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Abstract

This paper provides sound and complete logical systems for several fragments of English
which go beyond syllogistic logic in that they use verbs as well as other limited syntactic
material: universally and existentially quantified noun phrases, building on the work of
Nishihara, Morita, and Iwata [7]; complemented noun phrases, following our [6]; and noun
phrases which might contain relative clauses, recursively, based on McAllester and Givan [4].
The logics are all syllogistic in the sense that they do not make use of individual variables.
Variables in our systems range over nouns, and in the last system, over verbs as well.

1 Introduction

This paper is an outgrowth of our work in the past few years on syllogistic logics [5, 6]. The
basic idea was to look at extremely small fragments of natural language with their natural
semantics, and then to axiomatize the resulting consequence relations in as simply a way as
possible. For an example of what we mean, we mention the syllogistic logic of All and Some
taken from [5]. We begin with (noun) variables X, Y , . . ., and then take as sentences All
X are Y and Some X are Y where X and Y are variables (possibly identical). We call this
language L(all, some). Then one gives a semantics by starting with a set M and a subset [[X ]]
for each variable X. The resulting structure M = (M, [[ ]]) is called a model. We say that
M |= All X are Y iff [[X ]] ⊆ [[Y ]], and M |= Some X are Y iff [[X ]] ∩ [[Y ]] 6= ∅. We then write
Γ |= S to mean that every model of all sentences in the set Γ is a model of the sentence S.
The goal is then to present a sound and complete logical system for this fragment. We present
such a system in Figure 1. The figure consists of proof rules, presented schematically. Then
we define proof trees in the usual way. We write Γ ` S if Γ ∪ {S} is a set of sentences in the
fragment, and if there is a proof tree whose leaves are labeled with elements of Γ (or with the
axioms All X are X) and whose root is labeled S, and such that at every interior point in the
tree, some rule is matched. For example,

{Some A are B,All A are X,All B are Y } ` Some X are Y
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as witnessed by tree below:

All B are Y

All A are X
Some A are B
Some B are A

Some B are X
Some X are B

Some X are Y

Then one can show the soundness and completeness of the proof theory with respect to the
semantics: Γ ` S iff Γ |= S. This is just one result of this type, and [5] presents others. Perhaps
the first results of this type is the completeness of syllogistic logic on top of propositional logic,
due to  Lukasiewicz [3] and independently to Westerst̊ahl [11]. Incidentally, completeness results
are not limited to fragments of first-order logic. But all of the fragments in [5] and [6] do have a
limitation: they use the copula (‘is’ or ‘are’) as their only verb. So it is of interest to go further.

The first paper in this direction is Nishihara, Morita, and Iwata [7]. We call their fragment
the NMI fragment, and similarly for the logical system. It adds transitive verbs, so one can
reason in the NMI system with sentences like All students read a book. Moreover, both scope
readings are possible. The paper is the inspiration for what we do in Section 2 below. We
reformulated the system and gave a completeness result for the boolean-free fragment. In a
different direction, we can take syllogistic logic and enlarge the nouns by allowing X ′ (“non-X”)
in addition to X, with semantics given by [[X ′]] = M \ [[X ]]. A complete syllogistic logic for this
fragment is presented in Section 3. That work connects to the origin of this volume, the Order,
Algebra, and Logics conference held at Vanderbilt University in June 2007: the syllogistic logic
of All, and the complement operation is analyzed by a very simple combination of algebra
and order. The last section of our paper goes off in yet another direction, providing the first
syllogistic completeness proofs for infinite fragments of language, ones proposed by McAllester
and Givan in [4]; that paper proves the decidability, but not logical completeness.

We would like to comment on the particular choice of logics studied in this paper. The three
are unrelated. What they have in common is that they go beyond what was known previously in
the area, and at the same time they approach an “Aristotle boundary” of syllogistic systems. To
make this precise, we mention a few results from Pratt-Hartmann and Moss [10]. First, consider
adding negation to the verbs in the NMI fragment, obtaining sentences like Some student does
not read every book or Every student fails to read some book. It is shown in [10] that there
is a complete syllogistic system for this fragment, but only if one allows a rule of reductio ad
absurdum (RAA). (More precisely, there are no pure syllogistic systems for the NMI fragment,
and there is a system which uses (RAA) in a very minimal way: only as the final step of a
deduction.) We take (RAA) to be a syllogistic rule, but not in the purest sense: using (RAA)
allows assumptions to be discharged. On a technical level, (RAA) allows for more powerful
systems than ones which lack it. Getting back to our results in Section 2 and 3, part of the
interest is that the systems there do not employ (RAA). The system in Section 2 uses infinitely
many rules, but this is unavoidable. Our work in Section 4 does not use (RAA) either: none of
the systems in this paper admit contradictions. But it does use a rule allowing proof by cases,
so again it is not syllogistic in the purest sense. Adding negation to the verbs would result in
a system which cannot be axiomatized by any syllogistic system, even one with (RAA).

Our work here could be of interest to people working on natural logic (see van Benthem [1]),
and to the complexity of various fragments of natural language (see Pratt-Hartmann [8, 9, 10].
It could conceivably be of some interest to people working on fragments of first-order logic such
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All X are X
All X are Z All Z are Y

All X are Y

Some X are Y
Some Y are X

Some X are Y
Some X are X

All Y are Z Some X are Y
Some X are Z

Figure 1: The logic of All X are Y and Some X are Y .

as the two-variable fragment (see Grädel et al [2]). At one time I believed that this line of work
could be pedagogically useful, because one obtains completeness theorems for various logics
but works without the syntactically complicated features such as substitution, free and bound
variables, etc. This might be true for the simpler completeness arguments in [5]. But the ones
here are too complex for beginning students of logic.

2 An Explicitly Scoped Variant of the NMI Fragment

When one considers natural language noun phrases (NPs) in connection with logic, one of the
first things to point out is quantifier-scope ambiguity. For example, All dogs see a cat could
mean that each dog sees some cat or other, and it could also possibly mean that there is one
cat which all dogs see. The standard line in linguistic semantics is that the semantic ambiguity
reflects a syntactic one. The point of raising this is that a logical system for natural language
has the same problem, and it must either respond to the problem by adopting one or another
explicit syntax, or else work somehow with disambiguated representations.

The first paper to present a syllogistic logic with verbs was Nishihara, Morita, and Iwata [7].
Their work is important for the present paper because they showed that completeness was
possible. We wish to reformulate the syntax of the NMI fragment, change the proof system,
and then to obtain a completeness theorem. We should mention that their system also has
proper nouns, which we ignore. More importantly, it also has boolean connectives. We wish to
avoid these connectives because the complexity of the system is increased by adding them.

The system in [7] has the following syntax: The basic sentences are those of the following
forms

NP V NP NP − V NP

where NP is either All X, Some X, or a proper name, and V is a verb which takes a direct
object. The notation −V indicates verb negation. In addition, we have boolean sentential
connectives.

Their semantics is unusual in that they assume all existential NP s have wide scope. Here
are some examples:

Sentence Semantics
All X love some Y (∃y)(Y (y) ∧ (∀x)(X(x)→ L(x, y))
Some X loves all Y (∃x)(X(x) ∧ (∀y)(Y (y)→ L(x, y))
∼ (Some X not love all Y ) (∀x)(X(x)→ (∃y)(Y (y) ∧ L(x, y))
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2.1 The language L(all, some, see)

The language in [7] is not so convenient to read and use, since the assumption that existentials
have wide scope is unfamiliar. We are interested in reformulating it. At the same time, we
like the fact that the language is unambiguous. One way to do keep this feature and yet have
things more readable is to add explicit scope information to sentences. This is only needed
in sentences with both universal and existential quantifiers. We can add explicit information
either to the whole sentence or just to the verb; the choice at this level is immaterial.

The language is called L(all, some, see); here is a formal presentation of its syntax. We start
with variables X, Y , . . ., and also a single verb, see. (We write this verb in English rather than
with the symbol V , since V is close to the other letters already used in this paper.) Our syntax
adds to the syllogistic logic of All and Some the sentences below:

(All X see all Y )sws (All Y see all X)ows

(All X see some Y )sws ∀x∃y S(x, y) (Some Y see all X)ows ∀x∃y S(y, x)
(Some X see all Y )sws ∃x∀y S(x, y) (All Y see some X)ows ∃x∀y S(y, x)
(Some X see some Y )sws (Some Y see some X)ows

(1)
(We intend that X and Y be any variables, of course. Our choice of the letters X and Y in
the sentences in (1) comes from a discussion at the end of this section.) The marking indicates
whether the subject or object has the wide scope. For example,

(All Y see some X)ows (2)

indicates the object wide scope reading. So this is what the original NMI system writes as
All Y see some X. We can write this as or even as (∃x ∈ X)(∀y ∈ Y )S(y, x). For the subject
wide scope reading, we use sws. We also adopt a convention that the scope markings are only
used in sentences with two different quantifiers. In sentences with two universal quantifiers or
two existential quantifiers, the different scope readings are logically equivalent, so we almost al-
ways drop the scope notation. However, occasionally it will be convenient to write our sentences
in full, as we have done above.

We have added in (1) shorthand glosses next to some of the sentences; of course, the glosses
are not part of the syntax.

Since we have the two scope readings explicitly present, there is no need to also include
a sentential negation operation. This simplifies the system quite a bit. However, there are
still eight different types of syntactic expressions, and so proofs about the system must involve
lengthy case-by-case work.

In the semantics, we take a model to be a tuple M = (M, [[ ]], [[see]]), where [[X ]] ⊆ M for
all variables X, and [[see]] ⊆M ×M . That is, the verb is interpreted as a binary relation.

At this point, we can say why our fragment has only one verb. We could formulate a
language with more than one verb, of course. But each sentence in this fragment would only
use one verb. (In more linguistic terms, since we have no relative clauses, there is no way to
make an argument with multiple verbs.) Moreover, the whole system is a sub-logic of first-order
logic. And if we have a semantic consequence Γ |= S, then the set Γ0 of sentences in Γ with the
same verb as in S would also semantically imply S. (This may be seen by applying the Craig
Interpolation Lemma, but for this fragment it also can be shown by a simple direct semantic
argument.) The upshot is that all of the interesting features come from a single verb.
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All X↓ are Y ↑

Some X↑ are Y ↑

All X↓ see all Y ↓

(Some X↑ see all Y ↓)sws

(All X↓ see some Y ↑)ows

(Some X↑ see all Y ↓)ows

(All X↓ see some Y ↑)sws

Some X↑ see some Y ↑

(All X see NP )sws Some X are Y
(Some Y see NP )sws

(NP see all X)ows Some X are Y
(NP see some Y )ows

(Some X see all Y )sws

(Some X see all Y )ows

(All X see some Y )ows

(All X see some Y )sws

(Some X see NP )sws

Some X is an X

(NP see some X)ows

Some X is an X

X  Z All X see all Z All Z are Y
(All X see some Y )sws

(I)

Y  Z All Z see all Y All Z are X Some X are X
(Some X see all Y )sws

(J)

Y  Z All Z see all Y All Z are X
(Some X see all Y )ows

(K)

X  Z All X see all Z All Z are Y Some Y are Y
(All X see some Y )ows

(L)

Figure 2: Rules for the scoped formulation of the NMI fragment, in addition to the rules of
Figure 1. At the top are monotonicity rules, and the arrow notation is explained in the text.
NP denotes a noun phrase of the form All X or one of the form Some X. The last four rules
are actually schematic presentations of infinite families of rules; see the text for explanation of
the  notation.

We would have liked to provide a finite syllogistic system for this fragment. However, a
result in Pratt-Hartmann and Moss [10] may be modified to show that no finite syllogistic
system exists for this logic. One way to proceed would be to add verb-level negation and then
to add a rule of reductio ad absurdum. This is the route taken by [10]. However, the fragment
there does not have all the scope readings that we consider here. Ziegler [12] axiomatizes the
closure of the fragment which we study here under the standard connectives. In this paper, we
strike out on a different direction, employing infinite schemata of rules in addition to a finite
list of more standard syllogistic rules.

The c-operation We define an operation S 7→ Sc on sentences of the language by inter-
changing the subject and object noun phrases, and then changing the scope. This corresponds
to interchanging sentences across the rows in (1). For example,

((All W see some Z)sws)c = (Some Z see all W )ows.
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For sentences S in the syllogistic language with All and Some (and no verb), Sc = S.
The main fact about this operation is that

(M, [[ ]], [[see]]) |= S iff (M, [[ ]], [[see]]c) |= Sc,

where [[see]]c is the converse of the relation [[see]]. As a result, if Γ |= S, then Γc |= Sc, where
Γc = {T c : T ∈ Γ}.

The main use of the c-operation in this paper is to shorten some of the arguments for the
soundness and completeness of the proof system presented in the next section.

2.2 Proof system

Our proof system starts with the rules of Figure 1, and then we add the rules of Figure 2.
We start with the monotonicity rules at the top of the figure. The up-arrow and down-arrow
notation is taken from Johan van Benthem [1], see especially Chapter 6, Natural Logic. Our
statements abbreviate 15 rules, in the following way. The upward arrow notation X↑ means that
moving from X to a superset preserves truth, while the notation X↓ means that moving from
X to a subset preserves truth. For example, the notation (All X↓ see some Y ↑)ows represents
the following two rules:

(All X see some Y )ows All Y are Z
(All X see some Z)ows

(All X see some Y )ows All Z are X
(All Z see some Y )ows

The central rules of the system are those in the middle of Figure 2. Among these rules one
can find the usual laws of scope: from ∃x∀y infer ∀y∃x. Four of the rules in the figure are in
a shorthand notation that actually covers eight rules. For example, the rule that infers Some
X is an X from the premise (Some X see NP )sws is to be understood as (1) an inference from
the premise (Some X see all Y )sws, and (2) an inference from Some X see some Y .

The last rules are the infinite schemata mentioned earlier. To clarify this, we must define
the  notation. We write X  Y as a shorthand for a sequence of sentences such as

(All X see some C1)sws, (All C1 see some C2)sws, (Some C3 see all C2)ows,
. . . (Some Cn see all Cn−1)ows, (All Cn see some Y )sws

(3)

Each sentence in the sequence must be of the form (All U see some W )sws or else of the form
(Some U see all W )ows. Also, the narrow scope variable of one sentence must be the wide scope
variable of the next. Finally, X must be the wide scope variable of the first sentence in the
sequence, and Y the narrow scope variable of the last in the sequence.

We write Γ ` X  Y to mean that there is a sequence of sentences as above, each of which
is derivable from Γ. The idea is that if Γ ` X  Y and if a model M has Xs, then M must
also have Y ’s. So we could read X  Y as “if X is non-empty, so is Y .”

In the definition of  in (3), we allow n = 0. In this case, the sequence would be empty.
So X  X for all X. Taking n = 0 in (I) corresponds to the case when X and Z are
identical. This instance of (I) would boil down to the inference of (All X see some X)sws from
(All X see all X)sws. In (J), the sequence again may be empty; in this case Y and Z are
identical, and we infer Some X see all Y from All Y see all Y , All Y are X, and ∃X.
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Soundness of the infinite rule schemata We sketch the verification of the soundness of
the infinite schemata (I) and (J). Usually we use the definition of  in the contrapositive; so
if Y  Z and there are no Z (in a particular model), then there are no Y ’s (in that model).

For (I), fix a sequence as in (3) of sentences showing that X  Z, and let M satisfy all
sentences in this sequence. We argue by cases on [[Z ]] in M. If this set is empty, then so is [[X ]],
and so M |= (All X see some Y )sws vacuously. Otherwise any Z would be seen by all X and at
the same time a Y .

For (J), let M satisfy the assumptions. We argue informally, by cases on [[Z ]]. If there are
no Z, there are no Y ; together with ∃X, we have the conclusion. If there are Z, then any such
is an X, and so we have Some X see all Y .

The other two schemata are obtained from (I) and (J) using the c-operation. This accounts
for their soundness. In addition, the system has the property that Γ ` S iff Γc ` Sc.

2.3 Completeness

To simplify our notation, we abbreviate our sentences as σ1, . . ., σ6 as defined in Figure 3.
Actually, we should write these as σi,U,W ; we only do this when we need to. We also note the
diagram of implications in the figure. It is important to note that the arrows σ1 → σ2 and
σ5 → σ6 require Γ ` ∃U ; σ1 → σ3 and σ4 → σ6 requires Γ ` ∃W .

We consider subsets of {σ1, . . . , σ6}. There are eleven subsets s which are implication-closed :
if s∪{∃U,∃W} ` S, then S ∈ s. In pictures, these are the down-closed subsets of the hexagonal
diagram in Figure 3. For example, for all Γ ⊆ L(all, some, see) and all variables U and W such
that Γ ` ∃U,∃W , we have a down-closed set

ThΓ(U,W ) = {σi,U,W : Γ ` σi,U,W }. (4)

But if Γ 6` ∃U or if Γ 6` ∃W , then ThΓ(U,W ) might not be down-closed: ThΓ(U,W ) might
contain All U see all W without containing the sentences below it in Figure 3. However, even
in this case, we can take the downward closure of ThΓ(U,W ) in the order shown in Figure 3,
and we write this as ↓ ThΓ(U,W ).

Our intention is to take a set Γ of sentences in this fragment and a set S of variables and to
build a model M(Γ, S) from the sets ↓ ThΓ(U,W ). We shall return to this model construction
shortly, but first we need a more basic construction.

Let U,W be any variables. Let U1, U2, U3, W1, W2, and W3 be three copies of U and W .
For each down-closed subset s ⊆ {σ1,U,W , . . . , σ6,U,W }, we specify a fixed relation

RU,W,s ⊆ {U1, U2, U3} × {W1,W2,W3}.

These relations RU,W,s are shown in Figure 3.

Proposition 2.1 Let U and W be any variables.

1. The down-closed subsets of {σ1,U,W , . . . , σ6,U,W } are the 11 sets listed in Figure 3.

2. For all down-closed s, and all 1 ≤ i ≤ 6, σi ∈ s iff (AU,W , RU,W,s) |= σi.

3. If (U2,Wj) ∈ RU,W,s for some j, then (AU,W , RU,W,s) |= σ5.

Proof These points are verified by direct inspection. a
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σ1 All U see all W
σ2 (Some U see all W )sws

σ3 (All U see some W )ows

σ4 (Some U see all W )ows

σ5 (All U see some W )sws

σ6 Some U see some W

σ1

{{xx
xx

xx
x

##F
FF

FF
FF

σ2

��

σ3

��
σ4

##F
FF

FF
FF

σ5

{{xx
xx

xx
x

σ6

U1
//

''PPPPPP

  @
@@

@@
@@

@ W1

U2
//

''PPPPPP

77nnnnnn
W2

U3

>>~~~~~~~~
//

77nnnnnn
W3

{σ1, . . . , σ6}

U1
//

''PPPPPP

  @
@@

@@
@@

@ W1

U2

77nnnnnn
W2

U3

>>~~~~~~~~
W3

{σ2, . . . , σ6}

U1
//

''PPPPPP

  @
@@

@@
@@

@ W1

U2
//W2

U3
//W3

{σ2, σ4, σ5, σ6}

U1
//W1

U2
//

77nnnnnn
W2

U3
//

>>~~~~~~~~
W3

{σ3, σ4, σ5, σ6}

U1

''PPPPPP

  @
@@

@@
@@

@
//W1

U2 W2

U3 W3

{σ2, σ4, σ6}

U1
//W1

U2

77nnnnnn
W2

U3

>>~~~~~~~~
W3

{σ3, σ5, σ6}

U1
//W1

U2
//W2

U3
//W3

{σ4, σ5, σ6}

U1

''PPPPPP //W1

U2 W2

U3
//W3

{σ4, σ6}

U1
//W1

U2

77nnnnnn
W2

U3
//W3

{σ5, σ6}

U1
//W1

U2 W2

U3 W3

{σ6}

U1 W1

U2 W2

U3 W3

∅

Figure 3: At the top are the six sentences in fixed variables U and W . The hexagon shows the
semantic implication relations among these sentences, assuming ∃U and ∃W . Below these are
the down-closed sets and the definition of special relations used in the completeness proof.
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A model construction Let Γ be a set of sentences in L(all, some, see). We write E(Γ) for
{U : Γ ` Some U are U}. We also say that a set S of variables is Γ-existentially closed (EC) if
whenever U ∈ S and Γ ` U  W , then W ∈ S. For example, E(Γ) is Γ-EC, and the union of
two Γ-EC sets is again Γ-EC.

Let Γ be a set of sentences in our fragment, and let S be Γ-EC and include E(Γ). We turn
to a description of M = M(Γ, S). First, let

M = {U1, U2, U3 : U ∈ S} ∪ {{A,B} : A 6= B and Γ ` Some A are B}

So we have three copies of each variable U from S, together with some other unordered pairs.
We assume that the union above is disjoint, so no variable is itself a pair of others. The only
use of subscripts in the rest of this proof is to refer to the copied variables. The purpose of
{A,B} will be to insure that Some A are B will hold in our model M.

The rest of the structure of M deals with the interpretation of nouns U and of the verb see:

Wi ∈ [[U ]] iff Γ ` All W are U
{A,B} ∈ [[U ]] iff Γ ` All A are U , or Γ ` All B are U
Ui[[see]]Wj iff (Ui,Wj) ∈ RU,W,↓ThΓ(U,W )

{U,Z}[[see]]W2 iff Γ ` σ1,U,W or Γ ` σ1,Z,W

{U,Z}[[see]]W1 iff {U,Z}[[see]]W2, or Γ ` σ3,U,W , or Γ ` σ3,Z,W

{U,Z}[[see]]W3 iff {U,Z}[[see]]W2, or Γ ` σ5,U,W or Γ ` σ5,Z,W

U2[[see]]{W,Z} iff Γ ` σ1,U,W or Γ ` σ1,U,Z

U1[[see]]{W,Z} iff U2[[see]]{W,Z}, or Γ ` σ3,U,W , or Γ ` σ2,U,Z

U3[[see]]{W,Z} iff U2[[see]]{W,Z}, or Γ ` σ4,U,W , or Γ ` σ4,Z,W

{A,B}[[see]]{C,D} iff Γ ` σ1,A,C , or Γ ` σ1,A,D, or Γ ` σ1,B,C , or Γ ` σ1,B,D

(ThΓ(U,W ) is defined in (4), ↓ Th(U,W ) is its downward closure, and the relation RU,W,s is
presented in Figure 3.)

Lemma 2.2 Assume that S is Γ-EC and that E(Γ) ⊆ S. Then M(Γ, S) |= Γ.

Proof It is easy to check that for sentences S in L(all, some) which are belong to Γ, M(Γ, S) |=
S. (L(all, some) was mentioned in the Introduction.) For All sentences, this is a routine
monotonicity point. Here is the reasoning for a sentence of the form Some A are B. Note that
{A,B} belongs to M , and it also belongs to [[A]] ∩ [[B ]].

Moving on, consider a sentence in Γ such as σ3,U,W from above, (Some U see all W )sws. In
this case, Γ ` ∃U , and so U ∈ E(Γ). We claim that U1 is related to all elements of [[W ]]. For if
Zi ∈ [[W ]] by virtue of Z ∈ S and Γ ` All Z are W , then Γ ` σ3,U,Z . And so in M, U1[[see]]Zi

construction of the model. For the elements of [[W ]] of the form {A,B}, the structure of M also
ensures that U1[[see]]{A,B}.

We next consider σ5,U,W , (All U see some W )sws. Assuming that σ5,U,W belongs to Γ, we
check that this holds in M(Γ, S). If [[U ]] = ∅, then trivially M(Γ, S) |= σ5,U,W . If [[U ]] 6= ∅, then
U ∈ S. Since S is Γ-EC and σ5,U,W ∈ Γ, we have W ∈ S as well. Turning to the verification, we
must consider elements of [[U ]] of the form Ai, and also the elements of the form {A,B}. First,
we consider the elements Ai. For this, Γ ` All A are U . By monotonicity, Γ ` σ5,A,W . Thus
σ5,A,W ∈ ThΓ(A,W ) ⊆↓ ThΓ(A,W ). Hence by construction M(Γ, S) |= σ5,A,W . In particular,
for the element Ai we are considering, there is some Wj such that Ai[[see]]Wj . We also must
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consider elements of [[U ]] such as {A,B}. For this, Γ ` Some A are B. We may assume that
Γ ` All A are U . Thus Γ ` σ5,A,W . By construction, {A,B}[[see]]W2. In this way, we have
verified that all elements of [[U ]] are related to some element of [[W ]] or other.

We omit the rest of the similar verifications showing that M(Γ, S) |= Γ. a

Theorem 2.3 The logical system determined by the rules in Figures 1 and 2 is sound and
complete for L(all, some, see).

Proof Suppose Γ |= S. We show that Γ ` S. The argument splits into cases according to the
syntax of S.

The first case: S ∈ L(all, some). Let

∆ = {T ∈ L(all, some) : Γ ` T}.

We show that ∆ |= S in L(all, some). For this, let M |= ∆. We may assume that if [[Z ]] 6= ∅,
then Γ ` ∃Z. (Otherwise, re-set [[Z ]] to be empty, and check that this does not change the truth
values in L(all, some).) Turn M into a structure M+ for L(all, some, see) by [[see]] = M ×M ;
i.e., by relating every point to every point. We shall check that M+ |= Γ. It then follows that
M+ |= S. And since the set variables are interpreted the same way on the two models, we
see that M |= S. Now to check that M+ |= Γ, we argue by cases. For example, suppose that
Γ contains the sentence in (2). One of our axioms implies directly that Γ ` T , where T is
Some Y is a Y . Thus T ∈ ∆. So [[Y ]] 6= ∅ in M. Then the structure of M+ tells us that this
model indeed satisfies (2). Similar arguments apply to sentences of forms different than that
of (2). We shall look at one more case, the subject wide scope version of (2). We may assume
that [[X ]] 6= ∅. Recall from above that we may assume that Γ ` Some X are X. And now we
have the following Γ-deduction:

(All X see some Y )sws

....
Some X are X

Some X see some Y
Some Y are Y

The rest of the argument is similar. We now know that ∆ |= S. We use the completeness of
the syllogistic logic of All and Some (cf. [5], Theorem 3.4) to see that ∆ ` S. Since the system
here includes this, Γ ` S.

S is σ6,X,Y , Some X see some Y . Here we let S = E(Γ), and consider M(Γ, S). By
Lemma 2.2, M |= Γ. Hence M |= S. There are several cases here, depending on the data
witnessing S. One case is when there are Uj ∈ [[X ]] and Wj ∈ [[Y ]] related by [[see]]. We argue
from Γ. We have All U are X, All W are Y , ∃U , ∃W , and finally, σk,U,W for some 1 ≤ k ≤ 6.
Using ∃U and ∃W , we easily see that σ6,U,W holds. And then by monotonicity, σ6,X,Y , as
desired.

We must also consider the case [[see]] contains a pair such as ({A,B}, {C,D}). There would
be four subcases here, and we go into details on only one of them: suppose {A,B}[[see]]{C,D}.
Without loss of generality, Γ ` σ1,A,C . Since Γ also derives Some A exists, All A are X, Some
B exists, All B are Y , we easily get the desired σ6,X,Y . The reasoning is similar when [[see]]
contains a pair such as ({A,B}, Yj) or one such as (Xi, {A,B}).
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S is σ1,X,Y , All X see all Y . This time, we take

S = E(Γ) ∪ {U : Γ ` X  U or Γ ` Y  U}.

This S is easily seen to be Γ-EC. As a result, M(Γ, S) |= Γ. Hence also M(Γ, S) |= S. Note
that X and Y belong to S. Being a universal sentence, S is preserved under submodels.
(AX,Y , RX,Y,↓Th(X,Y )) is a submodel of M, and so it satisfies σ1,X,Y . By Proposition 2.1, part 2,
σ1,X,Y ∈↓ Th(X,Y ). But this means that indeed σ1,X,Y belongs to Th(X,Y ).

S is σ5,X,Y , (All X see some Y )sws. Here we take

S = E(Γ) ∪ {U : Γ ` X  U}. (5)

As in our previous cases, M(Γ, S) |= S. We have X ∈ S, by definition. In particular, X2 ∈ M .
The witness to σ5,X,Y in [[Y ]] for X2 is either of the form Zi or a pair {A,B}. This paragraph
only presents the details for a witness of the first form. Let Zi be such that X2[[see]]Zi and
Γ ` All Z are Y . By Proposition 2.1, part 3, σ5,X,Z ∈↓ ThΓ(X,Z). We would like to know that
σ5,X,Z ∈ ThΓ(X,Z). Looking at the hexagon in Figure 3, we three possibilities: ThΓ(X,Z)
must contain either σ5,X,Z , σ3,X,Z , or σ1,X,Z . If σ5,X,Z ∈ ThΓ(X,Z), then by monotonicity,
Γ ` σ5,X,Y ; so we are done. If σ3,X,Z ∈ ThΓ(X,Z), then by our logic, Γ ` σ5,X,Z . Then just as
above, Γ ` σ5,X,Y . Finally, we have the case that σ1,X,Z ∈ ThΓ(X,Z). Either Z ∈ E(Γ), or else
Γ ` X  Z. If Z ∈ E(Γ), then by monotonicity, Y ∈ E(Γ). In this case, Γ ` S as follows:

....
(All X see all Y )sws

....
Some Y are Y

(All X see some Y )sws (6)

(We used the first rule in Figure 2.) When Γ ` X  Z, we use (I) to immediately derive the
desired conclusion σ5,X,Y .

We have another overall case, going back to X2 ∈ M . Suppose that {A,B} ∈ [[Y ]] (so
that Some A are B) and X2[[see]]{A,B}. There are four cases here, perhaps one representative
one is when Γ ` All A are Y and Γ ` σ1,X,B. Then from Γ we have All X see all B, hence
(All X see some A)sws, Finally, by monotonicity we have (All X see some Y )sws.

S is σ2,X,Y , (Some X see all Y )sws. On our assumption that Γ |= S, we have Γ |= ∃X.
Thus by the first case on S in this overall proof of this theorem, we know that X ∈ E(Γ). In
the model construction, we take S = E(Γ) ∪ {U : Γ ` Y  U}. The resulting model M(Γ, S)
then satisfies S. Suppose that the witness to the subject quantifier in S is Zi. (In the next
paragraph, we see what happens when it is of the form {A,B}.) Then Γ ` All Z are X. By
the structure of the model, we either have Γ ` S (and then we are easily done by monotonicity)
or Γ ` All Z see all Y . In the latter case, if Z ∈ E(Γ), we easily see that Γ ` S. So we are left
with the case that Γ ` Y  Z. And here we use (J).

We also need to consider the situation when the witness to the subject quantifier in S is of
the form {A,B}. Then {A,B} ∈ [[X ]] is related to Y2. By the structure of the model, we have
Γ ` σ1,A,Y (for example), and also Γ ` All B are X and Γ ` Some A are B. We would then
have in several steps that Γ ` (Some X see all Y )sws.
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S is σ3,X,Y , (All X see some Y )ows, or σ4,X,Y , (Some X see all Y )ows. These cases are
entirely parallel to the previous two. In fact, completeness in these cases may also be proved
using the c-operation as follows. If Γ |= σ3,X,Y (for example), then Γc |= (σ3,X,Y )c = σ4,Y,X ,
and then Γc ` σ4,Y,X , by what we have already seen. Hence Γ ` σ3,X,Y .

This concludes the proof of Theorem 2.3. a

3 Syllogistic Logic with All, a Verb, and Noun-level Comple-
ments

3.1 All, a verb, and noun-level complements

We consider the fragment with All, a single verb, and noun-level complements. For example,
here is an extended syllogistic argument in the fragment:

All xenophobics hate all actors
All yodelers hate all zookeepers
All non-yodelers hate all non-actors
All wardens are xenophobics
All wardens hate all zookeepers

Why does the conclusion follow? Take a warden. He or she will be a xenophobic, and hence
hate all actors. If also a yodeler, he or she will certainly hate all zookeepers; if not, he or she
will hate all non-actors and hence hate everyone whatsoever, a fortiori all zookeepers.

We formalize this fragment in the obvious way. We add a complemented variable X ′ for each
X. We insist in the semantics that [[X ′]] be the complement of [[X ]]. We also identify each X ′′

with the corresponding variable X. Finally, we continue to use “see” as the verb, our example
argument above notwithstanding. The resulting language is called L(all, see, ′). A logic for it is
shown in Figure 4. ‘LEM” stands for “law of the excluded middle.” V P means “verb phrase.”
So the rule (Zero) allows one to conclude from All Y are Y ′ that All Y are Z, All Y see all
A, etc. (Zero-VP) allows one to conclude from the same premise that All X see all Y . The
rule (3pr) is so-named because it has three premises; I am not aware of a standard name for
it. Most of the soundness details are variations on what we have seen above. The informal
argument above corresponds to the formal proof below:

All X hate all A All Y hate all Z All Y ′ hate all A′
All X hate all Z

3pr
All W are X

All W hate all Z
monotonicity

Theorem 3.1 Let Γ ∪ {S} ⊆ L(all, see, ′). Then Γ ` S iff Γ |= S.

As we start in on the proof, we first claim that the case when S is a sentence without the verb
is handled already by the completeness of the syllogistic logic L(all, ′) of All and complement
studied in our earlier paper [6]. Specifically, if Γ |= S in our current language L(all, see, ′), we
claim that Γ ∩ L(all, ′) |= S. [For this: take a model of Γ ∩ L(all, ′), and relate all points to all
other points. This gives interpretation of the verbs, hence a model of S.] Then Γ ` S in the
smaller language L(all, ′).

Definition Fix a set Γ. We write A ≤ B if Γ ` All A are B. A set S of variables is a point if

12



All Y are Y ′
All Y V P

Zero All Y ′ are Y
All X are Y One

All Y are X ′

All X are Y ′
Antitone All Y are Y ′

All X see all Y Zero-VP

All X see all Y All X ′ see all Y
All Z see all Y LEM All X see all Y All X see all Y ′

All X see all Z LEM ′

All X see all A All Y see all Z All Y ′ see all A′
All X see all Z

3pr

Figure 4: The All syllogistic logic with verbs and noun-level complements, leaving off the axioms
All X are X and the monotonicity rules All X↓ are Y ↑ and All X↓ see all Y ↓.

S is up-closed in this order and for each A, S contains either A or A′, but not both.

This notion of a point comes from our paper [6], and it also has roots in work on quantum
logic. It would be called a quantum state there. In a sense, it plays the role for this logic
analogous to that of an ultrafilter in modal logic: the canonical model of the logic is constructed
from points. However, there are quite a few differences, and this analogy is not terribly useful.

Lemma 3.2 Fix Γ, and also fix X and Y such that

Γ 6` All X see all Y .

Then there are points S and T such that X ∈ S, Y ∈ T, and for all A ∈ S and B ∈ T,
Γ 6` All A see all B.

Proof We use Zorn’s Lemma. We consider the set of pairs (S,T) of sets of variables with the
properties below:

1. X ∈ S and Y ∈ T.

2. S is pairwise compatible: for all A and B in S, A 6≤ B′ and B 6≤ A′; and so is T.

3. For all A ∈ S and B ∈ T, Γ 6` All A see all B.

4. For all B,C ∈ T and all D, either Γ 6` All D see all B or Γ 6` All D′ see all C.

5. For all B,C ∈ S and all D, either Γ 6` All B see all D or Γ 6` All C see all D′.

The collection P of such pairs of sets is ordered in the natural way, by inclusion in both
components. Call the resulting poset P = (P,⊆). We intend to apply Zorn’s Lemma to P. This
poset is obviously closed under unions of chains. We also claim that ({X}, {Y }) belongs to
P . For this, (1) and (3) are obvious. For (2), if X ≤ X ′, then we use the (zero) rule to get a
contradiction; if Y ≤ Y ′, we use (Zero-VP). (4) uses (LEM), and (5) uses (LEM′).
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By Zorn’s Lemma, P contains a maximal pair (S,T). The central claim is that any such
(S,T) must have the property that for all D, S contains either D or D′, and T also contains
either D or D′. From this and pairwise compatibility it follows that both S and T must be
up-closed in the order. Hence S and T would both be points, as desired. We shall prove this
claim for S; the arguments for T are parallel. Suppose towards a contradiction that neither D
nor D′ belongs to S. Consider S ∪ {D} and S ∪ {D′}. For each of these sets, one of conditions
(2), (3), or (5) must fail. Moreover, D and D′ must be implicated in the failures. There are
six overall cases. But also, a failure of (5) for one of our sets splits into subcases depending on
whether D (or D′) is the witness to the failure of only one quantifier in (5) or of both.

Case 1 Condition (2) fails for S∪{D} and S∪{D′} because there are B,C ∈ S such that B ≤ D′
and C ≤ D. Then D′ ≤ C ′ using (antitone). Hence B ≤ C ′ by transitivity. This contradicts
condition (2) for (S,T).

Case 2 Condition (2) fails for S ∪ {D}, and condition (3) fails for S ∪ {D′} because there are
C ∈ S and B ∈ T such that C ≤ D′ and Γ ` All D′ see all B. Then by monotonicity, we have
Γ ` All C see all B, and this contradicts (3) for (S,T).

Case 3 Condition (2) fails for S ∪ {D}, and condition (5) fails for S ∪ {D′} because there are
B,C ∈ S and also E such that C ≤ D′, Γ ` All B see all E, and Γ ` All D′ see all E′. In this
case, Γ ` All C see all E′ by monotonicity. And so we violate (5) for (S,T).

Case 3a Condition (2) fails for S ∪ {D}, and condition (5) fails for S ∪ {D′} because there is
some C ∈ S and also E such that C ≤ D′, Γ ` All D′ see all E, and Γ ` All D′ see all E′. Now
we have Γ ` All D′ see all Y by (LEM); Y here is from the statement of our lemma. And
since C ≤ D′, we see by monotonicity that Γ ` All C see all Y . This contradicts condition (3)
for (S,T).

Case 4 Condition (3) fails for both S∪ {D} and S∪ {D′} because there are B,C ∈ T such that
Γ ` All D see all B, and Γ ` All D′ see all C. This contradicts (4) for (S,T).

Case 5 Condition (3) fails for S ∪ {D}, and condition (5) fails for S ∪ {D′} because there
are A ∈ S, B ∈ T, and also E such that Γ ` All D see all B, Γ ` All A see all E, and
Γ ` All D′ see all E′. By the rule (3pr), Γ ` All A see all B. This contradicts (3) for (S,T).

Case 5a Condition (3) fails for S∪{D}, and condition (5) fails for S∪{D′} because there are B ∈
T, and also E such that Γ ` All D see all B, Γ ` All D′ see all E, and Γ ` All D′ see all E′.
As in case 3a, Γ ` All D′ see all B. And for the same reason, we see that Γ ` All X see all B.
This contradicts (3) for (S,T).

Case 6 Condition (5) fails for both S ∪ {D} and S ∪ {D′} because there are B,C ∈ S and also
E and F such that

(i) Γ ` All B see all E

(ii) Γ ` All D see all E′

(iii) Γ ` All C see all F

(iv) Γ ` All D′ see all F ′
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Using (i), (ii), (iv), and the rule (3pr), we see that Γ ` All B see all F ′. And then this and
(iii) contradicts condition (5) for (S,T).

Case 6a Condition (5) fails for both S ∪ {D} and S ∪ {D′} because there is some B ∈ S and
also E and F such that

(i) Γ ` All B see all E

(ii) Γ ` All D see all E′

(iii) Γ ` All D′ see all F

(iv) Γ ` All D′ see all F ′

Then (iii) and (iv) show that Γ ` All D′ see all Y , using (LEM ′). This with (i), (ii), and (3pr)
then shows that Γ ` All B see all Y ; with Y as in the statement of this lemma. Again we
contradict (3) for (S,T).

Case 6b Condition (5) fails for both S ∪ {D} and S ∪ {D′} because

(i) Γ ` All D see all E

(ii) Γ ` All D see all E′

(iii) Γ ` All D′ see all F

(iv) Γ ` All D′ see all F ′

This time the logic implies that Γ ` All X see all Y , with X and Y as in the statement of this
lemma. This is contrary to the hypothesis in our lemma.

This shows that a maximal pair (S,T) consists of a pair of points, thereby completing the
proof of this lemma. a

We now prove Theorem 3.1, the completeness result for the logical system of this section.
We restate it in the following way.

Lemma 3.3 Let Γ ⊆ L(all, see, ′). Let S be All X see all Y . Assume that Γ 6` S. There is a
two-point model M |= Γ such that M 6|= S.

Proof Let S and T be from Lemma 3.2. Let M = {S,T}. Let [[A]] = {Q ∈ M : A ∈ Q}, and
let

[[see]] = {(Q,R) ∈M ×M : (∃A ∈ Q)(∃B ∈ R) Γ ` All A see all B}.

We have a proper interpretation: [[A′]] = M \ [[A]] for all A. This comes from the fact that every
point contains either A or A′. The fact that points are up-closed means that the semantics is
monotone; hence sentences such as All A are B in Γ hold in M. To conclude the verification
that M |= Γ, we need only consider sentences All A see all B. Let Q and R be any points in M

such that A ∈ Q and B ∈ R. (There might not be any such points, but this is not a problem.)
Then Q [[see]] R.

To complete the proof, note that [[see]] does not contain (S,T). a
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4 Fragments with Class Expressions

McAllester and Givan in [4] study a fragment which we shall call LMG(all, some). It begins
with variables X, Y , etc., and also verbs V , W , etc. The fragment then has class expressions
c, d, etc., of the following forms:

1. X, Y , Z, . . .

2. V all c

3. V some c

Note that we have recursion, so we have class expressions like

R all (S some (T all c))

We might use this in the symbolization of a predicate like

recognizes everyone who sees someone who treasures all chrysanthemums.

LMG(all, some) is our first infinite fragment. We also have formulas of the form all c d and some
c d. In these, c and d are class expressions. The original paper also uses boolean combinations
and proper names; we shall not do so.

The semantics interprets variables by subsets of an underlying model M, just as we have
been doing. It also interprets a verb V by a binary relation [[V ]] ⊆M2. Then

[[V all c]] = {x ∈M : for all y ∈ [[c]], x [[V ]] y}
[[V some c]] = {x ∈M : for some y ∈ [[c]], x [[V ]] y}

Incidentally, the logic in this section uses more than one verb (unlike our work in Section 2).
This is because sentences in general have more than one, and there are non-trivial deductions
which use more than one verb. To get a hint of this, and of our logic, the reader might try to
see that from all watches are gold objects, it follows that everyone who likes everyone who has
stolen all watches likes everyone who has has stolen all gold objects.

We write ∃c for some c c. We axiomatize LMG(all, some) and also a smaller fragment
LMG(all) which only uses all. We study LMG(all) to foreshadow the more complicated work
for the larger fragment.

The main technical result in [4] is that the satisfiability problem for LMG(all, some) is
NP-complete. We are not concerned in this paper with complexity results but rather with
logical completeness results. However, some of the steps are the same, and our treatment was
influenced by McAllester and Givan [4].

Our logic is presented in Figure 5. The soundness of the first four rules is easy. We delay a
discussion of the Cases rule until Section 4.2; it is not needed in our work in Section 4.1 just
below.
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all c d
all (V all d) (V all c)

all c d
all (V some c) (V some d)

some c d
all (V all c) (V some d)

∃ (V some c)
∃c

Γ ∪ {∃c} ` ϕ Γ ∪ {all c d : d ∈ L} ∪ {all d (V all c) : d, V ∈ L} ` ϕ
Γ ` ϕ (Cases on c)

Figure 5: Rules for LMG(all, some), our version of the McAllester-Givan fragment. We also use
rules for all and some in Figure 1. The inference rule at the bottom discussed in Section 4.2.

4.1 Completeness for LMG(all)

In this section, we study the fragment LMG(all) obtained from the variables and verbs by the
constructions V all c for the class expressions, and all c d for the sentences. Our logical system
uses the axioms all c c, the monotonicity rule Barbara (transitivity of All X are Y ), and the
first rule in Figure 5, which we might call antitonicity. It is repeated below:

all c d
all (V all d) (V all c)

The rest of the system in Figure 5 is not needed for this fragment.
Let Γ ⊆ LMG(all). Construct a model M = M(Γ) as follows:

M = {c : c is a class expression of LMG(all)}
[[X ]] = {c ∈M : Γ ` all c X}
[[V ]] = {(d, c) ∈M ×M : Γ ` all d (V all c)}

Lemma 4.1 For all c, [[c]] = {d ∈M : Γ ` all d c}.

Proof By induction on c. The base case being immediate, we assume our lemma for c and
then consider a class expression of the form V all c.

Let d ∈ [[V all c]]. The induction hypothesis and reflexivity axioms imply that c ∈ [[c]]. So
we have d[[V ]]c, and thus Γ ` all d (V all c).

Conversely, suppose that Γ ` all d (V all c). We claim that d ∈ [[V all c]]. For this, let
c′ ∈ [[c]] so that Γ ` all c′ c . We have the following derivation from Γ:

....
all d (V all c)

....
all c′ c

all (V all c) (V all c′)
all d (V all c′)

We see that d[[V ]]c′. This for all c′ ∈ [[c]] shows that d ∈ [[V all c]]. a

Lemma 4.2 Then M(Γ) |= all c d iff Γ ` all c d.

Proof Suppose that Γ ` all c d. Consider M(Γ). By transitivity and Lemma 4.1, [[c]] ⊆ [[d ]].

17



So M |= all c d. For the converse, assume that [[c]] ⊆ [[d ]]. Then c ∈ [[c]] ⊆ [[d ]]. So by
Lemma 4.1, Γ ` all c d, just as desired. a

Theorem 4.3 The logical system determined by the all-rules in Figures 1 and 5 is sound and
complete for LMG(all): Γ |= ϕ iff Γ ` ϕ.

Proof Assume that Γ |= ϕ, and consider M = M(Γ). By Lemma 4.2, M |= Γ. So M |= ϕ.
And thus by Lemma 4.2 again, Γ ` ϕ. a

4.2 The Cases rule

We turn back to our logical system for LMG(all, some), as presented in Figure 5. For the first
time in this paper, we study a system which actually is a natural deduction calculus. One
should read the first four rules as saying, for example,

Γ ` ∃c
Γ ` all (V all c) (V some c)

The last rule allows for a case-by-case analysis on whether the interpretation of a class expression
is empty or not. The idea is that we would like to take cases as to whether (a) there is some c
or (b) there are no c. However, we cannot directly say (b) in this fragment, so we do the next
best thing: we use consequences of (b). To derive a sentence ϕ from Γ by cases on c, first derive
ϕ from Γ with the sentence some c are c; and second, derive ϕ from Γ ∪∆, where ∆ is the set
of sentences all c are d and all d (V all c), where V is any of our verbs.

Our statement of the Cases rule in Figure 5 will look less forbidding when recast as a
natural deduction rule. Here is an example of how it would work. We show that Γ ` ∃c, where
Γ is {all (V all c) c,∃d}. Before we give the formal derivation, here is the informal semantic
argument. Take any model M of the hypotheses. If [[c]] is non-empty, we are done. Otherwise,
let x ∈ [[d ]] by the first hypothesis. Then (vacuously) we have x [[V ]] y for all y ∈ [[c]]. So by our
second hypothesis, x ∈ [[c]]. Here is a formal derivation which corresponds to this explanation:

[∃c]

all (V all c) c
[all d (V all c)] ∃d

some d (V all c)
some d c
∃c

∃c (Cases on c)

For the soundness of the Cases rule, we argue by induction on the number n of uses of rule
in derivations. Suppose that Γ ` ϕ via a derivation with n+1 uses of the rule, and suppose that
the derivation is by cases on c. Thus Γ ∪ {∃c} ` ϕ via a derivation with n uses, and the same
for Γ∪∆ ` ϕ. Finally, fix a model M such that M |= Γ. We wish to show that M |= ϕ, and we
argue by cases on [[c]]. If [[c]] 6= ∅, then our first assumption and the induction hypothesis on n
imply that M |= ϕ. If [[c]] = ∅, then vacuously all sentences in ∆ hold. So again M |= ϕ.
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4.3 Completeness for LMG(all, some)

Let Γ ∪ {ϕ} ⊆ LMG(all, some). Let occ(Γ, ϕ) be the set of class expressions c which occur in
Γ ∪ {ϕ}. We say that a set ∆ ⊆ LMG(all, some) determines existentials for Γ and ϕ if for all
class expressions c ∈ occ(Γ, ϕ), either

1. ∆ ` ∃c, or else

2. For all d ∈ occ(Γ, ϕ),

(a) ∆ ` all c d;

(b) If (V all c) ∈ occ(Γ, ϕ) then ∆ ` all d (V all c).

We make a model M = M(∆,Γ, ϕ) as follows.

M = {(c1, c2, Q) : c1, c2 ∈ occ(Γ, ϕ), Q ∈ {∀,∃},∆ ` some c1 c2}
[[X ]] = {(c1, c2, Q) ∈M : ∆ ` all c1 X or ∆ ` all c2 X}
(c1, c2, Q)[[V ]](d1, d2, ∀) iff for some i and j, ∆ ` all ci (V all dj)
(c1, c2, Q)[[V ]](d1, d2, ∃) iff either (c1, c2, Q)[[V ]](d1, d2, ∀); or else for some i and j,

∆ ` all ci (V some dj) and also ∆ ` all dj d3−j

Lemma 4.4 Assume that ∆ determines existentials for Γ and ϕ. For all c ∈ occ(Γ, ϕ),

[[c]] = {(d1, d2, Q) ∈M : either ∆ ` all d1 c, or ∆ ` all d2 c}.

Proof By induction on c ∈ occ(Γ, ϕ). The base case being immediate, we assume our lemma
for c and then consider class expressions belonging to occ(Γ, ϕ) of the form V all c and V some c.
The induction hypothesis implies that provided ∆ ` ∃c, both (c, c,∀) and (c, c,∃) belong to [[c]].

Let (d1, d2, Q) ∈ [[V all c]]. If ∆ ` ∃c, then (c, c,∀) ∈ [[c]]. By the overall semantics of
LMG(all, some), (d1, d2, Q)[[V ]](c, c,∀). And we see that ∆ ` all di (V all c) for some i, as
desired. If ∆ 6` ∃c, we trivially have the same conclusion ∆ ` all di (V all c), this time for both
i. (This is where the assumption that ∆ determines existentials for Γ and ϕ is used; it also is
used in Lemma 4.5 below.) Hence we are done then also.

Conversely, fix i and suppose that ∆ ` all di (V all c). Fix Q; we claim that (d1, d2, Q) ∈
[[V all c]]. For this, let (e1, e2, Q

′) ∈ [[c]] so that ∆ ` all ej c for some j. As in the proof of
Theorem 4.3, we see that ∆ ` all di (V all ej). We conclude that (d1, d2, Q)[[V ]](e1, e2,∀), and
also (d1, d2, Q)[[V ]](e1, e2,∃). This for all elements of [[c]] shows that (d1, d2, Q) ∈ [[V all c]].

Here is the induction step for V some c. Let (d1, d2, Q) ∈ [[V some c]]. Thus we have
(d1, d2, Q)[[V ]](e1, e2, Q

′) for some (e1, e2, Q
′) ∈ [[c]]. We first consider the case that Q′ = ∀.

Here there are four subcases. One representative subcase is ∆ ` all d1 (V all e1). We have
∆ ` some e1 e2, since (e1, e2, Q

′) ∈ M . By induction hypothesis, either ∆ ` all e1 c or else
∆ ` all e2 c. Without loss of generality, ∆ ` all e1 c. The derivation from ∆ below shows that
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∆ ` all d1 (V some c), as desired:

....
all d1 (V all e1)

....
all e1 c

....
some e1 e2
some e1 e1

some e1 c

all (V all e1) (V some c)
all d1 (V some c)

This concludes the work when Q′ = ∀. In the other case, Q′ = ∃. We again have a number of
subcases; one is that ∆ ` all d1 (V some e1) and ∆ ` all e1 e2. And by induction hypothesis,
∆ ` all e1 c or else ∆ ` all e2 c. Either way, we get ∆ ` all e1 c. And further we get the
desired conclusion, ∆ ` all d1 (V some c):

....
all d1 (V some e)

....
all e c

all (V some e) (V some c)
all d1 (V some c)

This concludes half of the induction step for V some c.
For the other half, let (d1, d2, Q) ∈ M , and fix i such that ∆ ` all di (V some c). Then

∆ ` ∃di, and in a few steps we also have ∆ ` ∃c:
....
∃di

....
all di (V some c)
∃(V some c)

∃c

Therefore (c, c,∃) ∈M . By induction hypothesis, (c, c,∃) ∈ [[c]]. We have (d1, d2, Q)[[V ]](c, c,∃)
because ∆ ` all c c. So (d1, d2, Q) ∈ [[V some c]]. a

Lemma 4.5 Assume that ∆ determines existentials for Γ and ϕ, and also that Γ |= ϕ.

1. M(∆,Γ, ϕ) |= Γ.

2. ∆ ` ϕ.

Proof First, consider a sentence in Γ of the form all c d, so that c and d belong to occ(Γ, ϕ).
By a routine monotonicity calculation and Lemma 4.4, [[c]] ⊆ [[d ]]. We also consider a sentence
in Γ of the form some c d. Notice that (c, d,∃) ∈M . Indeed, (c, d,∃) ∈ [[c]]∩ [[d ]], by Lemma 4.4.

At this point, we know that M(∆,Γ, ϕ) |= Γ. By our assumption that Γ |= ϕ, we see that
M(∆,Γ, ϕ) |= ϕ.

For the second part, we again consider cases on ϕ. If ϕ is all c d, we therefore have [[c]] ⊆ [[d ]].
If ∆ ` ∃c, then (c, c,∀) ∈ [[c]] ⊆ [[d ]]. So by Lemma 4.4, ∆ ` all c d, just as desired. But if
∆ 6` ∃c the assumption that ∆ determines existentials tells us directly that ∆ ` all c d. If ϕ is
some c d, let (c′, d′, Q) ∈ [[c]] ∩ [[d ]]. We use Lemma 4.4 again and reduce to four cases; one of
them is ∆ ` all c′ c, and ∆ ` all d′ d. And as we also have ∆ ` some c′ d′, we also have ∆ ` ϕ.
(This is indicated by the proof tree in our Introduction.) The other cases are easier. a
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Theorem 4.6 The logical system determined by the rules in Figures 1 and 5 is sound and
complete for LMG(all, some): Γ |= ϕ iff Γ ` ϕ.

Proof The soundness half is trivial. Suppose that Γ |= ϕ. Since the fragment is a sublanguage
of first-order logic, if is compact. So we may assume that Γ is finite. In particular, occ(Γ, ϕ) is
a finite set of class expressions.

For any finite set ∆ ⊇ Γ, let n(∆,Γ, ϕ) be the number of class expressions c ∈ occ(Γ, ϕ) such
that (1) ∆ 6` ∃c; and (2) for some d ∈ occ(Γ, ϕ), either ∆ 6` all c d, or else (V all c) ∈ occ(Γ, ϕ)
and ∆ 6` all d (V all c). This number n(∆,Γ, ϕ) measures how far ∆ is from determining
existentials for Γ and ϕ.

We show by induction on the number k that for all finite ∆ ⊇ Γ with n(∆,Γ, ϕ) = k, ∆ ` ϕ.
Applying this to the original Γ with k = n(Γ,Γ, k), we see that Γ ` ϕ, as required.

If n(∆,Γ, ϕ) = 0, then ∆ determines existentials for Γ and ϕ. By Lemma 4.5, ∆ ` ϕ.
Now assume our result for k, and suppose that n(∆,Γ, ϕ) = k + 1. Fix a class expression c

with (1) and (2) above. Consider

∆1 = ∆ ∪ {∃c}
∆2 = ∆ ∪ {all c d : d ∈ occ(Γ, ϕ)}

∪{all d (V all c) : d, (V all c) ∈ occ(Γ, ϕ), V a verb}

A fortiori, ∆1 |= ϕ and also ∆2 |= ϕ. Further, n(∆1) ≤ k, and similarly for ∆2. By induction
hypothesis, ∆1 ` ϕ, and ∆2 ` ϕ. So using Cases on c, ∆ ` ϕ. a

The proof shows that if Γ ` S, then there is a proof tree which uses the Cases rule “at the
bottom”: below any use of the Cases rule are found only other uses of the same rule.

5 Conclusion

This paper has shown several completeness results for logical systems which are syllogistic in
the sense that they avoid individual variables and yet are more expressive than the classical
syllogistic logic. (However, the system in the first section uses infinitely many rules, and the one
in the last section uses a Cases rule. So they are not ‘syllogistic’ in the strictest sense.) Results
on different but related systems may be found in [10]. These include completeness proofs, and
also negative results, showing that some naturally-defined logics either do not have a syllogistic
proof system at all, or that they do not have one without reductio ad absurdum. We would
like to continue the study of the boundary between logics which admit syllogistic systems and
ones which do not. In addition, the overarching goal of all of this research is to find complete
fragments of natural language, using whatever kinds of proof systems are necessary. We hope
that the techniques in this paper will help with other results in the area.
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