
n : TH → TK is a monad morphism, see e. g. Proposition 4.5.9 in [6].

For the second assertion, our general theory tells us that the H-algebra structure
a of the Elgot algebra A(H) associated to (A, ã) is ã · κH

A . Thus, the desired result
follows by using Proposition 2.12(i):

a = ã · κH
A = b̃ · nA · κH

A = b̃ · nA .

5.1 Using laws about the givens in CMS and CPO

Proposition 5.3. Let H and V be contracting endofunctors of CMS (or locally
continuous on CPO). Let e, f : V → TH+V be guarded recursive program schemes
over CMS (or CPO), let (A, a) be an H-algebra which is non-empty (or which
has a least element), and hence is a cia (or Elgot algebra) for H . Assume that e
and f have the following equivalence property: for all morphisms b : V A → A,˜[a, b] · eA = ˜[a, b] · fA. Under these assumptions, e‡A = f ‡A.

Proof. First notice that the coproduct H + V is contracting (or locally continuous).
So for every b : V A → A the morphism [a, b] is part of the structure of a cia (or
Elgot algebra) for H + V , and we can form ˜[a, b]. Next, we apply the condition in
the hypothesis, taking e‡A for b, and also equation (19) to see that

[̃a, e‡A] · fA = [̃a, e‡A] · eA = e‡A .

At this point, we need slightly different arguments for CMS and CPO. In both cases,
we use Theorem 2.22. For CMS, we have e‡A = f ‡A because e‡A is a fixed point of
an operation whose only fixed point is f ‡A. For CPO, we only have f ‡A ≤ e‡A. But
then interchanging e and f shows the converse inequality e‡A ≤ f ‡A.

Example 5.4. We return to an example from the introduction. Let A and H be as
in Example 2.23, and let V be a functor on CMS corresponding to a single unary
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symbol. Let e and f correspond to ϕ and ψ, respectively:

ϕ(s) ≈ F (F (s, ϕ(s)), F (ϕ(s), s))
ψ(s) ≈ E(F (s, ψ(s)), F (s, ψ(s)))

In our algebra A = C(I), we have F (F (s, t), F (t, s)) = E(F (s, t), F (s, t)) for all
s and t. This translates to an assertion which implies the hypothesis ˜[a, b] · eA =˜[a, b] · fA for all b : V A→ A. We thus conclude that e‡A = f ‡A.

5.2 The interpreted fixed point identity

For every guarded program scheme e : V → TH+V the standard interpreted solu-
tion satisfies Equation (19) repeated below:

e‡A = [̃a, e‡A] · eA.

This interpreted fixed point identity was established in [17, 18] (in fact, see Equa-
tion (7.4) in [18]). It also follows easily from Equation (18):

e‡A = ã · eA† by (17)
= ã · [κH , e†]A · eA see Section 4.1

= [̃a, e‡A] · eA by (18)

5.3 The interpreted functoriality law

Proposition 5.5. Suppose that e : V → TH+V and f : W → TH+W are guarded
rps’s, and let n : V →W be a natural transformation such that the square

V
e //

n

��

TH+V

T H+n

��

W
f

// TH+W

commutes. Let (A, a, ( )∗) be an Elgot H-algebra. Then e‡A = f ‡A · nA.

Proof. As always let ã be the associated Eilenberg-Moore algebra structure for
(A, a, ( )∗). Then the desired result follows at once from the (uninterpreted) func-
toriality law by virtue of the following computation:

e‡A = ã · e†A by (17)
= ã · f †A · nA by Proposition 4.1
= f ‡A · nA by (17)
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As the next example shows, the functoriality law may be used to show that in-
terpreted solutions behave in the expected way with respect to renaming recursively
defined function symbols in recursion schemes, and with respect to permutations of
argument variables.

Example 5.6. Let A and H be as in Example 2.23, and let V and W be the end-
ofunctors on CMS obtained from binary function symbols ϕ and ψ, respectively.
Let e : V → TH+V and f : W → TH+W be guarded rps’s expressing one of the
following recursions each:

ϕ(x, y) ≈ F (ϕ(x, y), ϕ(y, ϕ(x, y)))
ψ(x, y) ≈ F (ψ(y, x), ψ(ψ(y, x), y))

Let n : V →W be given by ϕ 7→ (ψ, 1, 0). That is, for all sets X and all x, y ∈ X ,
nX(ϕ, x, y) = (ψ, y, x). Then f · n = TH+n · e. It follows from Proposition 5.5
that e‡A = f ‡A · nA. This has a clearer interpretation if we write ϕ† : A2 → A for
x, y 7→ e‡A(ϕ, x, y), and similarly for ψ†. Then the relation of ϕ† and ψ† is that for
all s, t ∈ A, ϕ†(s, t) = ψ†(t, s).

5.4 The interpreted parameter identity

Proposition 5.7. Let H , K and V be iteratable endofunctors of A, and let e : V →
TH+V be a guarded rps. Let n : H → TK be an ideal natural transformation. Let
A(K) = (A, b, ( )∗) be aK-Elgot algebra, and letA(H) be the n-relatedH-Elgot
algebra structure according to Proposition 5.2. Let n • e be the guarded rps

n • e ≡ V
e // TH+V s // TK+V .

where

s ≡ H + V
n+κV

//TK + T V
[T inl,T inr]

//TK+V ,

Then the standard solutions are related as follows:

(n • e)‡A(K) = e‡A(H)

(Note that on the left we interpret n • e in the K-Elgot algebra A(K), whereas on
the right we interpret e in the H-Elgot algebra A(H).)
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Proof. Let ã and b̃ be the Eilenberg-Moore algebra structures corresponding to the
Elgot algebras A(H) and A(K), respectively. We then argue as follows:

(n • e)‡A = b̃ · (n • e)†A by (17)
= b̃ · nA · e†A by Proposition 4.3
= ã · e†A since A(H) is n-related to A(K)
= e‡A by (17)

Example 5.8. Consider the interpretation of

r(x) ≈ ifzero(x, zero, succ(square(r(pred(x))))) (39)

in N⊥. That is, let Σ be the signature with all symbols above, except r, and let H
be the corresponding Set-endofunctor. Let V correspond to a new unary symbol r,
and let K correspond to Σ, except that square is replaced by a binary symbol ×.
Let e : V → TH+V be the ideal natural transformation expressing (39). Consider
an Elgot K-algebra, say N⊥ extended with the (strictly extended) multiplication
function a, b 7→ a · b as its interpretation of ×. Let n : H → TK be the natural
transformation corresponding to the substitution square(x) 7→ x× x. The rps n • e
corresponds to the equation

r(x) ≈ ifzero(x, zero, succ(r(pred(x))× r(pred(x)))) .

Then n induces an n-related ElgotH-algebra structure onN⊥; intuitively, one takes
a subtree square(t) and replaces it with t × t “corecursively.” The point of the
interpreted parameter identity is that e and n • e have the same interpreted solution
in the two (different, but related) Elgot algebras.

5.5 The interpreted pairing identity

Let H , V and W be iteratable endofunctors of A. Suppose that we have a guarded
rps

[e, f ] : V +W → TH+V +W ,

and an Elgot algebra A(H) = (A, a, ( )∗). To compute the standard interpreted
solution of [e, f ] we first solve the guarded rps f and plug its solution into e to
obtain the guarded rps

g ≡ V
e //TH+V +W

[κH+V ,f†]
//TH+V , (40)
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see (32). The standard interpreted solution g‡A(H) : V A→ A gives an Elgot algebra

[a, g‡A(H)] : (H + V )A → A, which we denote by A(H + V ). The interpreted
pairing identity states that the equation

[e, f ]‡A(H) = [g‡A(H), f
‡
A(H+V )] : (V +W )A→ A (41)

holds.

Proposition 5.9. For a guarded rps [e, f ] as above and an Elgot algebra A for H ,
the interpreted pairing identity (41) holds.

Proof. Recall that g is indeed guarded, see Proposition 4.5. To establish (41) we
first apply equation (18) to g and A(H) to obtain the equation

˜[a, g‡A(H)] = ã · [κH , g†]A . (42)

Then the following equations hold (we write A = A(H) and A′ = A(H +V )):

[e, f ]‡A = ã · [e, f ]†A by (17)
= ã · [g†, [κH , g†] · f †]A by Proposition 4.5

= [ã · g†A, [̃a, g
‡
A] · f †A] by (42)

= [g‡A, f
‡
A′ ] by (17)

This completes the proof.

Remark 5.10. The interpreted pairing identity shows that we can solve interpreted
recursive program schemes in a step-by-step fashion. The fact that in the formula-
tion (41) above the guarded rps g is formed using the uninterpreted solution f † may
seem odd at first. However, we shall now illustrate with an example that this cannot
be avoided in general when one wants to solve [e, f ] in two successive steps.

Example 5.11. We work with A = Set, and we consider the signature Σ with
the constant zero, the unary symbols pred and succ, the binary symbol ∗ and the
ternary symbol ifzero. Let H be the corresponding signature functor of Set, let
WX = X × X be a functor expressing one binary operation symbol q, and let
V = Id express the unary symbol r. Finally, let e : V → TH+V +W and f : W →
TH+V +W be the rps’s expressing the following recursive equations, respectively:

r(x) ≈ ifzero(x, succ(zero), q(r(predx) ∗ x, x))
q(x, y) ≈ ifzero(y, x, r(pred y)) .

(43)
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As interpretation of the givens in Σ we consider as always the Elgot algebra N⊥.
The interpreted pairing identity tells us how to solve the above system (43) in N⊥.
Notice that it is impossible to first obtain an interpreted solution for q, and then use
this to solve r because we do not know how to interpret r in N⊥. Similarly, we
cannot first obtain the solution for r to use it to solve q. The interpreted pairing
identity tells us to take first the uninterpreted solution for q obtained from f †. Since
in the second equation in (43) there is no “recursive call” to q, this uninterpreted
solution is simply

q†(x, y) = ifzero(y, x, r(pred y)) .

Now we form the guarded rps g of (40) by plugging in q†(x, y) for q in e; and so g
expresses the recursive equation

r(x) ≈ ifzero(x, succ(zero), ifzero(x, r(predx) ∗ x, r(predx))) .

It is not difficult to see by induction that the interpreted solution g‡N⊥
gives for r

the constant function on 1 (extended strictly, of course). Thus, using this interpre-
tation of r we obtain the standard interpreted solution of f w.r.t. the Elgot algebra
[a, g‡N⊥

] : (H + V )N⊥ → N⊥. It gives the following operation on N⊥:

qN⊥(x, y) =


x if y = 0
⊥ if y = ⊥
1 else

5.6 The interpreted Bekić-Scott law

Let e : V → TH+V be a guarded rps and let f : W → TH+V +W be an rps which
is guarded by H , see Definition 4.7. Suppose that A(H) = (A, a, ( )∗) is an Elgot
algebra for H . We wish to compute the standard interpreted solution of the guarded
rps

[e′, f ] : V +W → TH+V +W ,

where

e′ ≡ V
e //TH+V T inl

//TH+V +W .

In fact, one first solves e inA to obtain the standard interpreted solution e‡A : V A→
A which gives an Elgot algebra [a, e‡A] : (H + V )A → A. We denote this Elgot
algebra by A(H + V ), and we use it as an interpretation to solve f . Thus, the inter-
preted Bekić-Scott law states that for the standard interpreted solutions the equation
below holds:

[e′, f ]‡A(H) = [e‡A(H), f
‡
A(H+V )] : (V +W )A→ A (44)
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Proposition 5.12. Let e and f be rps’s as in Section 4.5, and let A(H) =
(A, a, ( )∗) be an Elgot algebra for H . Then the standard interpreted solution
of the guarded rps [e′, f ] obeys the interpreted Bekić-Scott law (44).

Proof. As in the proof of Proposition 5.9 the equation (42) follows from equation
(18). Therefore we can calculate as follows (writing A = A(H) and A′ = A(H +
V )):

[e′, f ]‡A = ã · [e′, f ]†A by (18)
= ã · [e†, [κH , e†] · f †]A by Proposition 4.8

= [ã · e†A, [̃a, e
‡
A] · f †A] by (42)

= [e‡A, f
‡
A′ ] by (18)

This completes the proof.

Example 5.13. Consider the interpretations in N⊥ of

q(x, y) ≈ ifzero(y, x, succ(succ(q(x, pred(y))))) , and
r(x) ≈ ifzero(x, q(x, x), q(r(pred(x)) ∗ x, x))

LetH be the Set-endofunctor corresponding to the symbols zero, succ, and pred, let
V (and W ) correspond to q (and r). Let e : V → TH+V and f : W → TH+V +W

be the natural transformations expressing the two recursions above. To obtain
[e′, f ]‡N⊥

, we can first determine e‡N⊥
. It is easy to see this interpreted solution

corresponds to the function q(x, y) = 2x + y. Then we may go back to the r
equation and recast it via the interpretation to

r(x) ≈ ifzero(x, 2x+ x, (2 ∗ r(pred(x)) ∗ x) + x) .

In general, the interpreted Bekić-Scott law as we have formulated it tells us that
we can solve interpreted recursive program schemes in an Elgot algebra in a step-
by-step fashion, interpreting at some step all function symbols whose right hand
sides only contain the same symbols or symbols interpreted at some previous step.
Notice that in order to be able to do the latter the different parts of a system solved in
each step must not be mutually recursive. This is the difference from the interpreted
pairing identity, where the different parts of the given system solved in each step
may be mutually recursive, see Example 5.11.
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6 Conclusion

The aims of this work were: (1) to show that the same general tools needed to
prove the existence and uniqueness of uninterpreted solutions of recursive program
schemes also are sufficient to prove the basic laws of these solutions; (2) to similarly
show that the tools for studying interpreted solutions, especially for schemes over
CMS or over CPO, also are sufficient to study interpreted solutions. We were espe-
cially interested in studying interpreted solutions. It turned out that main theorems
in [17, 18, 19] provide most of what is needed in this paper. In addition (and as
one would expect), we did need to formulate a few new results (Proposition 2.12,
Corollaries 2.13 and 2.14, and Propositions 5.2 and 5.3). But the most important
finding in this paper is that the classical results on recursive program scheme solu-
tions generalize from the classical settings to the level of Elgot algebras for iteratable
functors.
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