
7/11/2016

1

A logical characterization of
(input) strictly local functions

Jane Chandlee & Steven Lindell
Haverford College, PA (USA)

2016 NLCS

Factors
Definition: Consider words over a finite alphabet.
A k-factor of a word w is a substring of length k
(including end markers for prefixes and suffixes)
Example: The 2-factors of #aba# are {#a, ab, ba, a#}.
Two words are k-equivalent if they have the same k
factors. E.g. aba ∼₂ ababa ≁₂ abab (b/c of b#)
Ordering k-equivalence classes by inclusion of their k-
factors is a finite partial order. E.g. a ≲₂ aba.

NLCS22016

Local languages
Definition: A language L is strictly k-local if it is closed
downward under ≲k. I.e. u ≲k v ∈ L ⇒ u ∈ L.
Fact: A strictly local language is determined by the
(finite) set of k-factors it permits / omits, for some k.
Example: L = a(ba)* is 2-local, allowing {#a, ab, ba,
a#} and forbidding {#b, aa, bb, b#, ##}.
Suffix-prefix substitution closure [Rogers, Pullum ‘11]:
If v ∈ Σk−1 and both u₁vw₁, u₂vw₂ ∈ L, then u₁vw₂ ∈ L.

NLCS32016

Local machines
A finite state control can have long term memory, so instead we insist on short term finite memory where recollection goes back at most k − 1 symbols.
Definition: A k-local machine is an incomplete DFA with states labeled Σ<k−1 (Markovian), one for each allowable k − 1 factor (including prefixes).
Example: (k = 2)L(M) = a(ba)*
Fact: these accept exactly the strictly local languages

a b
b

a
#aλ#

NLCS42016

Logical definability
Represent (non-empty) words as structures of the form 〈D; p, s, A, B〉
Diagram for aba:
(D = {1, 2, 3})
The vocabulary is adjacency with a partition of the domain into letters:
p(x) = x − 1 (bottoms out), s(x) = x + 1 (tops out), A ∩ B = ∅, A ∪ B = D.
Formulas in first-order logic are constructed using: →, ∨, ∧, ¬, ∃, ∀
Example: Every local language can be described by a Π₁ sentence. E.g.
a(ba)*: (∀x) [(p(x) = x ∨ s(x) = x) → A(x)] ∧ [s(x) ≠ x → (A(x) ↔ B(s(x))]

1 2
s
p 3

s
p sp

A B A

NLCS52016

Local functions (ISL)
Definition: A function is k-local if it can be computed
by a complete Markovian DFA with outputs on each of
its transitions and an output in the last occupied state.
Example:
(k = 2)

Note: Unlike (sub)-sequential functions, strictly local
functions can be computed left-to-right or right-to-left.

a b
b : aa

a : bb

a λ ba : λ b : λ

NLCS62016

7/11/2016

2

Locality preservation
Closure properties for composition: f, g local ⇒ f ◦ g is also;
Closed under inverses (reduction) L strictly local ⇒ f⁻¹(L) is.
|f(x)| ≤ m|x| (output is bounded in terms of input)
|x| ≤ d|f(x)| (input is bounded in terms of output)
Definition: A function f is non-degenerate if |S| = ∞ ⇒ |f(S)|
= ∞. In other words, f is not infinite-to-one, |f⁻¹({w})| is finite.
Claim: Suppose a function f is computed by minimal finite
state machine M. Then f is non-degenerate if and only if M
has no null cycles.

NLCS72016

Quantifier-free mappings
Use logical formulas to define an output structure in terms of an input structure. E.g. aba → aabbaa. Allow copies (^):
〈φ¹(x), φ²(x); π¹(x), π²(x), σ¹(x), σ²(x), α¹(x), α²(x), β¹(x), β²(x)〉

where π and σ are functional definitions by cases. E.g. doubling:
σ: x¹ + 1 = x² and x² + 1 = (x + 1)¹ unless x + 1 = x, x² + 1 = x².π: x² − 1 = x¹ and x¹ − 1 = (x − 1)² unless x − 1 = x, x¹ − 1 = x¹.

1 2 3 → 1¹ 1² 2¹ 2² 3¹ 3²
α(x¹) ≡ α(x²) ≡ A(x); [a → aa] β(x¹) ≡ β(x²) ≡ B(x); [b → bb]

D −1 +1 A B

NLCS82016

Monotonicity
Idea: output follows input. I.e. if x precedes y in the
input, then xc cannot succeed yc' in the output.
Example: 1¹ 1² 2¹ 2² 3¹ 3² ...
Counterexample: 1¹ 2¹ 3¹ 1² 2² 3² ...
Equivalent to ±1 monotone: (x − 1)c⁻ ≤ xc ≤ (x + 1)c⁺

Note: some copies may not exist
NLCS92016

Result
Theorem: The non-degenerate input strictly local
functions are exactly the monotone quantifier-free
interpretations.
Provides an abstract (machine independent)
characterization of the input strictly local functions.
Directions: 1. change vocabulary from adjacency

(± 1) to precedence (<)
2. generalize from strings to trees

NLCS102016

Proof ideas
A k-local function can be described by q.f. formulas:Idea: Inspect the k-local neighborhood of each input position using predecessor and successor functions. This tells us which state of the machine we must be in (by locality), and determines the output at that point. Copies are required when multiple symbols come out.
A q.f. interpretation is computable by a local machine:Idea: Each q.f. formula ψ(x) depends only on a local neighborhood of x, so its behavior can be determined by a k-local machine where k is the maximum nesting depth of the predecessor or successor functions.

NLCS112016

References (selected)
1. Rogers, J. and Pullum, G. (2011). Aural pattern

recognition experiments and the subregular
hierarchy. Journal of Logic, Language and
Information, vol. 20:329-342.

2. Chandlee, J. (2014). Strictly Local Phonological
Processes, Ph.D. thesis, University of Delaware.

3. Sakarovitch J. (2009). Elements of automata
theory, Cambridge University Press.

NLCS122016

