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Abstract. For set functors preserving intersections, a new description of
the final coalgebra and the initial algebra is presented: the former consists
of all well-pointed coalgebras. These are the pointed coalgebras having
no proper subobject and no proper quotient. And the initial algebra
consists of all well-pointed coalgebras that are well-founded in the sense
of Osius [20] and Taylor [27]. Finally, the initial iterative algebra consists
of all finite well-pointed coalgebras. Numerous examples are discussed
e.g. automata, graphs, and labeled transition systems.
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1 Introduction

Initial algebras are known to be of primary interest in denotational semantics,
where abstract data types are often presented as initial algebras for an endofunc-
tor H expressing the type of the constructor operations of the data type. For
example, binary trees are the initial algebra for the functor HX = X×X+1 on
sets. Analogously, final coalgebras for an endofunctor H play an important role
in the theory of systems developed by Rutten [21]: H expresses the system type,
i. e., which kind of one-step reactions states can exhibit (input, output, state
transitions etc.), and the elements of a final coalgebra represent the behavior of
all states in all systems of type H (and the unique homomorphism from a system
into the final one assign to every state its behavior). For example, deterministic
automata with input alphabet I are coalgebras for HX = XI × {0, 1}, the final
coalgebra is the set of all languages on I.

In this paper a unified description is presented for (a) initial algebras, (b)
final coalgebras and (c) initial iterative algebras (in the automata example this
is the set of all regular languages on I). We also demonstrate that this new
description provides a unifying view of a number of other important examples.

? Financial support by the Center of Mathematics of the University of Coimbra is
acknowledged.



We work with set functors H preserving intersections. This is an extremely mild
requirement that all “everyday” set functors satisfy. We prove that the final
coalgebra of H can then be described as the set of all well-pointed coalgebras,
i.e., pointed coalgebras not having any proper subobject and also not having
any proper quotient. Moreover, the initial algebra can be described as the set
of all well-pointed coalgebras which are well-founded in the sense of Osius [20]
and Taylor [26, 27]. Before we mention the definition, recall that the notion
of well-foundedness of relations has several alternative forms. Given a relation
R ⊆ X ×X, we can study the following conditions:

1. Let Y ⊆ X have the property that if all R-successors of a given point x ∈ X
lie in Y , then x ∈ Y as well. Then Y = X.

2. There is no infinite sequence from X following R: x0Rx1Rx2R · · · .
3. There is a map from rk : X // Ord such that rk(x) > rk(y) whenever
xRy.

For sets and relations as usual, these are equivalent. The first of these is an
induction principle, and this is closest to what we are calling well-foundedness in
this paper, following Taylor. The equivalence of the first and the second requires
Dependent Choice, a weak form of the Axiom of Choice; in any case, our work
in this area does not use this at all. The last condition is close to a result which
we will see, but note as well that even this requires something special about sets,
namely the Replacement Axiom.

The notion of well-foundedness of a coalgebra (A,α) generalizes condition (1)
above. It says that no proper subcoalgebra (A′, α′) of (A,α) forms a pullback

A HA
α

//

A′

A

� _

m

��

A′ HA′
α′ // HA′

HA

� _

Hm

��

This concept was first studied by Osius [20] for graphs considered as coalgebras
of the power-set functor P: a graph is well-founded in the coalgebraic sense iff
it is well-founded in any of the equivalent senses above. Taylor [26, 27] intro-
duced well-founded coalgebras for general endofunctors, and he proved that for
endofunctors preserving inverse images the concepts of initial algebra and final
well-founded coalgebra coincide.

We must mention that our motivation differs from Taylor’s. He is concerned
with foundational matters connected to recursion and induction, while we are
interested in studying initial algebras and final coalgebras in as wide a setting
as possible.

Returning to our topic, we are going to prove that for every set functor H
the concepts of initial algebra and final well-founded coalgebra coincide; the
step towards making no assumptions on H is non-trivial. And if H preserves
intersections, we describe its final coalgebra and initial algebra using well-pointed
coalgebras as above. The first result will be proved in a much more general
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context, working with an endofunctor of a locally finitely presentable category
preserving strong monomorphisms. We further assume that the functor preserves
finite intersections, but later we prove that this extra assumption can be dropped
in the case of set functors.

The last section takes a number of known important special cases: determin-
istic (Mealy and Moore) automata, trees, labeled transition systems, non-well-
founded sets, etc., and demonstrates how well-pointed coalgebras work in each
case. Here we describe, in every example, besides the initial algebra and the
final coalgebra, the initial iterative algebra [6] (equivalently, final locally finite
coalgebra, see [18, 9]) as the set of all finite well-pointed coalgebras.

2 Well-founded coalgebras

In this section we recall the concept of well-founded coalgebra of Osius [20] and
Taylor [27]. Our main result is that

initial algebra = final well-founded coalgebra

holds for all endofunctors of Set. (In the case where the endofunctor preserves
inverse images, this result can be found in [27].) For more general categories the
above result holds whenever the endofunctor preserves finite intersections.

2A Well-founded coalgebras in locally finitely presentable
categories

We make several assumptions on the base category A in our study.

Definition 2.1. 1. A category A is locally finitely presentable (LFP) if
(a) A is complete
(b) there is a set of finitely presentable objects whose closure under filtered

colimits is all of A
(See [13] or [7] for more on LFP categories.)

2. An object A of (any category) A is called simple if it has no proper quotients.
That is, every epimorphism with domain A is invertible.

Assumption 2.2. Throughout this section our base category A is locally finitely
presentable and has a simple initial object 0.

Example 2.3. The categories of sets, graphs, posets, and semigroups are locally
finitely presentable. The initial objects of these categories are empty, hence sim-
ple.

Definition 2.4. For every endofunctor H denote by

CoalgH

the category of coalgebras α : A // HA and coalgebra homomorphisms.
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Since subcoalgebras play a basic role in the whole paper, and quotients are
important from Section 3 onwards, we need to make clear what we mean by those.
Quotients are no problem: it is clear that the forgetful functor of the category
of coalgebras preserves and reflects all colimits. Consequently, epimorphisms
in CoalgH are precisely the homomorphisms carried by epimorphisms in the
base category. And they represent the quotients of the domain coalgebra (up to
isomorphism, as usual). What about subcoalgebras? If the base category is Set,
it turns out that the homomorphisms carried by monomorphisms are precisely
the strong monomorphisms of CoalgH. (Recall that a monomorphism is called
strong if it has the diagonal fill-in property w.r.t. all epimorphisms. In “everyday”
categories this is equivalent to being a regular monomorphism.) As shown in
Lemma 2.6, for general base categories we have an analogous fact whenever
the endofunctor H preserves strong monomorphisms: strong monomorphisms
in CoalgH are precisely the homomorphisms h : (A,α) // (B, β) for which
h is strongly monic in A . For that reason we use the term subcoalgebra of a
coalgebra (A,α) to mean a subobject represented by a strong monomorphisms
m : (A′, α′) // (A,α) in CoalgH. But as we point out in Section 2C, one can
obtain analogous results for more general factorization systems.

Remark 2.5. There are some consequences of the LFP assumption that play an
important role in our development. These pertain to strong monomorphisms.

1. A has (epi, strong mono)-factorizations; see 1.16 in [7].

2. A is wellpowered with respect to strong monomorphisms; see 1.56 in [7]. This
implies that for every object A the poset Sub(A) of all strong subobjects of
A is a complete lattice.

3. strong monomorphisms are closed under wide intersections and inverse im-
ages (this is true for all factorizations systems: see Proposition 14.15 in [4]),
and

4. strong monomorphisms are closed under filtered colimits: we prove this in
Lemma 2.10.

Lemma 2.6. Assume that H preserves strong monomorphisms. Strong monomor-
phisms in CoalgH are precisely the homomorphisms h : (A,α) // (B, β) for
which h is strongly monic in A .

Proof. SinceH preserves strong monomorphisms, the forgetful functor of CoalgH
creates (epi, strong mono)-factorizations, and a coalgebra homomorphism h :
(A,α) // (B, β) is a strong monomorphism in CoalgH iff it is one in A . In-
deed, let h = m·e be an (epi, strong mono)-factorization in A , then the diagonal
fill-in yields a coalgebra for which m and e are homomorphisms, and it is easy
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to see that m is a strong monomorphism in CoalgH:

A
α //

e

��

HA

He
��

C
γ
//

m

��

HC

Hm
��

B
β
// HB

Now, if h is a strong monomorphism in CoalgH, since e : (A,α) // (C, γ) is
an epimorphism, it follows that it is invertible, thus, h is a strong monomorphism
in A . ut

Example 2.7. For a non-example which is still interesting for this paper, we con-
sider the category Set0,1 of bipointed sets; these are sets with two distinguished
points which morphisms must fix. Set0,1 is LFP. The initial object 0 is a set
with two different elements, both distinguished. The final object 1 is a single
point. The map 0 // 1 is an epimorphism, so 0 is not simple. Observe that all
monomorphisms in Set0,1 are strong.

Example 2.8. On the category Gra = Set
→→ of graphs define an endofunctor H

by

HX =

{
X + {t} (no edges) if X has no edges

1, terminal graph, else.

Observe that the initial algebra is carried by a countable set without edges.

Example 2.9. Consider again the category Set0,1 of bipointed sets: put

H(X,x0, x1) =

{
1 (final object) if x0 = x1

(X + 1, x0, x1) else

This H preserves (strong) monomorphisms. However, we saw above that 0 is not
simple. So H will re-appear in examples which show that the simplicity of 0 is
necessary in most of our results below, as will the functor from Example 2.8.

Lemma 2.10. Given a filtered colimit with a cocone ci : Ci // C (i ∈ I),
every morphism f : C // D for which f ·ci are strong monomorphisms (i ∈ I)
is a strong monomorphism.

Proof. It is our task, for every commutative square

C D
f

//

X

C

u

��

X Y
e // Y

D

v

��
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where e is an epimorphism to find a diagonal. We can assume, without loss of
generality, that X is finitely presentable: indeed, every epimorphism in a locally
finitely presentable category is a filtered colimit of epimorphisms with finitely
presentable domains.

Since C = colimCi is a filtered colimit, there exists i such that u factorizes
through ci.

Ci C
ci

//

X

Ci

u′

||

X

C
��

C D
f

//

X

C

u

��

X Y
e // Y

D

v

��

Y

Ci

d

uu

This yields, since f ·ci is a strong monomorphism, a diagonal d : Y // Ci for
the outward square. Then ci·d is the desired diagonal for the original square.

To show that f is a monomorphism, assume that f · m = f · n. Take the
coequalizer e of m and n, and let w be the unique mediating morphism with
w · e = f . Then the unique diagonal of the commutative square f · id = w · e
satifies d · e = id, whence e is an isomorphism. Thus, m = n as desired. ut

Definition 2.11. A cartesian subcoalgebra of a coalgebra (A,α) is a subcoal-
gebra (A′, α′) forming a pullback

A HA
α

//

A′

A

� _

m

��

A′ HA′
α′ // HA′

HA

� _

Hm

��

A coalgebra is called well-founded if it has no proper cartesian subcoalgebra.

Example 2.12. (1) The concept of well-founded coalgebra was introduced orig-
inally by Osius [20] for the power set functor P. A graph is a coalgebra
(A, a) for P, where a(x) is the set of neighbors of A in the graph. Then
a subcoalgebra of A is an (induced) subgraph A′ with the property that
every neighbor of a vertex of A′ lies in A′. The subgraph A′ is cartesian iff
it contains every vertex all of whose neighbors lie in A′. The graph A is a
well-founded coalgebra iff it has no infinite path.

(2) Let A be a deterministic automaton considered as a coalgebra for HX =
XI×{0, 1}. A subcoalgebra A′ is cartesian iff it contains every state all whose
successors (under the inputs from I) lie in A′. This holds, in particular, for
A′ = ∅. Thus, no nonempty automaton is well-founded.

(3) Coalgebras for HX = X + 1 are dynamical systems with deadlocks. A sub-
coalgebra A′ of a dynamical system A is cartesian iff it contains all deadlocks
and every state whose next state lies in A′.
A dynamical system is well-founded iff it has no infinite computation.
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Definition 2.13. Assume that H preserves strong monomorphisms. Then every
coalgebra α : A // HA induces an endofunction of Sub(A) (see Remark 2.5.2)
assigning to a strong subobject m : A′ // A the inverse image ©m of Hm
under α, i. e., we have a pullback square:

A HA
α

//

©A

A

©m

��

©A HA′
α[m]

// HA′

HA

Hm

��

(2.1)

This function m
� // ©m is obviously order-preserving. By the Knaster-

Tarski fixed point theorem, this function has a least fixed point.

Incidentally, the notation ©m comes from modal logic, especially the areas
of temporal logic where one reads ©φ as “φ is true in the next moment,” or
“next time φ for short.

Example 2.14. Recall our discussion of graphs from Example 2.12 (1). The pull-
back ©A of a subgraph A′ is the set of points in the overall graph all of whose
neighbors belong to A′.

Remark 2.15. As we mentioned in the introduction, the concept of well-foundedness
of a coalgebra was introduced by Taylor [26, 27]. Our formulation is a bit sim-
pler. In [27, Definition 6.3.2] he calls a coalgebra (A, a) is well-founded if in every
pullback of the form

HB HA
Hi

//

C

HB
��

C B
j

// A
i // A

HA

a

��

with i and j monomorphisms, i and j are, in fact, isomorphisms. Thus, in lieu of
monomorphism we use strong ones and in lieu of pre-fixed points of m 7−→ ©m
we use fixed points.

In addition, our overall work has a methodological difference from Taylor’s
that is worth mentioning at this point. Taylor is giving a general account of
recursion and induction, and so he is concerned with general principles that
underlie these phenomena. Indeed, he is interested in settings like non-boolean
toposes where classical reasoning is not necessarily valid. On the other hand, in
this paper we are studying initial algebras, final coalgebras, and similar concepts,
using standard classical mathematical reasoning. In particular, we make free use
of transfinite recursion. The definitions in Notation 2.17 just below would look
out of place in Taylor’s paper. But we believe they are an important step in our
development.
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Example 2.16. Here is an example showing that preservation of strong monomor-
phisms does not in general imply preservation of monomorphisms. On the cate-
gory Gra of graphs, this time let

HA = all finite independent a ⊆ A, together with a new point t
with a↔ t for all a, and also t→ t

For a graph morphism f : A // B, we take Hf : HA // HB to be

Hf(a) =

{
f [a] if f [a] is independent in B

t otherwise

This functor H preserves strong monomorphisms (they are the induced sub-
graphs), and indeed it preserves intersections of them as well. However, H does
not preserve monomorphisms. So we expect some of the results which depend
on preservation of M will fail with M = all monomorphisms.

Notation 2.17. (a) Assume that H preserves strong monomorphisms. For ev-
ery coalgebra α : A // HA denote by

a∗ : A∗ // A (2.2)

the least fixed point of the function m
� // ©m of Definition 2.13. (Thus,

(A, a) is well-founded iff a∗ is invertible.) Since a∗ is a fixed point we have
a coalgebra structure α∗ : A∗ // HA∗ making a∗ a coalgebra homomor-
phism.

(b) For every coalgebra a : A // HA we define a chain of strong subobjects

a∗i : A∗i // A (i ∈ Ord)

of A on A by transfinite recursion:

a∗0 : 0 // A unique;
given a∗i , define a∗i+1 by the pullback

A HA
α

//

A∗i+1

A

a∗i+1

��

A∗i+1 HA∗i
// HA∗i

HA

Ha∗i

��

and for limit ordinals i we take the colimit of the chain (Aj)j<i and then
define a∗i to be the colimit morphism. In other words,

a∗i =
⋃
j<i

a∗j .
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Since 0 is simple, a∗0 is a strong monomorphism. By transfinite induction we
see immediately that all a∗i are strong monomorphisms (for the limit step use
Lemma 2.10). Moreover, what we have is nothing else than the construction
of the least fixed point of m

� // ©m, see Remark 2.15, in the proof of the
Knaster-Tarski Theorem in [25]. Thus, a∗ =

⋃
i∈Ord a

∗
i , where the union ranges

over the class Ord of all ordinals. However, since A has only a set of subobjects,

a∗ = a∗i0 for some ordinal i0. (2.3)

And for this ordinal i0, an easy verification using the pullback property shows
that

α∗ = α[a∗] (2.4)

Henceforth, we call A∗ the greatest cartesian subcoalgebra of A.

From now on, whenever we use the notations ©m and a∗, we only do so
when H preserves strong monomorphisms.

Example 2.18. For every graph A considered as a coalgebra for P, A∗ is the
subgraph on all vertices of A from which no infinite path starts. Since m 7→ ©m
is not necessarily continuous, the ordinal i0 above can be arbitrarily large. Here
is an example with i0 = ω + 1:

• •// •

•##

•
•++

•
•33

•

•;;

• •//

• •//

• •// • •//

• •//

• •//...

Example 2.19. The endofunctor H of Gra in Example 2.8 has 1 = H1 as its
final coalgebra, and this coalgebra is well-founded. Of course, this functor H does
not preserve strong monomorphisms, and so most of the foregoing results do not
apply to it. In particular, with α as id : 1 // H1 (the final coalgebra), there is
no ordinal i such that a∗i = id1. This shows that we must assume preservation
of strong monomorphisms.

Proposition 2.20. Assume that H preserves strong monomorphisms. For every
coalgebra (A,α), the greatest cartesian subcoalgebra (A∗, α∗) is its coreflection in
the full subcategory of well-founded coalgebras.

Remark. We thus prove that (A∗, α∗) is well-founded, and for every homomor-
phism f : (B, β) // (A,α) with (B, β) well-founded there exists a unique ho-
momorphism

f̄ : (B, β) // (A∗, α∗) with f = a∗·f̄ .
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Proof. (i) We first observe that for all ordinals i ≤ j the connecting maps

A∗i

A

a∗i
��

A∗i A∗j
a∗ij

// A∗j

A

a∗j
��

of the chain of Notation 2.17 form the following commutative diagram which can
be used as a definition of a∗ij ’s (via the universal property of pullbacks):

A HA
α

//

A∗j+1

A

a∗j+1

��

A∗j+1 HA∗jα[a∗j ]
// HA∗j

HA

Ha∗j
��

A∗j+1 HA∗j
//

A∗i+1

A∗j+1

a∗i+1,j+1

��

A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HA∗j

Ha∗ij

��

A∗i+1

A

a∗i+1

��

HA∗i

HA

Ha∗i

��

(2.5)

(ii) A∗ is a well-founded coalgebra: for every ordinal number the outside
square of the diagram

A HA
α

//

A∗

A

a∗

��

A∗ HA∗
α[a∗]

// HA∗

HA

Ha∗

��

A∗ HA∗//

A∗i+1

A∗
��

A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HA∗
��

A∗i+1

A

a∗i+1

��

HA∗i

HA

Ha∗i

��

is a pullback, thus so is the upper square. This shows that (A∗)∗i = A∗i . Therefore
(A∗)∗ = A∗ by (2.3).

(iii) Suppose we are given a well-founded coalgebra β : B // HB and a
coalgebra homomorphism f : B // A. Since a∗ is a monomorphism there is at
most one coalgebra homomorphism f̄ : B // A∗ with a∗·f̄ = f . Thus, we are
finished if we show that f̄ exists. To this end denote by b∗i,j : B∗i

// B∗j the
chain whose colimit is B∗ = B with the colimit injections b∗i : B∗i

// B∗. We
define the components of a natural transformation f̄i : B

∗
i

// A∗i by transfinite
recursion on ordinals i, satisfying

B A
f

//

B∗i

B

b∗i
��

B∗i A∗i
f̄i // A∗i

A

a∗i
��

(2.6)
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The naturality follows due to the commutativity from the diagram below for
i ≤ j:

B A
f

//

B∗j

B

b∗j
��

B∗j A∗j
f̄j

// A∗j

A

a∗j
��

B∗j A∗j
//

B∗i

B∗j

b∗i,j

��

B∗i A∗i
f̄i // A∗i

A∗j

a∗i,j

��

B∗i

B

b∗i

��

A∗i

A

a∗i

��

(2.7)

The desired upper square commutes because all other parts and the outside
square do and since a∗j is a monomorphism.

We define f̄i by transfinite recursion. Let f̄0 = id: ∅ // ∅. Then (2.6)
clearly commutes for i = 0. For isolated steps consider the diagram below:

A HA
α

//

A∗i+1

A

a∗i+1

��

A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HA

Ha∗i
��

B∗i+1 HB∗i
β[b∗i ]

//B∗i+1

A∗i+1

f̄i+1

$$

B∗i+1

B

b∗i+1

��

HB∗i

HA∗i

Hf̄i

zz

HB∗i

HB

Hb∗i

��

B

A

f

::

B HB
β

// HB

HA
Hf

dd

(2.8)

The inner and outside squares commute by the definition of A∗i+1 and B∗i+1,
respectively. For the lower square we use that f is a coalgebra homomorphism,
and the right-hand one commutes by the induction hypothesis. The inner pull-
back induces the desired morphism f̄i+1 and the commutativity of the left-hand
square is that of (2.6) for i+ 1. Finally, for a limit ordinal j let f̄j = colimi<j f̄i,
in other words, f̄j is the unique morphism such that the squares

B∗i A∗i
f̄i

//

B∗j

B∗i

OO

b∗i,j

B∗j A∗j
f̄j

// A∗j

A∗i

OO

a∗i,j

commute for all i < j. We need to verify that (2.6) commutes for f̄j . This is the
commutativity of the lower square in (2.7), which follows since all other parts
and the outside square commute for all i < j.
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To complete the proof consider any ordinal i such that B∗i = B∗ = B and
A∗i = A∗ hold. Then f̄ = f̄i : B // A∗ is a coalgebra homomorphism with
a∗i ·f̄ = f by the commutativity of the upper and left-hand part of Diagram (2.8).

ut

For endofunctors preserving inverse images the following lemma is in [26] and
Exercise VI.16 in [27]:

Lemma 2.21. Assuming that H preserves strong monomorphisms, the subcat-
egory of CoalgH consisting of the well-founded coalgebras is closed under quo-
tients and colimits in CoalgH.

This follows from a general result on coreflective subcategories: the cate-
gory CoalgH has an (epi, strong mono)-factorization system (see Remark 2.5),
and its full subcategory of well-founded coalgebras is coreflective with strong
monomorphic coreflections (see Proposition 2.20). Consequently, it is closed un-
der quotients and colimits. For more general results, see Theorem 16.8 and Corol-
lary 13.20 of [4].

Example 2.22. The initial coalgebra 0 // H0 is well-founded.

2B Initial algebras are well-founded

Our next result is that the initial H-algebra (if it exists) is well-founded. That
is, suppose that H has an initial algebra (I, ϕ : HI // I). Then by Lambek’s
Lemma, ϕ is invertible. We prove that (I, ϕ−1) is a well-founded coalgebra.

In the proof we use the initial chain defined in [3]. This is the chain

Wi (i ∈ Ord) and wij : Wi
//Wj (i ≤ j) (2.9)

defined uniquely up to natural isomorphism by

W0 = 0 (initial object of A )

Wi+1 = HWi and wi+1,j+1 = Hwi,j

and for limit ordinals i

Wi = colim
j<i

Wj with colimit cocone wij (i < j).

The chain is said to converge at i if the connecting map wi,i+1 : Wi
// HWi

is invertible. The inverse then makes Wi an initial algebra.

Proposition 2.23 ([30]).

(1) Whenever there exists an object X ∼= HX, then H has an initial algebra.
(2) If H preserves strong monomorphisms and has an initial algebra, then the

initial chain converges.
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This result was shown in Theorem II.4 of [30]. The proof uses the LFP-
property of A , especially one of its consequence, the wellpoweredness of A .

Theorem 2.24. Let H preserve strong monomorphisms. Initial algebras are, as
coalgebras, well-founded.

This was proved in Taylor [27] under the additional assumption that H pre-
serves inverse images.

Proof. If H has an initial algebra, then, by Proposition 2.23, it has the form
(wj,j+1)−1 : HWj

// Wj for some ordinal j. We prove that for i ≤ j, the
morphisms a∗i of Notation 2.17 are the same as the morphisms wij . Consequently,
a∗ = idWj , as requested. For i = 0 the equality a∗0 = w0j is clear. For the isolated
step we need to prove that the square

Wj HWjwj,j+1

//

Wi+1

Wj

wi+1,j

��

Wi+1 HWi
id // HWi

HWj

Hwij

��

is a pullback. Indeed, the square commutes since Hwij = wi+1,j+1, and it is a
pullback since both horizontal arrows are invertible. Limit steps follow automat-
ically. The coalgebra Wj is thus well-founded by Proposition 2.20. ut

2C M -Well-Founded Coalgebras

Although we have worked above with strong monomorphisms only, the whole
theory can be developed for a general class M of monomorphisms in the base
category A . We need to assume that

(a) A is M -wellpowered
(b) M is closed under inverse images
(c) M is constructive in the sense of [30].

The last point means that M is closed under composition, and for every chain
of monomorphisms in M , (i) a colimit exists and is formed by monomorphisms
in M , and (ii) the factorization morphism of every cocone of monomorphisms
in M is again a monomorphism in M . For strong monomorphisms in a locally
finitely presentable category this in particular states that the initial object is
simple.

Examples 2.25. For the categories of sets, graphs, posets, and semigroups, we
can take M to be the constructive class of all monomorphisms.

Example 2.26. (a) In Example 2.8, the endofunctor preserves strong monomor-
phisms, but it does not preserve monomorphisms. In the case where we take
M to be all monomorphisms, then the initial algebra is easily seen to be the
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final M -well-founded coalgebra. Indeed, every M -well-founded coalgebra is
carried by a graph without edges. In contrast, for M consisting of strong
monomorphisms, the final well-founded coalgebra is carried by 1, the final
graph, see Example 2.34.

(b) The endofunctor of Gra defined by

HX =

{
X if X has a loop
the discrete graph on X otherwise

preserves monomorphisms, but not strong monomorphisms.

We then can define M -well-founded coalgebra as one that has no proper
cartesian subcoalgebra carried by an M -monomorphism.

All results above hold in this generality. In Theorem 2.24 we must assume that
H preserves M , that is, ifm lies in M then so doesHm. In Theorem 2.35 we need
to assume that H preserves M and finite intersections of M -monomorphisms.

We defined well-foundedness in Definition 2.11 implicitly using choice of
M = strong monomorphisms. The reason we did so is that, as shown in Lemma 2.6,
the assumption that H preserves strong monomorphisms implies that strong
monomorphisms in the category of coalgebras are the same as strong monomor-
phisms in the base category, and vice-versa. In contrast, no characterization of
monomorphisms in the category of coalgebras is known.

The concept of M -well-founded coalgebra introduced in this section depends
on the choice of M as Example 2.16 below demonstrates. In particular, assume
that H preserves strong monomorphisms but not all monomorphisms. Then for
every coalgebra (A,α) we can still form the subcoalgebra (A∗, α∗) as in Nota-
tion 2.17, but there is no reason why the latter should be mono-wellpowered: on
the class of all monomorphisms we cannot define the function of Definition 2.13
that made the argument of Proposition 2.20 work. Example 2.16 provides such
a case.

Example 2.27. We return to the functor H : Gra // Gra of Example 2.16
By Theorem 2.35, the initial algebra of H is the same as its final well-founded
coalgebra. This is

I = HF ∪ {t}

where HF = PfHF is the initial algebra of the finite power set functor on Set,
taken as a discrete graph, and t is connected in both directions to all x ∈ HF ,
and to itself.

In contrast, I is not M -well-founded, where M is the class of all monomor-
phisms. Here is the reason. Let J be the same as I, except that we drop all edges
between t and the elements of HF . (We keep the loop at t.) Then HJ = HI = I.
The inclusion i : J // I is of course monic, and Hi = idHI . It is easy to check
that this inclusion is a coalgebra morphism, and indeed that it gives a pullback.
This verifies that I is not well-founded, for the class M of all monomorphisms.

A different point: H shows that we can have an M -well-founded coalge-
bra (A, a) such that (HA,Ha) is not well-founded. For this, take M to be all
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monomorphisms, and take (A, a) to be 0 // H0. This is well-founded, since 0
is the empty graph and thus has no subobjects. Moreover H0 is a graph t↔ x,
with a loop on t. Similarly, HH0 adds another point y, and also has t↔ x. We
claim that the coalgebra H0 // HH0 is not cartesian. Let J be two points, t
and x, with a loop on t, and no other edges. Then HJ = HH0, and the inclusion
of J in H0 gives a cartesian subcoalgebra which is not the identity.

2D Recursive coalgebras

Definition 2.28. A coalgebra α : A // HA is recursive if for every algebra
β : HB // B there exists a unique coalgebra-to-algebra homomorphism

B HBoo
β

A

B

h

��

A HA
α // HA

HB

Hh

��

This concept was, for introduced by Taylor under the name “coalgebra obey-
ing the recusion scheme”, the name recursive coalgebra stems from [10].

Examples 2.29 (see [10]).

(1) 0 // H0 is a recursive coalgebra.
(2) If α : A // HA is recursive, then so is Hα : HA // HHA.
(3) A colimit of recursive coalgebras is recursive. Combining these results we see

that in the initial chain (2.9) all the coalgebras

wi,i+1 : Wi
// HWi

are recursive.

We are going to prove that for set functors, well-founded coalgebras are
recursive. Before we do this, let us discuss the converse. In general, recursive
coalgebras need not be well-founded, even for set functors. However for all set
functors preserving inverse images recursiveness does imply well-foundedness,
as shown by Taylor [26, 27]. We typically have a slightly stronger result; see
Example 2.31. In contrast, here is an example of the phenomenon mentioned
above, a coalgebra for a set functor that is recursive but not well-founded.

Example 2.30 (see [5]). A recursive coalgebra need not be well-founded. Let
H : Set // Set be defined on objects by

HX = (X ×X)/∼

where ∼ merges the diagonal to a single element, d. For morphisms f : X // Y
we take Hf(d) = d and

Hf(x1, x2) =

{
d if f(x1) = f(x2)

(fx1, fx2) else
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This functor H preserves (strong) monomorphisms. The coalgebra A = {0, 1}
with the structure α constant to (0, 1) is recursive: given an algebra β : HB
// B, the unique coalgebra-to-algebra homomorphism h : {0, 1} // B is

h(0) = h(1) = β(d).

But A is not well-founded: ∅ is a cartesian subcoalgebra.

{0, 1} H{0, 1}
α

//

∅

{0, 1}
��

∅ ∅id // ∅

H{0, 1}
��

Example 2.31. There is a P-algebra (B, b) such that for all P-coalgebras (A, a),
if (A, a) is not well-founded, then there are at least two coalgebra-to-algebra
homomorphisms h : A // B.

We take B = {0, 1, 2}, with b : PB // B defined as follows:

b(x) =

0 if x = ∅ or x = {0}
1 else if 1 ∈ x
2 if 2 ∈ x and 1 /∈ x

If (A, a) is any coalgebra which is not well-founded, we show that there are at
least two coalgebra-to-algebra homomorphisms h : A // B. We can take

h1(x) =

{
0 if there are no infinite sequences x = x0 → x1 → x2 · · ·
1 if there is an infinite sequence x = x0 → x1 → x2 · · ·

and also h2 defined the same way, but using 2 as a value instead of 1. The
verification that h1 and h2 are coalgebra-to-algebra homomorphisms hinges on
two facts: first, h(x) = 0 iff there is no infinite sequence starting from x; and
second, if hi(x) 6= 0, then there is some y ∈ a(x) such that hi(y) 6= 0 as well.

Theorem 2.32. If H preserves strong monomorphisms, then every well-founded
coalgebra is recursive.

For functors preserving inverse images this follows from [26, Theorem 6.3.13].

Proof. Let α : A // HA be well-founded. For every algebra e : HX // X
we prove the existence and uniqueness of a coalgebra-to-algebra homomorphism
A // X. We use the initial chain (Wi) of (2.9) and also the chain (A∗i ) from
Notation 2.17.

(1) Existence. We prove first that there is a unique natural transformation

fi : A
∗
i

//Wi (i ∈ Ord)

such that for all ordinals i we have

fi+1 =

(
A∗i+1

α[a∗i ]−−−−→ HA∗i
Hfi−−−→ HWi = Wi+1

)
. (2.10)
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In fact, since both of the transfinite chains (A∗i ) and (Wi) are defined by colimits
on all limit ordinals i, we only need to show how f0 is specified and, given fi,
how fi+1 is specified so that the naturality square

A∗i+1 Wi+1
fi+1

//

A∗i

A∗i+1

a∗i,i+1

��

A∗i Wi
fi // Wi

Wi+1

wi,i+1

��

(2.11)

commutes for every non-limit ordinal i. The first step is trivial since A∗0 = ∅; we
take f0 = id: ∅ // ∅. In the induction step, fi+1 is defined by the above for-
mula (2.10) and we need to prove the commutativity of the above square (2.11).
For this, the diagram below commutes by the the induction hypothesis (2.11)
and by the commutativity of the upper inner square of (2.5):

A∗i+2 HA∗i+1α[a∗i+1]
//

A∗i+1

A∗i+2

a∗i+1,i+2

��

A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HA∗i+1

Ha∗i,i+1

��

HA∗i+1 HWi+1
Hfi+1

//

HA∗i

HA∗i+1

��

HA∗i HWi
Hfi // HWi

HWi+1

Hwi,i+1

��

Next, since the Wi are recursive coalgebras, see Example 2.29, we have unique
coalgebra-to-algebra homomorphisms into X. These form a natural transforma-
tion into the constant functor with value X:

ri : Wi
// X (i ∈ Ord) .

Consequently, we obtain a natural transformation rifi : A
∗
i

// X which, for i
such that A = A∗i , yields

h = rifi : A // X .

Now consider the diagram below.

X HXoo
e

Wi

X

ri
��

Wi HWi

wi,i+1
// HWi

HX

Hri
��

Wi HWi
//

A∗i = A∗i+1

Wi

fi
��

A∗i = A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HWi

Hfi
��

A∗i = A∗i+1

HWi

fi+1

))

A∗i = A∗i+1

X

h

��

HA∗i

HX

Hh

��

The morphism at the top is α, by (2.4). The sides are the definition of h, the
bottom square is the definition of ri, and the top triangle is the definition of
fi+1. The bottom triangle is (2.11); note that a∗i,i+1 = id. The overall outside of
the figure shows that h is a coalgebra-to-algebra homomorphism as desired.

17



(2) Uniqueness. If h1, h2 : A // X are coalgebra-to-algebra homomorphisms,
then we prove h1 = h2 by showing that

h1·a∗i = h2·a∗i for all i ∈ Ord.

The case i = 0 is clear, in the isolated step use the commutative diagrams (with
t = 1, 2):

X HXoo
e

A

X

ht

��

A HA
α // HA

HX

Hht

��

A HA//

A∗i+1

A

a∗i+1

��

A∗i+1 HA∗i
α[a∗i ]

// HA∗i

HA

Ha∗i
��

and the limit steps follow from A∗j = colimi<j A
∗
i for limit ordinals j. ut

Remark 2.33. The concepts “initial algebra” and “final recursive coalgebra” co-
incide for all endofunctors, as proved by Capretta et al [10]. This is not true in
general for well-foundedness in lieu of recursiveness:

Example 2.34. We present two examples that show that our overall assumptions
are needed in Theorem 2.35 just below.

(a) The endofunctor H of Gra in Example 2.8 has 1 as its final well-founded
coalgebra, and its initial algebra is a countably infinite set (the initial chain
converges in the ω-th step).

(b) In Example 2.9, we saw an example of H : Set0,1
// Set0,1 which pre-

served strong monomorphisms, but where 0 is not simple. The initial algebra
for H is clearly infinite. But the final well-founded coalgebra is 1 = H1, since
1 has no proper subobject.
This latter example demonstrates that the simplicity of 0 is needed in The-
orem 2.35 just below. Furthermore, our endofunctor H even preserves finite
intersections (pullbacks of (strong) monomorphisms)! Compare this with the
following

For endofunctors preserving inverse images the following theorem is Corollary
9.9 of [26]. As we mentioned in the introduction, it is non-trivial to relax the
assumption on the endofunctor, and so our proof is different from Taylor’s. As a
result we obtain in Theorem 2.38 below that for a set endofunctor no assumptions
are needed.

Theorem 2.35. If H preserves strong monomorphisms and finite intersections,
then

initial algebra = final well-founded coalgebra

That is, an algebra ϕ : HI // I is initial iff ϕ−1 : I // HI is the final
well-founded coalgebra.
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Proof. (a) Let I be an initial algebra. By a result of Capretta et al. [10] which we
mentioned in Remark 2.33, I is a final recursive coalgebra. Since I is well-founded
by Theorem 2.24, it is a final well-founded coalgebra due to Theorem 2.32.

(b) Let ψ : I // HI be a final well-founded coalgebra.
(b1) Factorize ψ = m·e where e is an epimorphism and m a strong monomor-

phism (Remark 2.5). By diagonal fill-in

HI HHI
Hψ

//

I ′

HI

m

��

I ′ HI ′
ψ′

// HI ′

HHI

Hm

��

I ′ HI ′//

I

I ′

e

��

I HI
ψ

// HI

HI ′

He

��

we obtain a quotient (I ′, ψ′) which, by Lemma 2.21 and Theorem 2.32, is re-
cursive. Consequently, a coalgebra homomorphism f : (I ′, ψ′) // (I, ψ) exists.
Then fe is an endomorphism of the final well-founded coalgebra, hence, fe = idI .
This proves that e is an isomorphism, and from the commutativity of the lower
square above we see that ψ′ is a strong monomorphism, in other words

ψ is a strong monomorphism.

(b2) The coalgebra (HI,Hψ) is well-founded. Indeed, consider a cartesian
subcoalgebra (A′, a′)

I HI
ψ

//

J

I

m′

��

J A′
ψ′

// A′

HI
��

HI HHI
Hψ

//

A′

HI

m

��

A′ HA′
a′ // HA′

HHI

Hm

��

Form the intersection J of m and ψ. Since H preserves this intersection, it follows
that m and Hm′ represent the same subobject of HI, thus, we have

u : A′ // HJ, an isomorphism, with m = Hm′·u.

This yields a cartesian subcoalgebra

I HI
ψ

//

J

I

m′

��

J A′
ψ′

// A′ HJ
u // HJ

HI

Hm′

��

and since (I, ψ) is well-founded, we conclude that m′ is invertible. Consequently,
m = Hm′·u is invertible.
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(b3) ψ is invertible. Indeed, we have, by (2), a homomorphism h : (HI,Hψ)
// (I, ψ):

I HI
ψ

//

HI

I

h

��

HI HHI
Hψ

// HHI

HI

Hh

��

HI HHI//

I

HI

ψ

��

I HI
ψ

// HI

HHI

Hψ

��

Then h·ψ is an endomorphism of (I, ψ), thus, h·ψ = id. And the lower square
yields ψ·h = H(h·ψ) = id, whence I ∼= HI,

(b4) By Proposition 2.23, the initial chain converges, and for some ordinal
i, w−1

i,i+1 : HWi
//Wi is an initial algebra. Moreover, wi,i+1 : Wi

// HWi is
by (a) a final well-founded coalgebra, thus, isomorphic to ψ : I // HI. Thus
(I, ψ−1) is isomorphic to the initial algebra above. ut

2E Initial algebras of set functors

The main result of this section is that for all endofunctors H of Set the equality

initial algebra = final well-founded coalgebra (2.12)

holds, i. e., for the particular case of our given LFP category being A = Set one
can lift the assumption that H preserves (strong) monomorphisms and intersec-
tions in Theorem 2.35. We have already remarked that if H preserves inverse
images, this result can be found in [27].

Proposition 2.36 (Trnková [29]). For every endofunctor H of Set there ex-
ists an endofunctor H̄ preserving monomorphisms and finite intersections and
identical with H on all nonempty sets (and nonempty functions).

Now H̄ fulfils the desired equality (2.12) by Theorem 2.35. And the proof of
the next result is the transfer of (2.12) from H̄ to H. To do so, let us recall how
Trnková defined H̄:

Denote by C01 the functor ∅ � // ∅ and X � // 1 for all X 6= ∅. Define H̄
as H on all nonempty sets, and put

H̄∅ = {τ ; τ : C01
// H a natural transformation}.

(To check that we have a set here and not a proper class, note that each τ : C0,1
// H is determined by τ1 : 1 // H1. For a nonempty set A, if k : 1 // A

is arbitrary, τA = Hk ◦ τ1.) Given a nonempty set X, H̄ assigns to the empty
map qX : ∅ // X the map

H̄qX : τ � // τX for every τ : C01
// H,
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where that τX : 1 // HX is simply an element of HX.
Continuing, observe that there exists a map u : H∅ // H̄∅ such that for

every set A 6= ∅ the triangle

H∅

HA = H̄A

HqA
""

H∅ H̄∅u // H̄∅

HA = H̄A

H̄qA||

(2.13)

commutes. For each element x ∈ H∅, let the natural transformation u(x) : C01
// H have components u(x)A = HqA(x) for all A 6= ∅. Then

H̄qA(u(x)) = (u(x))A = HqA(x).

Lemma 2.37. Let (A, a) be a well-founded H-coalgebra, with A 6= ∅, so that
(A, a) is also an H̄-coalgebra. Then ∅ is not the carrier of any cartesian H̄-
subcoalgebra of (A, a).

Proof. Assume towards a contradiction that qH̄∅ : ∅ // H̄∅ were a cartesian
subcoalgebra of (A, a). We claim that the square below is a pullback:

A HA
a

//

∅

A

qA

��

∅ H∅
qH∅ // H∅

HA

HqA

��

(2.14)

We show that there are no y ∈ A and x ∈ H∅ such that that a(y) = HqA(x). For
assume that y and x exist with these properties. Then by (2.13), H̄qA(u(x)) =
a(y). This contradicts our assumption that (∅, qH̄∅) is a cartesian subcoalgebra
of (A, a). Thus, y and x do not exist as assumed, and hence, the square in (2.14)
is indeed a pullback. Therefore qA is an isomorphism. But A 6= ∅, and this is a
contradiction. ut

Theorem 2.38. For every endofunctor of Set we have:

initial algebra = final well-founded coalgebra.

Proof. Given H, we know from Theorem 2.35 that the statement holds for H̄.
From this we are going to prove it for H.

(a) If ϕ : HI // I is an initial algebra, we prove that ϕ−1 : I // HI is a
final well-founded coalgebra.

The first case is when H∅ = ∅. In this case I = ∅. And the only (hence,
the final) well-founded coalgebra is the empty one. Indeed, if a : A // HA is
well-founded, then the following cartesian subcoalgebra

A HA
a

//

∅

A

qA

��

∅ ∅id // ∅

HA

HqA

��

(2.15)
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demonstrates that qA is an isomorphism, so A = ∅.
The second case is when H∅ 6= ∅. Then H̄∅ 6= ∅ via u in (2.13) above. The

H̄-algebra ϕ : H̄I // I is initial because every H̄-algebra is nonempty, hence,
it also is an H-algebra. And the unique homomorphism from I w.r.t. H is also
a homomorphism w.r.t. H̄. By Theorem 2.35, ϕ−1 : I // H̄I is a final well-
founded H̄-coalgebra. Let us now verify that it is also well-founded w.r.t. H.
Consider a cartesian subcoalgebra

I HI
ϕ−1

//

A′

I

m

��

A′ HA′
a′ // HA′

HI

Hm

��

(2.16)

We claim that A′ cannot be empty. For if it were, then since HA′ = H∅ 6= ∅,
we take any x ∈ HA′ and consider x and (ϕ ·Hm)x. By the pullback property,
there is some y ∈ A′ so that a′(y) = x. In particular, this contradicts A′ = ∅.

As a result, HA′ = H̄A′, and Hm = H̄m. So (2.16) is a cartesian subcoal-
gebra for H̄. Thus m is invertible, as desired.

At this point we know that ϕ−1 : I // H̄I is a well-founded H coalgebra; we
conclude with the verification that ϕ−1 is final among these. This follows from
the observation that every nonempty well-founded H-coalgebra a : A // HA
is also well-founded w.r.t. H̄. Indeed, consider a cartesian subcoalgebra

A H̄A
a

//

A′

A

m

��

A′ H̄A′
a′ // H̄A′

H̄A

H̄m

��

(2.17)

By Lemma 2.37, A′ 6= ∅. Thus H̄m = Hm and we conclude that m is invertible.

(b) If ψ : I // HI is a final well-founded coalgebra, we prove that ψ is
invertible and ψ−1 : HI // I is an initial algebra. Unfortunately, we cannot
use the converse implication of what we have just proved (every nonempty well-
founded H̄-coalgebra is also well-founded w.r.t. H) since this is false in general
(see Example 2.39 below). We can assume H∅ 6= ∅, since the case H∅ = ∅ is
trivial.

Consider first the coalgebra

b : H̄∅ // HH̄∅

defined by

b(τ) = τH̄∅ for all τ : C01
// H.
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Let us show that this coalgebra is well-founded for H. Consider a cartesian
subcoalgebra

H̄∅ HH̄∅
b

//

A′

H̄∅

m

��

A′ HA′
a′ // HA′

HH̄∅

Hm

��

(2.18)

It is our task to prove that m is surjective (thus, invertible). First, assume that
A′ 6= ∅. Given τ : C01

// H in H̄∅, the element τA′ of HA′ (recall that H∅ 6= ∅,
thus HA′ 6= ∅ for all sets A′) fulfils

b(τ) = τH̄∅ = Hm(τA′).

(The last equality uses the naturality of τ and the fact that C01m = id1.) Thus,
there exists an element of A′ that m maps to τ . Our second case is when A′ = ∅.
We show that this case leads to a contradiction. Observe that m = qH̄∅ : ∅
// H̄∅, and let x ∈ H∅, so that u(x) ∈ H̄∅. By (2.13),

b(u(x)) = (u(x))H̄∅ = HqH̄∅(x)

Thus x and u(x) are mapped to the same element of HH̄∅ by Hm and b,
respectively, contradicting the assumption that ∅ is a pullback in (2.18) above.

The first point of this coalgebra (H̄∅, b) is that its well-foundedness and
non-emptiness implies that the final well-founded H-coalgebra I must also be
nonempty. Thus I is also a coalgebra for H̄. Let us prove that it is well-founded
w.r.t. H̄. Given a cartesian subcoalgebra

I H̄I
ψ

//

A′

I

m

��

A′ H̄A′
a′ // H̄A′

H̄I

H̄m

��

by Lemma 2.37, A′ 6= ∅. So H̄m = Hm, hence m is invertible.
We next prove that (I, ψ) is the final well-founded H̄-coalgebra. Let a : A
// H̄A be a nonempty well-founded H̄-coalgebra. We prove that the coproduct

(A, a) + (H̄∅, b) in CoalgH

is a well-founded H-coalgebra. This will conclude the proof: we have a unique
homomorphism from that coproduct into (I, ψ) in CoalgH, hence, a unique ho-
momorphism from (A, a) to (I, ψ). We know that every nonempty well-founded
coalgebra for H is also well-founded for H̄, thus, both of the above summands
are well-founded H̄-coalgebras. Since coproducts of coalgebras are formed on the
level of sets, the two categories CoalgH and Coalg H̄ have the same formation
of coproduct of nonempty coalgebras. Let

(A, a) + (H̄∅, b) = (A+ H̄∅, c)
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be a coproduct in Coalg H̄, then this coalgebra is well-founded w.r.t. H̄ by
Lemma 2.21. To prove that it is also well-founded w.r.t. H, we only need to
consider the empty subcoalgebra: we must prove that the square

A+ H̄∅ H(A+ H̄∅)
c

//

∅

A+ H̄∅

m

��

∅ H∅a′ // H∅

H(A+ H̄∅)

Hm

��

is not a pullback. Indeed, choose an element x ∈ H∅ and put τ = u(x) (see (2.13)).
Then m = qA+H̄∅ implies

Hm(x) = τA+H̄∅.

We also have τ ∈ H̄∅ and the coproduct injection v : H̄∅ // A + H̄∅ fulfils
c·v = Hv·b (due to the formation of coproducts in Coalg H̄). Therefore

c
(
v(τ)

)
= Hv

(
b(τ)

)
= Hv(τH̄∅) = τA+H̄∅.

Since we presented elements of A + H̄∅ and H∅ that are mapped to the same
element by c and Hm, respectively, the above square is not a pullback. This
finishes the proof that (I, ψ) is a final well-founded H̄-coalgebra.

By Theorem 2.35 we conclude that ψ is invertible and (I, ψ−1) is an initial
H̄-algebra. It is also an initial H-algebra: due to H∅ 6= ∅ 6= H̄∅, the two functors
have the same categories of algebras. ut

Example 2.39. Let H = C01 + C1 be the constant functor of value 2 except
∅ 7→ 1. The functor H̄ in the above proof is the constant functor with value 1 + 1,
expressed, say as {a, b}. Here

H∅ = {b} and HA = {a, b} for A 6= ∅.

The coalgebra
{a} �

�
// {a, b}

is obviously well-founded w.r.t. H̄ but not w.r.t. H since we have the pullback:

{a} {a, b}� � //

∅

{a}

q{a}

��

∅ H∅ = {b}// H∅ = {b}

{a, b}

Hq{a}

��

2F Initial algebras for functors on vector spaces

For every field K, the category VecK of vector spaces over K also has the prop-
erty that the equality (2.12) holds for all endofunctors. This follows from the
next lemma whose proof is a variation of Trnková’s proof of Proposition 2.36
(cf. [29]):
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Lemma 2.40. All monomorphisms in VecK are strong, and their finite inter-
sections are absolute, i.e., preserved by every functor with domain VecK .

Corollary 2.41. For every endofunctor of VecK we have

initial algebra = final well-founded coalgebra.

Remark 2.42. The existence of an initial algebra is equivalent to the existence
of a space X ∼= HX, see Proposition 2.23.

3 Well-pointed coalgebras

We arrive at the centerpiece of this paper, characterizations of the initial algebra,
final coalgebra, and initial iterative algebra for set functors.

Throughout this section H denotes an endofunctor of Set which preserves
(wide) intersections. This is an extremely mild condition: examples include

(a) the power-set functor, all polynomial functors, the finite distribution functor,
(b) products, coproducts, quotients, and subfunctors of functors preserving in-

tersections, and
(c) “almost” all finitary functors, see Lemma 3.33 below.

Recall from Remark 2.5 that a subcoalgebra of a coalgebra (A, a) is represented
by a monic homomorphism with codomain (A, a), and a quotient is represented
by an epic homomorphism with domain (A, a). When speaking about morphisms
between pointed coalgebras we mean those preserving the points. In particular,

given a pointed coalgebra 1
x // A // HA by a subobject is meant a subcoal-

gebra containing the initial state x.

3A Canonical graphs of coalgebras of set functors preserving wide
intersections

At this point, we associate to each H-coalgebra (A, a) a certain canonical graph.
The idea is that the neighbors of a point x in this graph are the elements of A
“most immediately used” in a(x). Here is the formal definition.

Definition 3.1. For every coalgebra a : A // HA define the canonical graph
on A: the neighbors of x ∈ A are precisely those elements of A which lie in the
least subset m : M

� � // A with a(x) ∈ Hm[HM ].

Remark 3.2. (a) Gumm observed in [15] that (under our standing assumption
that H preserves intersections) we obtain a “subnatural” transformation
from it to the power-set functor P by defining functions

τA : HA //PA, τA(x) = the least subset m : M � � // A with x ∈ Hm[HM ].
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The naturality squares do not commute in general, but for every monomor-
phism m : A′ �

�
// A we have a commutative square

HA PA
τA

//

HA′

HA

Hm

��

HA′ PA′
τA′ //PA′

PA

Pm

��

(3.1)

which even is a pullback. The canonical graph of a coalgebra a : A // HA
is simply the graph τA·a : A //PA.

(b) Recall that a graph is well-founded iff it has no infinite directed paths. This
also fully characterizes well-foundedness of H-coalgebras:

Proposition 3.3. If a set functor H preserves intersections, then a coalgebra
for H is well-founded iff its canonical graph is well-founded.

Remark. For functors H preserving inverse images this fact is proved by Taylor,
see 6.3.4 in [27]. Our proof is the same and we present it for completeness only.

Proof. Let a : A // HA be a well-founded coalgebra. Given a subgraph (A′, a′)
of the associated graph (A, τA·a) forming a pullback

A HA
a
// HA PA

τA
//

A′ PA′
a′ //A′

A

m

��

PA′

PA

Pm

��

we are to prove that m is invertible. Use the pullback of (3.1):

A HA
a

//

A′

A

m

��

A′ HA′
a′′ // HA′

HA

Hm

��

HA PA
τA

//

HA′

HA

HA′ PA′
τA′ //PA′

PA

Pm

��

(3.2)

We get a unique a′′ : A′ // HA′ with a′ = τA′ ·a, and (A′, a′′) is a subcoal-
gebra of (A, a). Moreover, in the above diagram the outside square and the
right-hand one are both pullbacks, thus, the left-hand square is also a pullback.
Consequently, m is invertible since (A, a) is well-founded.

Conversely, assume that the graph (A, τA·a) is well-founded. We are to prove
that if the left-hand square of (3.2) is a pullback then m is invertible. Indeed,
in that case, by composition, the outside square is a pullback for the subcoalge-
bra (A′, τA′ ·a′) of (A, τA·a). Thus, since the last coalgebra is well-founded, m is
invertible. ut

Corollary 3.4. Subcoalgebras of a well-founded coalgebra are well-founded, when-
ever H is a set functor preserving intersections.
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Remark 3.5. If H preserve inverse images, a much stronger result holds, as Tay-
lor proved in [27]: every coalgebra from which a homomorphism into a well-
founded coalgebra exists is well-founded.

3B Well-pointedness

Definition 3.6. A well-pointed coalgebra is a pointed coalgebra which has no
proper subobjects and no proper quotients.

Remark 3.7. Recall the concept of a simple coalgebra (called minimal coalgebra
by Gumm [14]): it is a coalgebra (A, a) with no nontrivial quotient. That is,
a coalgebra such that every homomorphism h : (A, a) // (B, b) has h monic
(in Set). Gumm observed that

(a) the full subcategory of CoalgH given by all simple coalgebras is reflective:
the reflection of a coalgebra (A, a) is the simple quotient

e(A,a) : (A, a) // (Ā, ā)

obtained as the wide pushout of all quotients of (A, a).
(b) Every subcoalgebra of a simple coalgebra is simple.
(c) The coalgebra map a : A // HA of a simple coalgebra is monic.

Remark 3.8. Thus, 1
x // A

a // HA is a well-pointed coalgebra iff (A, a) is
simple and is generated by x. We call the latter condition reachability. That is,
a pointed coalgebra is reachable if it has no proper pointed subcoalgebra. This
can be translated to reachability of its canonical graph, see Definition 3.1:

Lemma 3.9. A pointed coalgebra (A, a, x) is reachable iff its pointed canonical
graph is, i.e., every vertex can be reached from x by a directed path.

Proof. Recall τA : HA // PA from Remark 3.2. For an arbitrary subcoal-
gebra (A′, a′) containing x we see that A′ is a subcoalgebra of the canonical
graph (A, τA·a) (as a pointed coalgebra for P):

1 A
x

//

A′

1

::

x′

A′

A

m

��

A HA
a

//

A′

A
��

A′ HA′
a′ // HA′

HA

Hm

��

HA PA
τA

//

HA′

HA

HA′ PA′
τA′ //PA′

PA

Pm

��

Conversely, if m : A′ // A is a subobject of the pointed canonical graph then,
since the square in Remark 3.2 is a pullback, we have a unique structure a′ : A′

// HA′ of a subobject of (A, a, x). Therefore, (A, a, x) is reachable w.r.t. H
iff (A, τA·a, x) is reachable w.r.t. P. It is easy to see that the latter means that
every element can be reached from x by a directed path. ut
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Examples 3.10. (a) A deterministic automaton with a given initial state is a
pointed coalgebra for HX = XI × {0, 1}. Reachability means that every
state can be reached (in finitely many steps) from the initial state. Simplicity
means that the automaton is observable, i.e., for every pair of different states
there exists an input word leading one of them to an accepting state and the
other to a non-accepting state. See Section 4 for more details.
The usual terminology is that reachability and observability together are
called minimality.

(b) For the power-set functor the pointed coalgebras are the pointed graphs.
Well-pointed means reachable and simple, where simplicity states that no
pair of different vertices is bisimilar. See Section 4 for more details.

(c) Whenever a final coalgebra A exists, it is clearly simple. Every element x ∈ A
generates a subcoalgebra Ax (since H preserves intersections) which is reach-
able and, by Remark 3.7(b), simple. Thus, Ax is a well-pointed coalgebra.
We will prove below that every well-pointed coalgebra is isomorphic to Ax
for a unique x in A.

Notation 3.11. Since H preserves intersections, there is a canonical process of
turning an arbitrary pointed coalgebra (A, a, x) into a well-pointed one: form
the simple quotient, see Remark 3.7(a) pointed by e(A,a)·x : 1 // Ā, then form
the least subcoalgebra containing that point:

1 A
x
// A Ā

e(A,a)
//1

Ā0

x0

66

Ā HĀ
ā

//

Ā0

Ā

m

��

Ā0 HĀ0
ā0 // HĀ0

HĀ

Hm

��

That is, m = m(A,a) is the intersection of all subcoalgebras of (Ā, ā) through
which e(A,a)·x factorizes. Then (Ā0, ā0, x0) is well-pointed due to Remark 3.7(b).

Example 3.12. For deterministic automata our process A � // Ā0 above means
that we first merge the states that are observably equivalent and then discard
the states that are not reachable. A more efficient way is first discarding the
unreachable states and then merging observably equivalent pairs. Both ways are
possible since our functor preserves inverse images: this implies that a quotient
of a reachable pointed coalgebra is reachable.

Remark 3.13. Let H preserve inverse images. Then a quotient of a reachable
pointed coalgebra is reachable. Indeed, given such a quotient e and its subcoal-
gebra m containing the given point x, form the inverse image of m along e
in Set:

Ā0 Ā
m

//

A′

Ā0

e′

��

A′ A
m′ // A

Ā

e

��

1

A

x

99

1

A′ ee

1

Ā0

x0
yy
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Since H preserves inverse images, m′ : A′ // A is a subcoalgebra of A, and
the universal property of pullbacks implies that A′ contains the given point x.
Consequently, m′ is invertible, thus, m·e′ is epic, therefore m is invertible.

Thus, we have an alternative procedure of forming well-pointed coalgebras
from pointed ones, (A, a, x): first form the least pointed subcoalgebra (A0, a0, x).
Then form the simple quotient of (A0, a0).

3C Final coalgebras

Notation 3.14. The collection of all well-pointed coalgebras up to isomorphism
is denoted by

νH.

For every coalgebra a : A // HA we have a function

a+ : A // νH

assigning to every element x : 1 // A the well-pointed coalgebra of Nota-
tion 3.11:

a+(x) = (Ā0, ā0, x0).

Theorem 3.15. H has a final coalgebra iff it has only a set of well-pointed
coalgebras up to isomorphism. And, if it is the case, νH is a final coalgebra.

Remark. Whenever νH is a set, it carries a canonical coalgebra structure

ψ : νH // H(νH).

It assigns to every member (A, a, x) of νH the following element of H(νH):

1
x // A

a // HA
Ha+ // H(νH). (3.3)

We prove below that this is a final coalgebra.

Proof. (1) If H has a final coalgebra, then due to Remark 3.7 every simple
coalgebra is its subcoalgebra, since the unique homomorphism is monic. The
final coalgebra has only a set of subcoalgebras, consequently, there exists up to
isomorphism only a set of simple coalgebras. Consequently, only a set of well-
pointed coalgebras.

(2) Let H have a set νH of representative well-pointed coalgebras. We prove
that νH with the coalgebra structure ψ from (3.3) is final.

(2a) We first prove that every coalgebra homomorphism h : (A, a) // (B, b)
makes the triangle

A

νH

a+
��

A B
h // B

νH

b+
��
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commutative. Given x : 1 // A, then b+·h assigns to it the well-pointed coal-
gebra (B̄0, b̄0, y0) obtained from (B, b, y), where y = h·x, as in Notation 3.11. It
is our task to prove that this well-pointed coalgebra is isomorphic to (Ā0, ā0, x).
Due to Remark 3.7(a) we have a homomorphism

h̄ : (Ā, ā) // (B̄, b̄)

such that the square

Ā B̄
h̄

//

A

Ā

e(A,a)

��

A B
h // B

B̄

e(B,b)

��

commutes. The image of h̄ is a subcoalgebra of (B̄, b̄) containing y = e(B,b)·h·x,
thus, we have a homomorphism h̄0 as a domain-codomain restriction of h̄:

Ā B̄
h̄

//

Ā0

Ā

m(A,a)

��

Ā0 B̄0
h̄0 // B̄0

B̄

m(B,b)

��

Moreover h̄0 is monic by Remark 3.7(b) and epic since the image of h̄0 is a
subcoalgebra of (B̄, b̄) containing y. Thus, h̄0 is an isomorphism, as requested.

(2b) νH is a weakly final coalgebra because for every coalgebra (A, a) we
have a coalgebra homomorphism

νH H(νH)
ψ

//

A

νH

a+

��

A HA
a // HA

H(νH)

Ha+

��

Indeed, this square commutes: for every x : 1 // A the lower passage yields

1
x0 // Ā0

ā0 // HĀ0

Hā+0 // H(νH).
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And this is precisely what the upper passage assigns to x: see the commutative
diagram

HA HĀ
He //HA

H(νH)

Ha+

��

HĀ

H(νH)

Hā+

ww

HA HĀ//

A

HA

a

��

A Ā
e // Ā

HĀ

ā
��

A Ā//

1

A

x

��

1 Ā0
x0 // Ā0

Ā
��

Ā HĀ
ā //

Ā0

Ā

m
��

Ā0 HĀ0
ā0 // HĀ0

HĀ

Hm
��

HĀ0 H(νH)
Hā+0 //HĀ0

HĀ
��

H(νH)

HĀ

77
Hā+

HĀ

HĀ
id

ww

H(νH)

H(νH)

id

rr

Indeed, the upper and lower triangles commute since m and e are homomor-
phisms, see (2a).

(2c) We next prove that for the coalgebra ψ : νH // H(νH) we have

ψ+ = idνH . (3.4)

Indeed, given a well-pointed coalgebra (A, a, x) ∈ νH, consider the triangle of
(2a) with h = a+ and b = ψ. Since, by (2b), a+ is a homomorphism, the triangle
commutes. Of course, a+(x) = (A, a, x), since (A, a) is simple and (A, a, x) is
reachable. Then ψ+(A, a, x) = (A, a, x).

(2d) Finally, to prove that, for every coalgebra (A, a), a+ is a unique homo-
morphism to νH, combine (2b), (2a) and the equality (3.4). ut

Examples 3.16. (a) For deterministic automata the final coalgebra (for HX =
XI × {0, 1}) consists of all minimal (i. e., reachable and simple) automata.
The more usual description is: the set PI∗ of all formal languages. How-
ever, this is isomorphic: every formal language is accepted by a minimal
automaton, unique up to isomorphism.

(b) The final coalgebra for the finite power-set functor is the coalgebra of all
finitely branching well-pointed graphs. See Section 4 for more details.

Remark 3.17. Not every set functor H has a final coalgebra, but, as proved by
Peter Aczel and Nax Mendler [2], it does have a large final coalgebra. And this,
again, can be described as

νH = all well-pointed coalgebras

(up to isomorphism). More precisely, H has an extension ©H to the category
of classes (unique up to natural isomorphism). And ©H was proved to have a
final coalgebra in [2]. Now the above class νH has a coalgebra structure

ψ : νH //©H(νH)
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completely analogous to that of Theorem 3.15: to every well-pointed coalge-
bra (A, a, x) it assigns the element

1
x // A

a // HA
©Ha+

//©H(νH).

Corollary 3.18. For every (intersection preserving) set functor H the coalge-
bra νH is final. More precisely, (νH,ψ) is a final coalgebra for ©H.

Indeed, for every small coalgebra for ©H (or for H) a unique homomor-
phism exists to (νH,ψ), this is proved as in Theorem 3.15. And for every large
coalgebra A of ©H we use the fact (called Small Subcoalgebra Lemma in [2])
that A is a colimit of the diagram of all of its small subcoalgebras.

Example 3.19. The final coalgebra for P is the class of all well-pointed graphs.
See Section 4 for the details.

Example 3.20. We present an example of a set functor H with a final coalgebra
that cannot be described as the set of all well-pointed coalgebras (since H fails
to preserve intersections).

Put
HX = Xω/∼+ 1

where ∼ merges two sequences in X iff they agree in all but finitely many coor-
dinates. This functor does not preserve intersections: although the intersection
of all the subsets An = {n, n+ 1, n+ 2, . . . } of N is empty, H maps An

� � // N
to an isomorphism for every n.

The final coalgebra for H can be described as T/≡, where T is the set of all
countably branching trees (up to isomorphism) and ≡ is the smallest equivalence
merging a tree X with any subtree Y ⊆ X such that for every node of Y all
but finitely many X-children lie in Y . The coalgebra structure ψ is tree-tupling:
to every element [X] of T/≡, the congruence class of the countably branching
tree X, it assigns the right-hand summand, 1, of H(T/≡), if X is root only.
Otherwise X has children Xn, n ∈ N, and

ψ
(
[X]
)

=
(
[X0], [X1], [X2], . . .

)
.

There are elements of the final coalgebra that do not correspond to any
well-pointed coalgebra:

For example, consider the tree Y

•

• • • . . .

• •

• • • • • •. . . . . .

••

• • • . . .

. . .

. . .

•

•

whose n-th son Yn has the depth n for n = 0, 1, 2, . . . Then [Y ] lies in each of
the subcoalgebras {

[Y ]
}
∪
{

[Yn], [Yn+1], [Yn+2], . . .
}
.
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Since none of them is the least one, this element [Y ] of the final coalgebra does
not correspond to a well-pointed coalgebra.

3D Initial algebras

Notation 3.21. The collection of all well-founded, well-pointed coalgebras (up
to isomorphism) is denoted by

µH.

For every well-founded coalgebra a : A // HA we have a function

a+ : A // µH

assigning to every element x : 1 // A the well-founded, well-pointed coalgebra
of Notation 3.11:

a+(x) = (Ā0, ā0, x0).

Indeed, (Ā0, ā0) is well-founded due to Lemma 2.21 and Corollary 3.4.

Theorem 3.22. H has an initial algebra iff it has only a set of well-founded,
well-pointed coalgebras up to isomorphism. And, if it is the case, µH is an initial
algebra.

Remark. Whenever µH is a set, it carries a canonical coalgebra structure

ψ̄ : µH // H(µH).

It assigns to every member (A, a, x) of µH the following element of H(µH):

1
x // A

a // HA
Ha+ // H(µH).

We prove below that this is a final well-founded coalgebra. Thus, by Theo-
rem 2.38, µH is an initial algebra with the structure given by the inverse of ψ̄.

Proof. (1) If H has an initial algebra I, then by Theorem 2.38 this is a final well-
founded coalgebra. Every well-founded, well-pointed coalgebra is simple, whence
a subcoalgebra of I since the unique homomorphism into I is monomorphic by
Remark 3.7. Consequently, µH is a set.

(2) Let H have a set µH of representatives of well-founded, well-pointed coal-
gebras. The proof that for every well-founded coalgebra (A, a) the map a+ : A
// µH is a unique coalgebra homomorphism into ψ̄ : µH // H(µH) is com-

pletely analogous to the proof of finality of ψ : νH // H(νH) in Theorem 3.15.
Just recall that subcoalgebras and quotients of a well-founded coalgebra are all
well-founded (by Lemma 2.21 and Corollary 3.4).

It remains to prove that (µH, ψ̄) is a well-founded coalgebra. To this end
notice that for every well-pointed, well-founded coalgebra (A, a, x) in µH we
have

a+(x) = (A, a, x).

33



Now take the coproduct (in CoalgH) of all (A, a) for which there is an x ∈ A
such that (A, a, x) lies in µH. This coproduct is a well-founded coalgebra by
Lemma 2.21, and, as we have just seen, unique induced homomorphism from
the coproduct into (µH, ψ̄) is epimorphic, whence µH is a quotient coalgebra
of the coproduct. Thus, another application of Lemma 2.21 shows that it is a
well-founded coalgebra as desired. ut

Remark 3.23. Analogously to Corollary 3.18, every set functor H has a, possibly
large, initial algebra. That is, the extension ©H of H to classes always has an
initial algebra: denote, again,

µH = all well-founded, well-pointed algebras

(up to isomorphism). Then this is a subcoalgebra of νH of Remark 3.17. And
as an algebra for ©H it is initial:

Corollary 3.24. For every (intersection preserving) set functor H the large
coalgebra µH is the final well-founded coalgebra for ©H. Thus, the large initial
algebra is µH w.r.t. the inverse of ψ̄.

The first statement follows from the Small Subcoalgebra Lemma of [2] and
the fact that subcoalgebras of well-founded coalgebras are well-founded (Corol-
lary 3.4). The second statement is proved precisely as Theorem 2.38.

Example 3.25. The initial algebra for P consists of all well-pointed graphs.

3E Initial iterative algebras

Remark 3.26. We know, from Theorems 2.38 and 3.22, that µH has a double
role: an initial algebra and a final well-founded coalgebra. Also νH has a double
role. Recall from [17] that an algebra a : HA // A is completely iterative if for
every (equation) morphism e : X // HX + A there exists a unique solution,
i.e., a unique morphism e† : X // A such that the square

HX +A HA+A
He†+A

//

X

HX +A

e

��

X A
e† // A

HA+A

OO

[a,A]

commutes.

Theorem 3.27 (see [17]). For every endofunctor

final coalgebra = initial completely iterative algebra.
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Remark 3.28. (a) Let H be a finitary set functor, i.e., every element x ∈ HA
lies, for some finite subset m : A′ // A in the image of Hm. Then an algebra
a : HA // A is called iterative provided that for every equation morphism
e : X // HX +A with X finite, there exists a unique solution e† : X // A.

This concept was studied for classicalΣ-algebras by Nelson [19] and Tiurin [28],
and for H-algebras in general in [6].

(b) Form the colimit C, in Set, of the diagram of all finite coalgebras a : A
// HA with the colimit cocone a+ : A // C. Then there exists a unique

morphism c : C // HC with c·a+ = Ha+·a. It was proved in [6] that c is
invertible and the resulting algebra is the initial iterative algebra for H.

Example 3.29 (see [6]). (a) The initial iterative algebra of HX = XI × {0, 1}
consists of all finite minimal automata. This is isomorphic to its description as
all regular languages.

(b) The initial iterative algebra of the finite power-set functor consists of all
finite well-pointed graphs. See Section 4 for a description using rational trees.

Definition 3.30 (see [18]). A coalgebra is called locally finite if every ele-
ment lies in a finite subcoalgebra.

Theorem 3.31 (see [18]). Let H be a finitary set functor. Then

initial iterative algebra = final locally finite coalgebra.

Moreover, the final locally finite coalgebra is the colimit of all finite coalgebras
in CoalgH.

Remark 3.32. We prove below that given a finitary set functor, the set of all
finite well-pointed coalgebras forms the initial iterative algebra. For this result
we do not need to assume (as in the rest of this section) that the functor preserves
intersections. This can be deduced from the following

Lemma 3.33. For every finitary set functor H there exists a functor H̄ preserv-
ing (wide) intersections that agrees with H on all nonempty sets and functions.

Proof. The functor H̄ of Proposition 2.36 is obviously also finitary. It preserves
finite intersections, and we deduce that it preserves all intersections. Given sub-
objects mi : Ai // B (i ∈ I) with an intersection m : A // B, let x ∈ H̄B
lie in the image of each Hmi; we are to prove that x lies in the image of H̄m.
Choose a subset n : C // B of the smallest (finite) cardinality with x lying in
the image of H̄n. Since H̄ preserves the intersection of n and mi, the simplicity
of C guarantees that n ⊆ mi (for every i ∈ I). Thus, n ⊆ m, proving that x lies
in the image of H̄m. ut

Notation 3.34. For every finitary set functor denote by

%H

the set of all finite well-pointed coalgebras up to isomorphism.
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Given a finite coalgebra a : A // HA we define a function

a+ : A // %H

by assigning to every element x : 1 // A the well-pointed coalgebra of Nota-
tion 3.11:

a+(x) = (Ā0, ā0, x0).

This is well-defined due to Lemma 2.21 and Corollary 3.4 since H and H̄ have
the same pointed coalgebras.

Theorem 3.35. Every finitary set functor H has the initial iterative algebra %H.

Remark. %H has the canonical coalgebra structure

©ψ : %H // H(%H).

It assigns to every element (A, a, x) of %H the following element of H(%H):

1
x // A

a // HA
Ha+ // H(%H).

We prove below that this is the final locally finite coalgebra. Thus, %H is the
initial iterative algebra w.r.t. the inverse of ©ψ, by 3.31.

Proof. Analogously to the proof of Theorem 3.15 one verifies that the morphisms

a+ : (A, a) // (%H,©ψ) (A finite)

are coalgebra homomorphisms forming a cocone. By Remark 3.28(b) it remains
to prove that this is a colimit in CoalgH, we only need verifying that all a+’s
form a colimit cocone in Set. That is:

(i) Every element of %H has the form a+(x) for some finite coalgebra (A, a)
and some x ∈ A. Indeed, for every element (A, a, x) of %H we have a+(x) =
(A, a, x).

(ii) Whenever
a+(x) = b+(y)

holds for two finite coalgebras (A, a) and (B, b) and for elements x ∈ A, y ∈ B
(turning them into pointed coalgebras), then there exists a zig-zag of homomor-
phism of finite pointed coalgebras connecting (A, a, x) with (B, b, y). For that
recall a+(x) = (Ā0, ā0, x0) in the notation 3.11. Here is the desired zig-zag based
on a+(x) = b#(y):

(A, a, x)

(Ā, ā, e(A,a)·x)

e(A,a)
$$

(A, a, x) (Ā0, ā0, x0)(Ā0, ā0, x0)

(Ā, ā, e(A,a)·x)

m(A,a)
zz

(Ā0, ā0, x0)

(B̄, b̄, e(B,b)·y)

e(B,b)
$$

(Ā0, ā0, x0) (B, b, y)(B, b, y)

(B̄, b̄, e(B,b)·y)

m(B,b)
zz

ut
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Remark 3.36. For non-finitary set functors H the set %H also carries the above
structure of a coalgebra. But this is in general not a fixed point of H. For example
the functor HX = XN + 1 has the final coalgebra consisting of all countably
branching trees (see Corollary 4.27). And %H is the set of all rational trees, i.e.,
those having only finitely many subtrees (up to isomorphism), see Example 4.29.
This is a subcoalgebra of the final coalgebra, but not a fixed point of H.

4 Examples of well-pointed coalgebras

For a number of important set functors H we are going to apply the results of
Section 3 and compare them to the well-known description of the three fixed
points of interest: the final coalgebra, the initial algebra, and the initial itera-
tive algebra (= final locally finite coalgebra). Throughout this section pointed
coalgebras are considered up to (point-preserving) isomorphism. Recall that

νH = all well-pointed coalgebras

µH = all well-founded well-pointed coalgebras

and in case H is a finitary functor

%H = all finite well-pointed coalgebras.

We are using various types of labeled trees throughout this section. Trees, too,
are considered up to (label-preserving) isomorphism. Unless explicitly stated,
trees are ordered, i.e., a linear ordering on the children of every node is always
given.

In all our examples the endofunctors H used preserve intersections and weak
pullbacks. Recall from Rutten [21] that this implies that

(a) congruences on a coalgebra A are precisely the kernel equivalences of homo-
morphisms f : A // A

and

(b) for every coalgebra the largest congruence is precisely the bisimilarity equiv-
alence.

Also recall that, for these functors, every pointed coalgebra yields a well-
pointed one by first forming “reachable part” and then simplifying (since
the preservation of strong monomorphisms and weak pullbacks implies the
preservation of inverse images, see Remark 3.13).

In pictures of pointed coalgebras the choice of the point q0 is depicted by

� � // q0
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4A Moore automata

Given a set I of inputs and a set J of outputs, a Moore automaton on a set Q
(of states) is given by a next-state function δ : Q× I // Q curried as

curry δ : Q // QI

an output function

out : Q // J

and an initial state q0 ∈ Q. The first two items form a coalgebra of

HX = XI × J,

thus we work with pointed coalgebras of this functor, with q0 as the chosen point.
The behavior of an autmaton is the function

β : I∗ // J

which to every input word w ∈ I∗ assigns the output of the state reached from q0

by applying the inputs in w. A function β : I∗ // J is called regular if the set
of all functions β(w−) : I∗ // J for w ∈ I∗ is finite.

Lemma 4.1. The largest congruence on a Moore automaton merges states q
and q′ iff by applying an arbitrary finite sequence of inputs to each of them, we
obtain states with the same output.

This is well-known and easy to prove. Automata satisfying this condition are
called simple. Another well-known fact is the following

Theorem 4.2. For every function β : I∗ // J there exists a reachable and
simple Moore automaton with the behavior β. This automaton is unique up to
isomorphism. It is finite iff β is regular.

Corollary 4.3. For Moore automata, HX = XI × J , we have

νH ∼= JI
∗
, all functions β : I∗ // J ;

%H ∼= all regular functions β : I∗ // J ;

µH = ∅.

The coalgebra structure of νH (and %H) assigns to every β : I∗ // J the pair in
(νH)I ×J consisting of the function i

� // β(i−) for i ∈ I and the element β(ε)
of J .

Indeed, the isomorphism between νH, the set of all reachable and simple
automata, and JI

∗
is given by the above theorem. And the structure map ψ

of Theorem 3.15 is easily seen to correspond to the above map taking β to (i
� // β(i−), β(ε)). Also the isomorphism of %H and regular functions follows from
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the above theorem, and from Theorem 3.35 we know that %H is a subcoalgebra
of νH.

Finally, µH = ∅ since no well-pointed coalgebra (A, a) is well-founded due
to the cartesian subcoalgebra

A AI × J
a

//

∅

A

m

��

∅ H∅ = ∅id // H∅ = ∅

AI × J

Hm

��

Example 4.4. In case J = {0, 1} we get νH = PI∗ and %H = regular languages,
see Examples 3.16(a) and 3.29.

4B Mealy automata

For Mealy automata the next-state function has the form δ : Q × I // Q × J
and in curried form this is a coalgebra

HX = (X × J)I .

Given a state q of a Mealy automaton Q, its response function fq is the function
fq : Iω // Jω assigning to an infinite word of input symbols the infinite word of
output symbols (delayed by one time unit) of the inputs given by the transitions
as the computations of the inputs are performed, starting in q. Observe that
fq is a causal function: for every infinite word w the n-th component of fq(w)
depends only on the first n components of w.

Remark 4.5. Given a causal function f : Iω // Jω the above property with
n = 0 tells us that the component 0 of f(w) only depends on w0. We thus obtain
a derived function

f0 : I // J

with f(iw) = f0(i)w′ (for convenient w′) for all w ∈ Iω.

Lemma 4.6. For every Mealy automaton the largest congruence merges pre-
cisely the pairs of states with the same response function.

Proof. Let Q be a Mealy automaton, then the above equivalence q ∼ q′ iff
fq = fq′ is obviously a congruence. We have a structure of a Mealy automaton δ̄
on Q/∼ derived from that of Q: Given a state [q] ∈ Q/∼ and an input i ∈ I,
the pair δ(q, i) = (q′, j) yields δ̄([q], i) = ([q′], j). It is easy to verify that the
canonical map c : Q // Q/∼ is a coalgebra homomorphism c : (Q, δ, q0) //

(Q/∼, δ̄, [q0]). Conversely, every congruence is contained in ∼ because given a
coalgebra homomorphism h : Q // Q̄ then for every state q ∈ Q we have
fq = fh(q). Thus, the kernel congruence of h is contained in ∼. ut

Corollary 4.7. The well-pointed Mealy automata are precisely those with an
initial state q0 such that the automaton is
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(a) reachable: every state can be reached from q0

and

(b) simple: different states have different response functions.

The automata satisfying (a) and (b) together are called “minimal”. The
following theorem can be found in Eilenberg’s Volume A, see XII.4.1 in [11]:

Theorem 4.8. For every causal function f there exists a unique well-pointed
coalgebra whose initial state has the response function f .

Remark 4.9. Eilemberg also proves that a minimal Mealy automaton is finite iff
f has the property that the set of all functions f(w−) where w ∈ I∗ is finite.
Let us call such causal functions regular.

Corollary 4.10. For Mealy automata, HX = (X × J)I , we have

νH ∼= all causal functions from Iω to Jω

%H ∼= all regular causal functions

µH = ∅.

The coalgebra structure ψ of νH (and the one ©ψ of %H) assigns to every
causal function f : Iω // Jω the map

I // νH × J, i
� //

(
f(i−), f0(i)

)
for f0 : I // J in Remark 4.5.

Indeed, the first two statements below follow from the above theorem and the
last one follows again from H∅ = ∅. The above description of the final coalgebra
is due to Rutten [22]. Samuel Eilenberg works with functions f : I∗ // J∗

preserving length and prefixes, but it is immediate that these are just another
way of coding all causal functions between infinite streams.

Remark 4.11. An alternative description of the final coalgebra for HX = (X ×
J)I is:

νH ∼= JI
+

, all functions β : I+ // J .

Here and below, l+ is the set of finite non-empty words on the set l. The
coalgebra structure assigns to every β the mapping from I to νH × J given by

i � //
(
β(i−), β(i)

)
for i ∈ I.

Indeed, this coalgebra is isomorphic to that of all causal functions f : Iω //

Jω: to every function β : I+ // J assign the causal function f(i0i1i2 . . . ) =
(β(i0), β(i0i1), β(i0i1i2), . . . ).
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4C Streams

Consider the coalgebras for

HX = X × I + 1.

Jan Rutten [21] interprets them as dynamical systems with outputs in I and
with final states (where no next state is given). Every state q yields a stream,
finite or infinite, over I by starting in q and traversing the dynamic system as
long as possible. We call it the response of q. It is an element of Iω + I∗.

Lemma 4.12. For a dynamic system the largest congruence merges two states
iff they yield the same response.

Proof. Let ∼ be the equivalence from the statement of the lemma. Then we have
an obvious dynamic system on Q/∼, thus, ∼ is a congruence. Every coalgebra
homomorphism h : Q // Q̄ fulfils: the response of q and h(q) is always the
same. Therefore, ∼ is the largest congruence. ut

Corollary 4.13. A well-pointed coalgebra is a dynamic system with an initial
state q0 such that the system is

(a) reachable: every state can be reached from q0

and

(b) simple: different states yield different responses.

Example 4.14. (a) For every word s1 . . . sn in I∗ we have a well-founded dynamic
system

q0
s1 //� � //

s2 // . . . sn //

(b) For every eventually periodic stream in Iω,

w = uvω for u, v ∈ I∗,

we have a pointed dynamic system

q0 // // . . . //
VV

ff
pp

22 ))

� � // ︸ ︷︷ ︸
u

 v

If we choose, for the given stream w, the words u and w of minimum length,
then this system is well-pointed.

The following was already proved by Arbib and Manes, [16], 10.2.5.
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Corollary 4.15. For HX = X × I + 1 we have

νH ∼= I∗ + Iω, all finite and infinite streams,

%H ∼= all finite and eventually periodic streams,

µH ∼= I∗, all finite streams.

The coalgebra structure assigns to every nonempty stream w the pair

(tailw,headw) in νH × I

and to the empty stream the right-hand summand of H(νH) = νH × I + 1.

Indeed, the first statement follows from Corollary 4.13 since by forming the
response of q0 we get a bijection between well-pointed coalgebras and streams
in I∗ + Iω. For the second statement observe that a well-pointed system yields
a finite or eventually periodic response iff it has finitely many states. The last
statement follows from the observation that a dynamic system is well-founded iff
every run of a state is finite. Indeed, given a coalgebra a : A // A× I+1, form
the subset m : A′ // A of all states with finite runs. We obtain a cartesian
subcoalgebra

A A× I + 1
a

//

A′

A

m

A′ A′ × I + 1
a′ // A′ × I + 1

A× I + 1

m×I+1

A

_�

��

A× I + 1

_�

��

Indeed, whenever a state q ∈ A has the property that q is final or the next
state lies in A′, then q lies in A′. Thus, well-founded, well-pointed coalgebras are
precisely those of Example 4.14(a).

4D Binary trees

Coalgebras for the functor

HX = X ×X + 1

are given, as observed by Jan Rutten [21], by a set Q of states which are either
final or have precisely two next states according to a binary input, say {l, r}.
Every state q ∈ Q yields an ordered binary tree Tq (i.e, nodes that are not leaves
have a left-hand child and a right-hand one) by tree expansion: the root is q and
a node is either a leaf, if it is a final state, or has the two next states as children
(left-hand for input l, right-hand for input r). Binary trees are considered up to
isomorphism.

Lemma 4.16. For every system the largest congruence merges precisely the
pairs of states having the same tree expansion.
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Proof. Let ∼ be the equivalence with q ∼ q′ iff Tq = Tq′ . There is an obvious
structure of a coalgebra on Q/∼ shoving that ∼ is a congruence. For every
coalgebra homomorphism h : Q // Q̄ the tree expansion of q ∈ Q is always the
same as the tree expansion of h(q) in Q̄. Thus ∼ is the largest congruence. ut
Corollary 4.17. A well-pointed system is a system with an initial state q0 which
is

(a) reachable: every state can be reached from q0

and

(b) simple: different states have different tree expansions.

Moreover, tree expansion is a bijection between well-pointed coalgebras and
binary trees (see Proposition 4.25 below). For instance, the dynamic system

•
l,r

##

•

•

l

{{

•

•

r

## • •l //•

r

��

� � //

defines the tree

...
. . .

Observe that this tree has only 4 subtrees (up to isomorphism): this follows from
the fact that the dynamic systems has 4 states. In general, the finite dynamic
systems correspond to the rational trees, i.e., trees having (up to isomorphism)
only finitely many subtrees. This concept is due to Ginali [12].

Corollary 4.18. For the functor HX = X ×X + 1 we have

νH ∼= all binary trees,

%H ∼= all rational binary trees,

µH ∼= all finite binary trees.

The coalgebra structure is, in each case, the inverse of tree tupling: it assigns to
the root-only tree the right-hand summand of νH×νH+ 1 and to any other tree
the pair of its maximum subtrees.

Indeed, we only need to explain the last item. Given a coalgebra a : A //

A × A + 1, let m : A′ �
�
// A be the set of all states defining a finite subtree.

This is a cartesian subcoalgebra

A A×A+ 1
a

//

A′

A

m

A′ A′ ×A′ + 1
a′ // A′ ×A′ + 1

A×A+ 1

m×m+id

A

_�

��

A×A+ 1

_�

��
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For this square is a pullback: whenever a state q ∈ A has both next states in A′

or whenever q is final, then q ∈ A′. Thus, if A is well-founded, then A = A′. The
converse implication is easy: recall the subsets A∗i of Notation 2.17. Here A∗i is
the set of all states whose binary tree has depth at most i. Thus, if A = Ai for
some i, the initial state defines a tree of depth at most i.

4E Σ-Algebras and Σ-coalgebras

All the examples above (and a number of other interesting cases) are subsumed
in the following general case. Let Σ be a signature, i.e., a set of operation symbols
with given arities ar(s) of symbols s ∈ Σ; the arity is a (possibly infinite) car-
dinal. The classical Σ-algebras are the algebras of the corresponding polynomial
functor

HΣX =
∐
σ∈Σ

Xar(σ).

Coalgebras for HΣ are called Σ-coalgebras.

Example 4.19. Deterministic automata HX = XI ×{0, 1} = XI +XI are given
by two |I|-ary operations. Streams, HX = X× I+ 1, are given by |I| operations
of arity 1 and a constant. Binary trees HX = X×X+1 are given by one binary
operation and one constant.

Definition 4.20. A Σ-tree is an ordered tree with nodes labeled in Σ so that
every node with n children has a label of arity n. We consider Σ-trees up to
isomorphism.

Observe that every Σ-tree T is a coalgebra: the function a : T // HΣT
takes every node x labelled by a symbol σ ∈ Σ (of arity n) to the n-tuple (xi)i<n
of its children, an element of the σ-summand Tn of HΣT .

In general a Σ-coalgebra a : Q // HΣQ can be viewed as a system with a
state set Q labeled in Σ:

ā : Q // Σ

and such that every state q ∈ Q with n-ary label has “next states” forming an
n-tuple

©a(q) ∈ Qn.

Indeed, to give a function a : Q // HΣQmeans precisely to given a pair (ā,©a)
of functions as above.

Definition 4.21. Let a : Q // HΣQ be a coalgebra.
(a) A computation of length n is a word i0 · · · in−1 in N∗ for which there

are states q0, · · · , qn in Q with

qk+1 = the ik-component of ©a(qk) (k = 0, . . . , n− 1).

(b) The tree expansion of a state q is the Σ-tree

Tq
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of all computations with initial state q. The label of a computation is ā(qn),
where qn is its last state. And the children are all one-step extensions of that
computation, i.e., all words i0 . . . in−1j with j ≤ ar(ā(qn)).

Lemma 4.22. The greatest congruence on a Σ-coalgebra merges precisely the
pairs of states with the same tree expansion.

Proof. Let (Q, ā,©a) be a Σ-coalgebra and put q ∼ q′ iff Tq = Tq′ . Then we
have a coalgebra structure on Q/∼: the label of [q] is ā(q), independent of the
representation. The next-state n-tuple is ([qi])i<n where©a(q) = (qi). It is easy
to see that this is independent of the choice of representatives. And the quotient
map is a coalgebra homomorphism from Q to Q/∼. Thus, ∼ is a congruence.

To prove that Σ is the largest congruence, observe that given a coalgebra
homomorphism h : Q // Q′, then for every state q ∈ Q we have Tq = Th(q).
Indeed, an isomorphism i : Tq // Th(q) is easy to define by induction on the
depth of nodes of Tq. ut

Corollary 4.23. Well-pointed Σ-coalgebras are the Σ-coalgebras with an initial
state q0 which are

(a) reachable: every state can be reached from q0 by a computation

and

(b) simple: different states have different tree expansions.

Example 4.24. For every Σ-tree T the equivalence on the nodes of T given by

x ∼ y iff Tx ∼= Ty (4.1)

where Tx is the subtree rooted at node x, is a congruence. And T/∼ carries an
obvious structure of a Σ-coalgebra. Let [r] be the congruence class of the root,
then the pointed Σ-coalgebra (T/∼, [r]) is well-pointed.

Indeed, this pointed coalgebra is reachable: given a node q of T let i0 · · · in−1

be the unique path from r to q, then i0 · · · in−1 is a computation in T/∼ with
initial state [r] and terminal state [qn].

The simplicity of T/∼ follows from Lemma 4.22 and the observation that the
tree expansion of a state [q] of T/∼ is the subtree Tq of T .

These are all well-pointed Σ-coalgebras. Moreover:

Proposition 4.25. Every well-pointed coalgebra is isomorphic to (T/∼, [r]) for
a unique Σ-tree T .

Proof. Let (Q, a, q0) be a well-pointed Σ-coalgebra.
(a) Existence. Let T denote the tree expansion of q0. For the above equiva-

lence (4.1) we prove that two equivalent computations always terminate in the
same state. This follows from the simplicity of (Q, a): Denote by ≈ the equiv-
alence with q ≈ q′ iff there exist two equivalent (under ∼) computations with
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terminal states q and q′ (respectively). This is clearly a congruence on (Q, a), so
q = q′. We thus obtain a function

t : T/∼ // Q, [i0 · · · in−1]
� // terminal state of i0 · · · in−1.

It is easy to see that this is a coalgebra homomorphism. Since it takes [q0]
to q0, it is surjective (use the reachability). And it is an isomorphism since two
computations p and p′ with the same last state qn fulfil Tp = Tp′ . (Indeed, the
subtree of T at the node p is precisely the tree Tqn). Hence, if t merges the
equivalence classes [p] and [p′], then p ∼ p′.

(b) Uniqueness. This follows from the observation that two Σ-trees T and T ′

are isomorphic whenever the coalgebras of Example 4.24 are. Indeed, given an
isomorphism f : (T/∼, [r]) // (T ′/∼, [r′]), define an isomorphism g : T // T ′

from top down. Since f preserves labels, r and r′ are labeled by the same n-
ary label. We put g(r) = r′. Let ©a(r) = (xi)i<n and ã′(r′) = (x′i)i<n. Since
f preserves©a we have f [xi] = [x′i] for all i. We define g on level 1 by g(xi) = x′i,
i < n, and proceed recursively. ut

Proposition 4.26. A Σ-coalgebra is well-founded iff all its tree-expansions are
well-founded Σ-trees, i.e., Σ-trees with no infinite path.

Proof. Given a Σ-coalgebra A let m : A′
� � // A be the subset of all states q ∈ A

with Tq well-founded. This is, obviously, a subcoalgebra. And it is cartesian

A HΣAa
//

A′

A

m

A′ HΣA
′a′ // HΣA
′

HΣA

HΣm

A

_�

��

HΣA

_�

��

Indeed, if a state q has the property that all components of ©a lies in A′, the
q lies in A′. Thus A is well-founded iff A = A′. ut

Corollary 4.27. For every signature Σ we have

νHΣ
∼= all Σ-trees

and

µHΣ
∼= all well-founded Σ-trees.

The coalgebra structure is in each case inverse to tree tupling.

Indeed, the isomorphism between νHΣ and all Σ-trees is given by Propo-
sition 4.25. And the coalgebra structure of Theorem 3.15 corresponds to the
inverse of tree-tupling, i.e., it assigns to a Σ-tree T with ©a(r) = (x1, . . . , xn)
the n-tuple (Tx1

, . . . , Txn) in the σ-summand of HΣ(νHΣ) where σ is the label
of the root.
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Definition 4.28 (see [12]). A Σ-tree is called rational if it has up to isomor-
phism only finitely many subtrees.

Example 4.29. Given a finite Σ-coalgebra, all tree expansions of its states are
rational.

Indeed, if Q = {q1, . . . , qn} is the state set, then every subtree of Tqi (given by
a computation with initial state qi) has the form Tqj : take qj to be the terminal
state of the computation.

Corollary 4.30. For every finitary signature Σ we have

νHΣ
∼= all Σ-trees

%HΣ
∼= all rational Σ-trees

µHΣ
∼= all finite Σ-trees.

The coalgebra structure is inverse to tree-tupling.

Indeed, the isomorphism between %HΣ (all finite well-pointed coalgebras)
and rational Σ-trees follows from Proposition 4.25 and Example 4.29. The last
item follows from König’s Lemma: every well-founded finitely branching tree is
finite.

Example 4.31. For the functor HX = X∗ we can use nonlabeled trees: we have

νH = all finitely branching trees

%H = all rational finitely branching trees

µH = all finite trees.

Indeed, let Σ be the signature with one n-ary operation for every n ∈ N.
Then HΣX ∼= X∗. And Σ-trees need no labeling, since operations already differ
by arities.

Example 4.32. All previous examples 4A–4D are special cases of Corollary 4.30:

(a) Moore automata. The functor

HX = XI × J

corresponds to a signature Σ of |J | operations, all of arity |I|. Since no
nullary operation is given, every Σ-tree is a complete I-ary tree labeled
by J . Now the usual representation of the complete I-ary tree is by I∗: the
root is the empty word and the children of i1 · · · in are all i1 · · · inj for i ∈ I.
Thus, a complete binary tree labeled by J is nothing else than a function
from I∗ to J :

νH = JI
∗

(see Corollary 4.3).

The subcoalgebra %H is then given by the regular functions. And since we
have no leaves,

µH = ∅
because a well-founded tree always has leaves.
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(b) Mealy automata. The functor

HX = (X × J)I = XI × JI

corresponds to JI operations, all of arity I. Thus, a Σ-tree is a function
from I∗ to JI . Or, by uncurrying, a function from I∗ × I = I+ to J :

νH = JI
+

(see Remark 4.11).

(c) Streams. The functor
HX = X × I + 1

corresponds to one constant and I unary operations. A Σ-tree is then a
labeled tree consisting either of a path of length n ∈ N, or an infinite path.
The nodes are labeled by I. Thus,

νH ∼= 1 + I + I2 + · · ·+ Iω (see Corollary 4.15).

(d) Binary trees. Here
HX = X ×X + 1

is given by a binary operation and a constant. Thus

νH = binary trees (see Corollary 4.18).

4F Graphs

Here we investigate coalgebras for the power-set functor P. In the rest of Sec-
tion 4 all trees are understood to be non-ordered. That is, a tree is a directed
graph with a node (root) from which every node can be reached by a unique
path.

Recall the concept of a bisimulation between graphs X and Y : it is a relation
R ⊆ X × Y such that whenever x R y then every child of x is related to a child
of y, and vice versa. Two nodes of a graph X are called bisimilar if they are
related by a bisimulation R ⊆ X ×X.

Lemma 4.33. The greatest congruence on a graph merges precisely the bisimilar
pairs of states.

This follows, since P preserves weak pullbacks, from general results of Rut-
ten [21].

Corollary 4.34. A pointed graph (G, q0) is well-pointed iff it is

(a) reachable: every vertex can be reached from q0 by a directed path

and

(b) simple: all distinct pairs of states are non-bisimilar.
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Example 4.35. Peter Aczel introduced in [1] the canonical picture of a (well-
founded) set X. It is the graph with vertices all sets Y such that a sequence

Y = Y0 ∈ Y1 ∈ · · · ∈ Yn = X

of sets exists. The neighbours of a vertex Y are all of its elements. When pointed
by X, this is a well-pointed graph. Indeed, reachability is clear. And suppose
R is a bisimulation and Y R Y ′, then we prove Y = Y ′. Assuming the contrary,
there exists Z0 ∈ Y with Z0 /∈ Y ′, or vice versa. Since R is a bisimulation, from
Z0 ∈ Y we deduce that Z ′0 ∈ Y ′ exists with Z0 R Z ′0. Clearly Z0 6= Z ′0. Thus, we
substitute (Z0, Z

′
0) by (Y, Y ′) and obtain Z1 ∈ Z0 and Z ′1 ∈ Z ′0 with Z1 R Z ′1

but Z1 6= Z ′1 etc. This is a contradiction to the well-foundedness of X: we get
an infinite sequence Zn with

· · · Z2 ∈ Z1 ∈ Z0 ∈ Y.

Here are some concrete examples of canonical pictures and their correspond-
ing tree expansions (cf. Remark 4.36 below):

Set: Canonical picture: Tree expansion
0 = ∅ •0
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1 = {0} 1�
�
// • •//

1 •
•
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// • •// • •//• •
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•
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�
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•
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•
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•
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•

•
{{

ω
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•
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•
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•
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•
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•
•

Remark 4.36. Given a vertex q of a graph, its tree expansion is (similarly to the
ordered case, see Definition 4.21) the non-ordered tree

Tq

whose nodes are all finite directed paths from q.
The children of a node p are all one-step extensions of the path p. The root

is q (considered as the path of length 0).
For every pointed graph (G, x) the tree expansion is the tree Tx. In the

previous example we saw tree expansions of the given pointed graphs.

Definition 4.37 (James Worrell [31]). By a tree-bisimulation between
trees T1 and T2 is meant a graph bisimulation R ⊆ T1 × T2 which
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(a) relates the roots

and

(b) x1 R x2 implies that x1 and x2 are the roots or have related parents.

A tree T is called strongly extensional iff every tree bisimulation R ⊆ T × T
is trivial: D ⊆ ∆T .

Example 4.38. The tree expansion of a well-pointed graph (G, q0) is strongly
extensional. Indeed, given a tree bisimulation R ⊆ Tq0 × Tq0 , we obtain a graph
bisimulation R̄ ⊆ G × G consisting of all pairs (q1, q2) of vertices for which
paths pi from q0 to qi exist, i = 1, 2, with p1 R p2. Since G is minimal, R̄ ⊆ ∆.
Thus, for all pairs of paths:

if p1 R p2 then the last vertices of p2 and p1 are equal.

We prove p1 R p2 implies p1 = p2 by induction on the maximum k of the lengths
of p1 and p2. For k = 0 we have p1 = q0 = p2. For k + 1 we have p′1 R p′2
where p′i is the trimming of pi by one edge (since R is a tree bisimulation). Then
p′1 = p′2 implies p1 = p2 because the last vertices are equal.

Furthermore, there are no other extensional trees:

Proposition 4.39. Every strongly extensional tree is the tree expansion of a
unique (up to isomorphism) well-pointed graph.

Proof. Let T be a strongly extensional tree with root r.
(a) Existence. The coalgebra (T/∼, [r]) where ∼ merges bisimilar vertices

of T (looking at T as a coalgebra) is well-pointed by Lemma 4.33. Its tree
expansion T ′ = (T/∼)[r] is (isomorphic to) the given tree T . Indeed, the relation
R ⊆ T ×T ′ of all pairs (x, p) where x is a node of T and p is the equivalence class
of the unique path from r to x is clearly a tree bisimulation. Since P preserves
weak pullbacks, it follows that the composite R ◦R−1 of R and R−1 is also a
tree bisimulation. But T is strongly extensional, thus R ◦ R−1 ⊆ ∆. Also T ′ is
strongly extensional, see Example 4.38, thus R−1 ◦ R ⊆ ∆. We conclude that
R is (the graph of) an isomorphism from T to T ′.

(b) Uniqueness: If well-pointed graphs (G, q0) and (G′, q′0) have isomorphic
tree expansions, then they are isomorphic. Arguing analogously to (a) we only
need to find a graph bisimulation R ⊆ G × G′ and use the simplicity of G
and G′. For that, we just observe that there is a graph bisimulation between
(G, q0) and Tq0 : the relation R ⊆ G × Tq0 of all pairs (q, p) where q ∈ G is the
last vertex of the path p from q0 to q. ut

Corollary 4.40. νP = all strongly extensional trees.

We must be careful here: P has no fixed points. But recall the extension
of set functors to classes in Remark 3.17. For P this is the functor ©P =
{A;A is a set with A ⊆ X}. Its (large) final coalgebra is the coalgebra of all
strongly extensional trees.
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Notation 4.41. Let Pλ be the subfunctor of all subsets of cardinality less
than λ. (Thus Pω is the finite power-set functor.) Then by precisely the same
argument as above one proves

Corollary 4.42. For every cardinal λ

νPλ = all λ-branching strongly extensional trees.

This was proved for λ = ω by Worrell [31] and for general λ by Schwencke [24].
Our proof is entirely different.

Which graphs are well-founded? This was answered by Osius [20]: precisely
the graphs without an infinite directed path.

Now strong extensionality can, in the case of well-founded trees, be simplified
to extensionality which says that for every node different children define non-
isomorphic subtrees. Thus we get

Corollary 4.43. µP = all well-founded, extensional trees. For every infinite
cardinal λ

µPλ = all λ-branching, well-founded, extensional trees.

Analogously to Example 4.29 the fixed point %Pω consists of all rational
strongly extensional trees, i.e., those with finitely many subtrees up to isomor-
phism:

Corollary 4.44. For the finite power-set functor Pω we have

νPω = all finitely branching, strongly extensional trees,

%Pω = all finitely branching, rational, strongly extensional trees,

and

µPω = all finite extensional trees.

4G Non-well-founded sets

We revisit µP and νP here from a set-theoretic perspective. Before coming to
the non-well-founded sets, let us observe that Example 4.35 has the following
strengthening:

Lemma 4.45. Well-founded, well-pointed graphs are precisely the canonical pic-
tures of well-founded sets.

This follows from the observation of Peter Aczel [1] that every well-pointed
graph G has a unique decoration, i.e., coalgebra homomorphism d to the class Set
of sets with ∈ as the neighbourhood relation. That is, d assigns to every vertex x
a set d(x) so that

d(x) =
{
d(y); y ∈ G a neighbour of x

}
.
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Observe that the kernel of d is clearly a congruence on G. Thus, given a well-
pointed, well-founded graph (G, q0), we know from Remark 3.7 that d is monic.
From that it follows that the canonical picture of the set d(q0) is isomorphic
to (G, q0).

Corollary 4.46. µP = all sets.

This was proved by Rutten and Turi in [23]. The bijection between well-
founded, well-pointed graphs and sets (given by the canonical picture) takes the
finite graphs to the hereditary finite sets X, i.e., finite sets with finite elements
which also have finite elements, etc. More precisely: a set is hereditary finite if
all sets in the canonical picture of X are finite:

Corollary 4.47. µPω = all hereditary finite sets.

In order to describe the final coalgebra for P in a similar set-theoretic man-
ner, we must move from the classical theory to the non-well-founded set theory
of Peter Aczel [1]. Recall that a decoration of a graph is a coalgebra homo-
morphism from this graph into the large coalgebra (Set,∈). Non-well-founded
set theory is obtained by swapping the axiom of foundation, telling us that
(Set,∈) is well-founded, with the following

Anti-foundation axiom. Every graph has a unique decoration.

Example 4.48. The decoration of a single loop is a set Ω such that Ω = {Ω}.
The coalgebra (Set,∈) where now Set is the class of all non-well-founded

sets, is of course final: the decoration of G is the unique homomorphism d : G
// Set.

Corollary 4.49. In the non-well-founded set theory

νP = all sets.

Let us turn to the finite power-set functor Pω. Its final coalgebra consists of
all sets whose canonical picture is finitely branching. They are called 1-hereditary
finite, notation HF 1[∅], in the monograph of Barwise and Moss [8]. The rational
fixed point of Pω consists of all sets whose canonical picture is finite, these
are called 1/2-hereditary finite, notation HF 1/2[∅]. For well-founded sets (with
canonical picture well-founded) both are equivalent to hereditary finite above.

Corollary 4.50. In the non-well-founded set theory

νPω = HF 1[∅], the 1-hereditary finite sets,

%Pω = HF 1/2[∅], the 1/2-hereditary finite sets,

and

µPω = the well-founded, hereditary finite sets.
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4H Labeled transition systems

Here we consider, for a set A of actions, coalgebras for P(−×A). A bisimulation
between two labeled transition systems (LTS) G and G′ is a relation R ⊆ G×G′
such that

if x R x′ then for every transition x
a // x′ in G there exists

a transition y
a // y′ with x′ R y′, and vice versa.

States x, y of an LTS are called bisimilar if x R y for some bisimulation R ⊆
G×G.

Lemma 4.51. For every LTS the greatest congruence merges precisely the bisim-
ilar pairs of states.

This, again, follows from general results of Rutten [21] since P(−×A) pre-
serves weak pullbacks.

Corollary 4.52. A well-pointed LTS is an LTS together with an initial state q0

which is

(a) reachable: every state can be reached from q0

and

(b) simple: distinct states are non-bisimilar.

The tree expansion of a state q is a (non-ordered) tree with edges labeled
in A, shortly, an A-labeled tree. For A-labeled trees we modify Definition 4.37
and speak about tree bisimulation if a bisimulation R ⊆ T1×T2 also fulfils (a)–(c)
of Definition 4.37. An A-labeled tree T is strongly extensional iff every tree
bisimulation R ⊆ T × T is trivial.

Proposition 4.53. Tree expansion is a bijection between well-pointed LTS and
strongly extensional A-labeled trees.

The proof is analogous to that of Proposition 4.39. Also the rest is analogous
to the case of P above:

Corollary 4.54. νP(−×A) = all strongly extensional A-labeled trees, and, for
every cardinal λ the λ-branching LTS have the final coalgebra

νPλ(−×A) = all λ-branching, strongly extensional A-labeled trees.

Corollary 4.55. For the finitely branching LTS we have

νPω(−×A) = all finitely branching, strongly extensional A-labeled trees

%Pω(−×A) = all rational, finitely branching strongly extensional
A-labeled trees

µPω(−×A) = all finite extensional A-labeled trees.
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5 Conclusion and future work

For set functors H satisfying the (mild) assumption of preservation of intersec-
tions we described (a) the final coalgebra as the set of all well-pointed coalge-
bras, (b) the initial algebra as the set of all well-pointed coalgebras that are
well-founded, and (c) in the case where H is finitary, the initial iterative algebra
as the set of all finite well-pointed coalgebras. This is based on the observa-
tion that given an element of a final coalgebra, the subcoalgebra it generates
has no proper subcoalgebras nor proper quotients—shortly, this subcoalgebra
is well-pointed. And different elements define nonisomorphic well-pointed sub-
coalgebras. We then combined this with our result that for all set functors the
initial algebra is precisely the final well-founded coalgebra. This resulted in the
above description of the initial algebra. Numerous examples demonstrate that
this view of final coalgebras and initial algebras is useful in applications.

Whereas our result about well-founded coalgebras was proved in locally
finitely presentable categories, the description of the final coalgebra was for-
mulated for set functors only. In future research we intend to generalize this
result to a wider class of base categories.
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5. J. Adámek, D. Lücke and S. Milius, Recursive coalgebras of finitary functors, The-
oret. Inform. Appl. 41 (2007), 442–462.
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