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The theory of logical gates in quantum computation has suggested new forms of quantum
logic, called quantum computational logics. The basic semantic idea is the following: the
meaning of a sentence is identified with a quregister (a system of qubits) or, more gener-
ally, with a mixture of quregisters (called qumix). In this framework, any sentence α of
the language gives rise to a quantum tree: a kind of quantum circuit that transforms the
quregister (qumix) associated to the atomic subformulas of α into the quregister (qumix)
associated to α. A variant of the quantum computational semantics is represented by the
quantum holistic semantics, which permits us to represent entangled meanings. Phys-
ical models of quantum computational logics can be built by means of Mach-Zehnder
interferometers.
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1. Introduction

The theory of logical gates in quantum computation has suggested new forms of
quantum logic that have been called quantum computational logics1. The main
difference between orthodox quantum logic (first proposed by Birkhoff and von
Neumann2) and quantum computational logics concerns a basic semantic question:
how to represent the meanings of the sentences of a given language? The answer
given by Birkhoff and von Neumann is the following: the meanings of the elementary
experimental sentences of quantum theory have to be regarded as determined by
convenient sets of states of quantum objects. Since these sets should satisfy some

1
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special closure conditions, it turns out that, in the framework of orthodox quantum
logic, sentences can be adequately interpreted as closed subspaces of the Hilbert
space associated to the physical systems under investigation3. The answer given in
the framework of quantum computational logics is quite different. The meaning of
a sentence is identified with a quantum information quantity: a qubit or a quregister
(a system of qubits) or, more generally, a mixture of quregisters (briefly, a qumix )7.

2. Qubits, quregisters and qumixs

We will first sum up some basic concepts of quantum computation that are used
in the framework of quantum computational logics. Consider the two-dimensional
Hilbert space C2 (where any vector |ψ〉 is represented by a pair of complex numbers).
Let B(1) = {|0〉, |1〉} be the canonical orthonormal basis for C2, where |0〉 =

(
1
0

)

and |1〉 =
(

0
1

)
.

Definition 1: (Qubit).
A qubit is a unit vector |ψ〉 of the Hilbert space C2.

Recalling the Born rule, any qubit |ψ〉 = c0|0〉 + c1|1〉 (with |c0|2 + |c1|2 =
1) can be regarded as an uncertain piece of information, where the answer NO
has probability |c0|2, while the answer YES has probability |c1|2. The two basis-
elements |0〉 and |1〉 are usually taken as encoding the classical bit-values 0 and
1, respectively. From a semantic point of view, they can be also regarded as the
classical truth-values Falsity and Truth.

An n-qubit system (also called n-quregister) is represented by a unit vector in the
n-fold tensor product Hilbert space ⊗nC2 := C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
n−times

(where ⊗1C2 := C2).

We will use x, y, . . . as variables ranging over the set {0, 1}. At the same time,
|x〉, |y〉, . . . will range over the basis B(1). Any factorized unit vector |x1〉⊗ . . .⊗|xn〉
of the space ⊗nC2 will be called an n-configuration (which can be regarded as
a quantum realization of a classical bit sequence of length n). Instead of |x1〉 ⊗
. . . ⊗ |xn〉 we will also write |x1, . . . , xn〉. Recall that the dimension of ⊗nC2 is
2n, while the set of all n-configurations B(n) = {|x1, . . . , xn〉 : xi ∈ {0, 1}} is
an orthonormal basis for the space ⊗nC2. We will call this set a computational
basis for the n-quregisters. Since any string x1, . . . , xn represents a natural number
j ∈ [0, 2n − 1] (where j = 2n−1x1 + 2n−2x2 + . . . + xn), any unit vector of ⊗nC2

can be briefly expressed in the following form:
∑2n−1

j=0 cj ‖j〉〉, where cj ∈ C, ‖j〉〉 is

the n-configuration corresponding to the number j and
∑2n−1

j=0 |cj |2 = 1.
Consider now the two following sets of natural numbers:

C
(n)
1 := {i : ‖i〉〉 = |x1, . . . , xn〉 and xn = 1}

and

C
(n)
0 := {i : ‖i〉〉 = |x1, . . . , xn〉 and xn = 0}.
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Let us refer to a generic unit vector of the space ⊗nC2:

|ψ〉 =
2n−1∑

i=0

ai ‖i〉〉.

We obtain:

|ψ〉 =
∑

i∈C
(n)
0

ai ‖i〉〉+
∑

j∈C
(n)
1

aj ‖j〉〉.

Let P
(n)
1 and P

(n)
0 be the projections onto the span of

{
‖i〉〉 | i ∈ C

(n)
1

}
and{

‖i〉〉 | i ∈ C
(n)
0

}
, respectively. Clearly, P

(n)
1 +P

(n)
0 = I(n), where I(n) is the identity

operator of ⊗nC2. Apparently, P
(n)
1 and P

(n)
0 are density operators iff n = 1.

Let kn = 1
2n−1 be the normalization coefficient such that knP

(n)
1 and knP

(n)
0 are

density operators. From an intuitive point of view, the projection P
(n)
1 and P

(n)
0

can be regarded as the mathematical representatives of the Truth-property and
of the Falsity-property in the space ⊗nC2. At the same time, the density operator
knP

(n)
1 represents a privileged information corresponding to the Truth, while knP

(n)
0

corresponds to the Falsity. In particular, P
(1)
1 represents the bit |1〉, while P

(1)
0

represents the bit |0〉. Let D(⊗nC2) be the set of all density operators of ⊗nC2 and
let D :=

⋃∞
n=1 D(⊗nC2).

Definition 2: (Qumix).
A qumix is a density operator in D.

Needless to say, quregisters correspond to particular qumixs that are pure states
(i.e. projections onto one-dimensional closed subspaces of a given ⊗nC2). Recalling
the Born rule, we can now define the probability-value of any qumix.

Definition 3: (Probability of a qumix).
For any qumix ρ ∈ D(⊗nC2): p(ρ) = tr(P (n)

1 ρ).

From an intuitive point of view, p(ρ) represents the probability that the infor-
mation stocked by the qumix ρ is true. In the particular case where ρ corresponds
to the qubit

|ψ〉 = c0|0〉+ c1|1〉,

we obtain that p(ρ) = |c1|2.
For any quregister |ψ〉, we will write p(|ψ〉) instead of p(P|ψ〉), where P|ψ〉 (also

indicated by |ψ〉〈ψ|) is the density operator represented by the projection onto the
one-dimensional subspace spanned by the vector |ψ〉.
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3. Quantum Gates

In quantum computation, quantum logical gates (briefly, gates) are unitary oper-
ators that transform quregisters into quregisters. Being unitary, gates represent
characteristic reversible transformations. The canonical gates (which are studied in
the literature) can be naturally generalized to qumixs. Generally, gates correspond
to some basic logical operations that admit a reversible behaviour. We will con-
sider here the following gates: the negation, the Petri-Toffoli gate4,5 (also called
controlled-controlled-not gate), the controlled-not gate, the square root of the nega-
tion, the square root of the identity. All these gates turn out to be definable in terms
of a unique gate, the controlled-controlled-blur.

Let us first describe our gates in the framework of quregisters.

Definition 4: (The negation).
For any n ≥ 1, the negation on ⊗nC2 is the linear operator Not(n) such that for
every element |x1, . . . , xn〉 of the computational basis B(n):

Not(n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1− xn〉.
In other words, Not(n) inverts the value of the last element of any basis-vector

of ⊗nC2.
Clearly:

Not(n) =
{

X, if n = 1;
I(n−1) ⊗X, otherwise,

where X is the “first” Pauli matrix, i.e.,

X =
(

0 1
1 0

)
.

Definition 5: (The Petri-Toffoli gate).
For any n ≥ 1 and any m ≥ 1 the Petri-Toffoli gate is the linear operator T (n,m,1)

defined on ⊗n+m+1C2 such that for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉
of the computational basis B(n+m+1):

T (n,m,1)(|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|z〉) = |x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|xnym ⊕ z〉,
where ⊕ represents the sum modulo 2.

Clearly:

T (n,m,1) = (I(n+m) − P
(n)
1 ⊗ P

(m)
1 )⊗ I(1) + P

(n)
1 ⊗ P

(m)
1 ⊗X.

One can easily show that both Not(n) and T (n,m,1) are unitary operators.
Consider now the set R =

⋃∞
n=1⊗nC2 (which contains all quregisters |ψ〉 “liv-

ing” in ⊗nC2, for an n ≥ 1). The gates Not and T can be uniformly defined on this
set in the expected way:

Not(|ψ〉) := Not(n)(|ψ〉), if |ψ〉 ∈ ⊗nC2

T (|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T (n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉), if |ψ〉 ∈ ⊗nC2, |ϕ〉 ∈ ⊗mC2and |χ〉 ∈ C2.
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On this basis, a conjunction And, a disjunction Or, an exclusive disjunction Xor

can be defined for any pair of quregisters |ψ〉 and |ϕ〉:
And(|ψ〉, |ϕ〉) := T (|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

Or(|ψ〉, |ϕ〉) := Not(And(Not(|ψ〉), Not(|ϕ〉)));

Xor(|ψ〉, |ϕ〉) := Or(And(|ψ〉, Not(|ϕ〉)), And(Not(|ψ〉), |ϕ〉)).
Clearly, |0〉 represents an “ancilla” in the definition of And.
One can easily verify that, when applied to classical bits, Not, And, Or and Xor

behave as the standard Boolean truth-functions.
At first sight, And, Or and Xor may look as irreversible transformations. How-

ever, in this framework, And(|ψ〉, |ϕ〉) should be regarded as a mere metalinguistic
abbreviation for T (|ψ〉 ⊗ |ϕ〉 ⊗ |0〉) (where T is reversible). A similar observation
holds for Or and Xor.

The definition we have given for the Xor gate (which is also called the controlled-
not gate) refers to a Hilbert whose dimension is at least 27. The following more
economical definition refers to a Hilbert space whose dimension is at least 22.

Definition 6: (The controlled-not gate).
For any n ≥ 1 and any m ≥ 1 the controlled-not gate is the linear operator Xor(n,m)

defined on ⊗n+mC2 such that for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 of the
computational basis B(n+m):

Xor(n,m)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉) = |x1, . . . , xn〉 ⊗ |y1, . . . , ym−1〉 ⊗ |xn ⊕ ym〉,
where ⊕ represents the sum modulo 2.

Clearly:

Xor(n,m) = P
(n)
0 ⊗ I(m) + P

(n)
1 ⊗ Not(m).

The gate Xor can be uniformly defined in the expected way:

Xor(|ψ〉 ⊗ |ϕ〉) := Xor(n,m)(|ψ〉 ⊗ |ϕ〉) if |ψ〉 ∈ ⊗nC2and |ϕ〉 ∈ ⊗mC2.

The quantum logical gates we have considered so far are, in a sense, “semi-
classical”. A quantum logical behaviour only emerges in the case where our gates
are applied to superpositions. When restricted to classical registers, such operators
turn out to behave as classical (reversible) truth-functions. We will now consider
two important genuine quantum gates that transform classical registers (elements
of B(n)) into quregisters that are superpositions: the square root of the negation and
the square root of the identity.

Definition 7: (The square root of the negation).
For any n ≥ 1, the square root of the negation on ⊗nC2 is the linear operator√
Not

(n)
such that for every element |x1, . . . , xn〉 of the computational basis B(n):

√
Not

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1

2
((1 + i)|xn〉+ (1− i)|1− xn〉),
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where i is the imaginary unit.

One can easily show that
√
Not

(n)
is a unitary operator. The basic property of√

Not
(n)

is the following:

for any |ψ〉 ∈ ⊗nC2,
√
Not

(n)
(
√
Not

(n)
(|ψ〉)) = Not(n)(|ψ〉).

In other words, applying twice the square root of the negation means negating.
Clearly:

√
Not

(n)
=

{
M, if n = 1;
I(n−1) ⊗M, otherwise,

where

M :=
1
2

(
1 + i 1− i

1− i 1 + i

)
.

Interestingly enough, the gate
√
Not has some natural physical models and imple-

mentations. As an example, consider an idealized atom with a single electron and
two energy levels: a ground state (identified with |0〉) and an excited state (identified
with |1〉). By shining a pulse of light of appropriate intensity, duration and wave-
length, it is possible to force the electron to change energy level. As a consequence,
the state (bit) |0〉 is transformed into the state (bit) |1〉, and vice versa:

|0〉 7→ |1〉; |1〉 7→ |0〉.
We have obtained a typical physical model for the gate Not. Now, by using a

light pulse of half the duration as the one needed to perform the Not operation, we
effect a half-flip between the two logical states. The state of the atom after the half
pulse is neither |0〉 nor |1〉, but rather a superposition of both states.

In Sec. 9 we will see another physical model for the gate
√
Not as a particular

50:50 beam splitter in a Mach-Zehnder interferometer.
As observed by Deutsch, Ekert, Lupacchini6:

Logicians are now entitled to propose a new logical operation
√
Not. Why?

Because a faithful physical model for it exists in nature.

Interestingly enough, the gate
√
Not seems to have also some linguistic “models”.

For instance, consider the French language. Put:
√
Not = “ne” = “pas”.

We obtain:
√
Not

√
Not = “ne...pas” = Not.

Needless to observe, our linguistic example is only a partial model of the gate√
Not. In French, neither the expression “il ne pleut” nor the expression “il pleut

pas” are grammatically correct sentences. And in the spoken language “il pleut
pas” is simply used as an abbreviation for the correct “il ne pleut pas”. In quantum
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computation, instead, for any quregister |ψ〉, the vector
√
Not(|ψ〉) is a quregister

that is essentially different from the quregister Not(|ψ〉).
From a logical point of view,

√
Not

(n)
can be regarded as a “tentative partial

negation” (a kind of “half negation”) that transforms precise pieces of information
into maximally uncertain ones. For, we have:

p(
√
Not

(1)
(|1〉)) =

1
2

= p(
√
Not

(1)
(|0〉)).

As expected, the square root of the negation has no Boolean counterpart.

Lemma 8: There is no function f : {0, 1} → {0, 1} such that for any x ∈ {0, 1} :
f(f(x)) = 1− x.

Proof: Suppose, by contradiction, that such a function f exists. Two cases are
possible: (i) f(0) = 0; (ii) f(0) = 1.
(i) By hypothesis, f(0) = 0. Thus, 1 = f(f(0)) = f(0) = 0, contradiction.
(ii) By hypothesis, f(0) = 1. Thus, 1 = f(f(0)) = f(1). Hence, f(0) = f(1).
Therefore, 1 = f(f(0)) = f(f(1)) = 0, contradiction.

Interestingly enough,
√
Not also does not have a continuous fuzzy counterpart.

Lemma 9: There is no continuous function f : [0, 1] → [0, 1] such that for any
x ∈ [0, 1] : f(f(x)) = 1− x.

Proof: Suppose, by contradiction, that such a function f exists. First, we prove
that f( 1

2 ) = 1
2 . By hypothesis, f(f( 1

2 )) = 1 − 1
2 = 1

2 . Hence, f(f(f( 1
2 ))) = f( 1

2 ).
Thus, 1 − f(1

2 ) = f(1
2 ). Therefore, f( 1

2 ) = 1
2 . Consider now f(0). One can easily

show: f(0) 6= 0 and f(0) 6= 1. Clearly, f(0) 6= 1
2 since otherwise we would obtain

1 = f(f(0)) = f( 1
2 ) = 1

2 . Thus, only two cases are possible: (i) 0 < f(0) < 1
2 ; (ii)

1
2 < f(0) < 1.
(i) By hypothesis, 0 < f(0) < 1

2 < 1 = f(f(0)). Consequently, by continuity,
∃x ∈ (0, f(0)) such that 1

2 = f(x). Accordingly, 1
2 = f( 1

2 ) = f(f(x)) = 1 − x.
Hence, x = 1

2 , which contradicts x < f(0) < 1
2 .

(ii) By hypothesis, f( 1
2 ) = 1

2 < f(0) < 1 = f(f(0)). By continuity, ∃x ∈ ( 1
2 , f(0))

such that f(x) = f(0). Thus, 1− x = f(f(x)) = f(f(0)) = 1. Hence, x = 0, which
contradicts x > 1

2 .

Definition 10: (The square root of the identity).
For any n ≥ 1, the square root of the identity on ⊗nC2 is the linear operator

√
I
(n)

such that for every element |x1, . . . , xn〉 of the computational basis B(n):

√
I
(n)

(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1√
2
((−1)xn |xn〉+ |1− xn〉).
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The basic property of
√
I
(n)

is the following:

for any |ψ〉 ∈ ⊗nC2,
√
I
(n)

(
√
I
(n)

(|ψ〉)) = |ψ〉.

Clearly:

√
I
(n)

=
{

H, if n = 1;
I(n−1) ⊗H, otherwise,

where H is the Hadamard matrix:

H :=
1√
2

(
1 1
1 −1

)
.

As happens in the case of
√
Not

(n)
, also

√
I
(n)

can be regarded as a “tentative partial
assertion” (a kind of “half assertion”) that transforms precise pieces of information
into maximally uncertain ones. Apparently, one application of

√
I
(n)

to a precise
information produces a maximal disorder, while two applications of

√
I
(n)

lead back
to the initial information.

As expected, also the gates
√
Not and

√
I can be uniformly defined on the set

R of all quregisters.
An interesting gate is represented by the controlled-controlled-blur. One is deal-

ing with a quite strong operator that permits us to define all the gates we have
considered so far.

Definition 11: (The controlled-controlled-blur gate).
For any n ≥ 1, m ≥ 1 and t ≥ 1 the controlled-controlled-blur gate is the
linear operator CCBlur(n,m,t) defined on ⊗n+m+tC2 such that for every element
|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zt〉 of the computational basis B(n+m+t):
CCBlur(n,m,t)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zt〉)
= |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zt−1〉
⊗

( (
(1− xnym) (−1)zt√

2
+ xnym

1+i
2

)
|zt〉+

(
(1− xnym) 1√

2
+ xnym

1−i
2

)
|1− zt〉

)
.

Apparently, CCBlur is a genuine quantum logical gate, which behaves as a kind
of fuzzyfier operator that blurs any bit-information according to some parameters.

In the case of n = m = t = 1, we obtain:

CCBlur(1,1,1)(|000〉) = |0〉 ⊗ |0〉 ⊗ √I(|0〉)
CCBlur(1,1,1)(|001〉) = |0〉 ⊗ |0〉 ⊗ √I(|1〉)
CCBlur(1,1,1)(|010〉) = |0〉 ⊗ |1〉 ⊗ √I(|0〉)
CCBlur(1,1,1)(|011〉) = |0〉 ⊗ |1〉 ⊗ √I(|1〉)
CCBlur(1,1,1)(|100〉) = |1〉 ⊗ |0〉 ⊗ √I(|0〉)
CCBlur(1,1,1)(|101〉) = |1〉 ⊗ |0〉 ⊗ √I(|1〉)
CCBlur(1,1,1)(|110〉) = |1〉 ⊗ |1〉 ⊗ √Not(|0〉)
CCBlur(1,1,1)(|111〉) = |1〉 ⊗ |1〉 ⊗ √Not(|1〉).
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Clearly:

CCBlur(n,m,t) = (I(n) ⊗ I(m) − P
(n)
1 ⊗ P

(m)
1 )⊗

√
I
(t)

+ P
(n)
1 ⊗ P

(m)
1 ⊗

√
Not

(t)
.

The definitions of other gates in terms of the CCBlur can be now given as follows
(for any |ψ〉 quregister of ⊗nC2 and any |ϕ〉 quregister of ⊗mC2):

Not(|ψ〉) := (CCBlur(1,1,n))2(|1〉 ⊗ |1〉 ⊗ |ψ〉)√
Not(|ψ〉) := CCBlur(1,1,n)(|1〉 ⊗ |1〉 ⊗ |ψ〉)√
I(|ψ〉) := CCBlur(1,1,n)(|0〉 ⊗ |0〉 ⊗ |ψ〉)

And(|ψ〉, |ϕ〉) = T (n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉) := (CCBlur(n,m,1))2(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉)√
And(|ψ〉, |ϕ〉) =

√
T

(n,m,1)
(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉) := CCBlur(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉)

Xor(|ψ〉, |ϕ〉) := (CCBlur(1,n,m))2(|1〉 ⊗ |ψ〉 ⊗ |ϕ〉)√
Xor(|ψ〉, |ϕ〉) := CCBlur(1,n,m)(|1〉 ⊗ |ψ〉 ⊗ |ϕ〉).

The gates considered so far can be naturally generalized to qumixs. When our
gates will be applied to density operators, we will write: NOT,

√
NOT,

√
I, AND (instead

of Not,
√
Not,

√
I, And).

Definition 12: (The negation).
For any qumix ρ ∈ D(⊗nC2),

NOT(n)(ρ) = Not(n)ρ Not(n).

Definition 13: (The square root of the negation).
For any qumix ρ ∈ D(⊗nC2),

√
NOT

(n)
(ρ) =

√
Not

(n)
ρ
√
Not

(n)∗
,

where
√
Not

(n)∗
is the adjoint of

√
Not

(n)
.

Definition 14: (The square root of the identity).
For any qumix ρ ∈ D(⊗nC2),

√
I
(n)

(ρ) =
√
I
(n)

ρ
√
I
(n)

.

It is easy to see that for any n ∈ N+, NOT(n)(ρ),
√
NOT

(n)
(ρ) and

√
I
(n)

(ρ) are
qumixs of D(⊗nC2). Furthermore: NOT(n)NOT(n) = I(n).

Definition 15: (The conjunction).
Let ρ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

AND(n,m,1)(ρ, σ) = T(n,m,1)(ρ, σ, P
(1)
0 ) := T (n,m,1)(ρ⊗ σ ⊗ P

(1)
0 )T (n,m,1).

Like in the quregister-case, the gates NOT,
√
NOT,

√
I, T, AND can be uniformly

defined on the set D of all qumixs.
The following theorems describe some basic properties of our gates.

Theorem 16: 7
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(i) NOT(kn P
(n)
0 ) = kn P

(n)
1 ;

(ii) NOT(kn P
(n)
1 ) = kn P

(n)
0 ;

(iii) p(NOT(ρ)) = 1− p(ρ).

Consider now the “second” Pauli’s matrix:

Y =
(

0 −i

i 0

)
.

This matrix can be naturally generalized to an operator R(n) defined on ⊗nC2

(for any n ∈ N+):

R(n) :=
{

Y, if n = 1;
I(n−1) ⊗ Y, otherwise.

Lemma 17: 7 For any n ∈ N+, the following properties hold:

(i) tr(R(n)) = 0;
(ii) tr(R(n)P

(n)
1 ) = 0;

(iii) tr(R(n)P
(n)
0 ) = 0.

Theorem 18: 7

(i)
√
NOT(

√
NOT(ρ)) = NOT(ρ);

(ii)
√
NOT(NOT(ρ)) = NOT(

√
NOT(ρ));

(iii) p(
√
NOT(ρ)) = 1

2 − 1
2tr(R

(n)ρ);
(iv) ∀n ∈ N+: p(

√
NOT(knP

(n)
1 )) = p(

√
NOT(knP

(n)
0 )) = 1

2 .

Theorem 19: 7,8

(i) p(AND(ρ, σ)) = p(ρ)p(σ);
(ii) p(

√
NOT(AND(ρ, σ))) = 1

2 .

Theorem 20:

(i)
√
I(
√
I(ρ)) = ρ;

(ii) ∀n ∈ N+: p(
√
I(knP

(n)
1 )) = p(

√
I(knP

(n)
0 )) = 1

2 ;

(iii) ∀n ∈ N+: p(
√
I(
√
NOT(knP

(n)
1 ))) = p(

√
I(
√
NOT(knP

(n)
0 ))) = 1

2 ;

(iv) ∀n ∈ N+: p(
√
NOT(

√
I(knP

(n)
1 ))) = p(

√
NOT(

√
I(knP

(n)
0 ))) = 1

2 ;

(v) p(
√
I(
√
NOT(ρ))) = p(

√
I(ρ));

(vi) p(
√
NOT(

√
I(ρ))) = 1− p(

√
NOT(ρ));
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(vii) p(
√
I(AND(ρ, σ))) = 1

2 ;

(viii) p(
√
I(
√
NOT(AND(ρ, σ)))) = p(

√
NOT(

√
I(AND(ρ, σ)))) = 1

2 .

Proof: (i)-(vi) Easy.
(vii) p(

√
I(AND(ρ, σ)))

= tr(P (n+m+1)
1

√
I
(n+m+1)

T (n,m,1)(ρ⊗ σ ⊗ P
(1)
0 )T (n,m,1)

√
I
(n+m+1)

)
= tr((I(n+m) − P

(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ)(I(n+m) − P

(n)
1 ⊗ P

(m)
1 )⊗ P

(1)
1 HP

(1)
0 H

+ P
(n)
1 ρP

(n)
1 ⊗ P

(m)
1 σP

(m)
1 ⊗ P

(1)
1 HP

(1)
1 H)

= tr((I(n+m) − P
(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ))tr(P (1)

1 HP
(1)
0 H)

+ tr(P (n)
1 ρ)tr(P (m)

1 σ)tr(P (1)
1 HP

(1)
1 H)

= (1− p(ρ)p(σ))p(
√
I(P (1)

0 )) + p(ρ)p(σ)p(
√
I(P (1)

1 )) = 1
2 .

(viii) p(
√
I(
√
NOT(AND(ρ, σ))))

= tr(P (n+m+1)
1

√
I
(n+m+1)√

Not
(n+m+1)

T (n,m,1)(ρ⊗ σ ⊗ P
(1)
0 )

T (n,m,1)
√
Not

(n+m+1)∗√
I
(n+m+1)

)
= tr((I(n+m) − P

(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ)(I(n+m) − P

(n)
1 ⊗ P

(m)
1 )⊗ P

(1)
1 HMP

(1)
0 M∗H

+ P
(n)
1 ρP

(n)
1 ⊗ P

(m)
1 σP

(m)
1 ⊗ P

(1)
1 HMP

(1)
1 M∗H)

= tr((I(n+m) − P
(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ))tr(P (1)

1 HMP
(1)
0 M∗H)

+ tr(P (n)
1 ρ)tr(P (m)

1 σ)tr(P (1)
1 HMP

(1)
1 M∗H)

= (1− p(ρ)p(σ))p(
√
I(
√
NOT(P (1)

0 ))) + p(ρ)p(σ)p(
√
I(
√
NOT(P (1)

1 ))) = 1
2 .

p(
√
NOT(

√
I(AND(ρ, σ))))

= tr(P (n+m+1)
1

√
Not

(n+m+1)√
I
(n+m+1)

T (n,m,1)(ρ⊗ σ ⊗ P
(1)
0 )

T (n,m,1)
√
I
(n+m+1)√

Not
(n+m+1)∗

)
= tr((I(n+m) − P

(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ)(I(n+m) − P

(n)
1 ⊗ P

(m)
1 )⊗ P

(1)
1 MHP

(1)
0 HM∗

+ P
(n)
1 ρP

(n)
1 ⊗ P

(m)
1 σP

(m)
1 ⊗ P

(1)
1 MHP

(1)
1 HM∗)

= tr((I(n+m) − P
(n)
1 ⊗ P

(m)
1 )(ρ⊗ σ))tr(P (1)

1 MHP
(1)
0 HM∗)

+ tr(P (n)
1 ρ)tr(P (m)

1 σ)tr(P (1)
1 MHP

(1)
1 HM∗)

= (1− p(ρ)p(σ))p(
√
NOT(

√
I(P (1)

0 ))) + p(ρ)p(σ)p(
√
NOT(

√
I(P (1)

1 ))) = 1
2 .

4. Reversible and irreversible quantum computational structures

An interesting relation connects quregisters and qumixs with the real numbers of
the interval [0, 1]. Any real number λ ∈ [0, 1] uniquely determines an n-quregister
|ψ〉λ and a qumix ρ

(n)
λ (for any n ∈ N+):

• |ψ〉λ :=

{√
1− λ|0〉+

√
λ|1〉, if n = 1;√

(1− λ)kn

∑2n−1−1
j=0 ‖j〉〉|0〉+

√
λkn

∑2n−1−1
j=0 ‖j〉〉|1〉, if n > 1;

• ρ
(n)
λ := (1− λ)knP

(n)
0 + λknP

(n)
1 .

Clearly, |ψ〉λ ∈ R(⊗nC2) and ρ
(n)
λ ∈ D(⊗nC2). From an intuitive point of view,

|ψ〉λ represents a maximal information that might correspond to the Truth with
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probability λ, while ρ
(n)
λ represents a mixture of pieces of information that might

correspond to the Truth with probability λ.
From a physical point of view, the pure state |ψ〉λ describes a particular prepa-

ration of the quantum system such that our system might satisfy the properties
of a pure state ending with the bit |0〉 with probability 1 − λ and might satisfy
the properties of a pure state ending with the bit |1〉 with probability λ. A similar
interpretation holds for the mixed state ρ

(n)
λ , mutatis mutandis. It is worthwhile

recalling that the random polarized states of the photon are represented by the
density operator ρ

(1)
1/2 = 1

2I(1).
The following lemmas describe some important properties of the quregister |ψ〉λ

and the qumix ρ
(n)
λ .

Lemma 21:

(i) ∀n ∈ N+ ∀λ ∈ [0, 1]: p(|ψ〉λ) = λ;
(ii) p(

√
Not(|ψ〉λ)) = 1

2 ;
(iii) p(

√
I(|ψ〉λ)) = 1

2 −
√

(1− λ)λ.

Proof: Easy.

Lemma 22:

(i) ∀n ∈ N+ ∀λ ∈ [0, 1]: p(ρ(n)
λ ) = λ;

(ii) p(
√
NOT(ρ(n)

λ )) = 1
2 ;

(iii) p(
√
I(ρ(n)

λ )) = 1
2 .

Proof: Easy.

We will now introduce three interesting relations that can be defined on the set
of all qumixs. All of them turn out to be a preorder-relation. We will speak of weak,
of strong and of super-strong preorder, respectively.

Definition 23: (Weak preorder).
ρ 4w σ iff p(ρ) ≤ p(σ).

Definition 24: (Strong preorder).
ρ 4s σ iff the following conditions hold:

(i) p(ρ) ≤ p(σ);
(ii) p(

√
NOT(σ)) ≤ p(

√
NOT(ρ)).

Definition 25: (Super-strong preorder).
ρ 4ss σ iff the following conditions hold:

(i) p(ρ) ≤ p(σ);
(ii) p(

√
NOT(σ)) ≤ p(

√
NOT(ρ));
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(iii) p(
√
I(ρ)) ≤ p(

√
I(σ)).

Clearly:

ρ 4ss σ =⇒ ρ 4s σ =⇒ ρ 4w σ,

but not the other way around. One immediately shows that the three relations are
reflexive and transitive, but not antisymmetric.

Consider now the following three structures:

•
(
D , 4w , AND , NOT ,

√
NOT ,

√
I , P (1)

0 , P
(1)
1 , ρ

(1)
1/2

)

•
(
D , 4s , AND , NOT ,

√
NOT ,

√
I , P (1)

0 , P
(1)
1 , ρ

(1)
1/2

)

•
(
D , 4ss , AND , NOT ,

√
NOT ,

√
I , P (1)

0 , P
(1)
1 , ρ

(1)
1/2

)
.

We will call these structures the standard reversible weak quantum computa-
tional structure (briefly, the WQC-structure), the standard reversible strong quan-
tum computational structure (briefly, the SQC-structure), the standard reversible
super-strong quantum computational structure (briefly, the SSQC-structure), re-
spectively.

In the following we will generally write I, P0, P1 and ρ1/2 instead of I(1),
P

(1)
0 ,P (1)

1 , ρ
(1)
1/2. From an intuitive point of view, P0, P1 and ρ1/2 represent privileged

pieces of information that are false, true, indeterminate, respectively. Generally, our
qumixs fail to satisfy Duns Scotus law. Only in the case of the WQC-structure we
have: ∀ρ ∈ D : P

(1)
0 4w ρ 4w P

(1)
1 . In this situation, it is interesting to isolate

the elements that have a Scotian behaviour in the strong and in the super-strong
structure. Let us first refer to the SQC-structure.

Definition 26: (Down and up scotian qumixs).
Let ρ be a qumix of D.

(i) ρ is down Scotian iff P0 4s ρ;
(ii) ρ is up Scotian iff ρ 4s P1;
(iii) ρ is Scotian iff ρ is both down and up Scotian.

Lemma 27: 8

(i) ρ 4s

√
NOT(P1) iff p(ρ) ≤ 1

2 ;
(ii)

√
NOT(P0) 4s ρ iff p(ρ) ≥ 1

2 .

Theorem 28: 8

(i) ρ is down Scotian iff p(
√
NOT(ρ)) ≤ 1

2 iff
√
NOT(ρ) 4s

√
NOT(P1);

(ii) ρ is up Scotian iff 1
2 ≤ p(

√
NOT(ρ)) iff

√
NOT(P0) 4s

√
NOT(ρ);

(iii) ρ is Scotian iff p(
√
NOT(ρ)) = 1

2 ;
(iv) ∀n ∈ N+: knP

(n)
0 , knP

(n)
1 , ρ

(n)
1/2 are Scotian;
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(v) For any ∈ N+, the set D(⊗nC2) contains uncountably many Scotian density
operators.

In a similar way, we can define the scotian elements of the SSQC-structure.

Definition 29: (Super-down and super-up scotian qumixs).
Let ρ be a qumix of D.

(i) ρ is super-down Scotian iff P0 4ss ρ;
(ii) ρ is super-up Scotian iff ρ 4ss P1;
(iii) ρ is super-Scotian iff ρ is both super-down and super-up Scotian.

Theorem 30:

(i) ρ is super-down Scotian iff p(
√
NOT(ρ)) ≤ 1

2 and p(
√
I(ρ)) ≥ 1

2 ;
(ii) ρ is super-up Scotian iff p(

√
NOT(ρ)) ≥ 1

2 and p(
√
I(ρ)) ≤ 1

2 ;
(iii) ρ is super-Scotian iff p(

√
NOT(ρ)) = 1

2 and p(
√
I(ρ)) = 1

2 ;
(iv) ∀n ∈ N+: knP

(n)
0 , knP

(n)
1 , ρ

(n)
1/2 are super-Scotian;

(v) For any ∈ N+, the set D(⊗nC2) contains uncountably many super-Scotian
density operators.

Proof: (i)–(iv) Easy.
(v) It is sufficient to show that D(C2) contains uncountably many super-Scotian
elements. Let λ ∈ [−1, 1] ⊂ R. Consider the operator

ρ(λ) :=
1
2

(
1 + λ 0

0 1− λ

)

Clearly, ρ(λ) ∈ D(C2). An easy computation shows that p(
√
NOT(ρ(λ))) = 1

2 and
p(
√
I(ρ(λ))) = 1

2 . Thus, by (iii) we can conclude that ρ(λ) is super-Scotian.

The gates we have considered so far represent typical reversible logical opera-
tions. From a logical point of view, it might be interesting to consider also some
irreversible operations. An important example is represented by a ÃLukasiewicz-like
disjunction.

Definition 31: (The ÃLukasiewicz disjunction).
Let τ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

τ ⊕ σ := ρ
(1)
p(τ)⊕p(σ),

where ⊕ in p(τ) ⊕ p(σ) is the ÃLukasiewicz “truncated sum” defined on the real
interval [0, 1] (i.e. p(τ)⊕ p(σ) = min {1, p(τ) + p(σ)})9.

The following lemmas sum up some basic properties of the ÃLukasiewicz disjunc-
tion:

Lemma 32:
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(i)

τ ⊕ σ =

{
ρ
(1)
p(τ)+p(σ), if p(τ) + p(σ) ≤ 1;

P
(1)
1 , otherwise;

(ii) p(τ ⊕ σ) = p(τ)⊕ p(σ);
(iii) p(

√
NOT(τ ⊕ σ)) = 1

2 ;
(iv) p(

√
I(τ ⊕ σ)) = 1

2 ;
(v) p(

√
I(
√
NOT(τ ⊕ σ))) = p(

√
NOT(

√
I(τ ⊕ σ))) = 1

2 .

Proof: (i) Straightforward.
(ii) The proof follows from Lemma 22(i).
(iii) The proof follows from Lemma 22(ii).
(iv) The proof follows from Lemma 22(iii).
(v) If p(τ) + p(σ) > 1,then the proof follows from Theorem 20(iii)-(iv). Otherwise,
p(
√
I(
√
NOT(τ ⊕ σ)))

= tr(P1

√
I
√
Not((1− p(τ)− p(σ))P0 + (p(τ) + p(σ))P1)

√
Not

∗√
I)

= (1− p(τ)− p(σ))tr(P1HMP0M
∗H) + (p(τ) + p(σ))tr(P1HMP1M

∗H)
= (1− p(τ)− p(σ)) 1

2 + (p(τ) + p(σ)) 1
2 = 1

2 ;
p(
√
NOT(

√
I(τ ⊕ σ)))

= tr(P1

√
Not

√
I((1− p(τ)− p(σ))P0 + (p(τ) + p(σ))P1)

√
I
√
Not

∗
)

= (1− p(τ)− p(σ))tr(P1MHP0HM∗) + (p(τ) + p(σ))tr(P1MHP1HM∗)
= (1− p(τ)− p(σ)) 1

2 + (p(τ) + p(σ)) 1
2 = 1

2 .

Lemma 33: Let ρ ∈ D(⊗nC2).

(i) ∀n ∈ N+: ρ⊕ knP
(n)
1 = P

(1)
1 ;

(ii) ∀n ∈ N+: ρ⊕ knP
(n)
0 = ρ

(1)
p(ρ);

(iii) ρ⊕ NOT(ρ) = P
(1)
1 .

Proof: Straightforward.

From Lemma 33 it follows that p(ρ ⊕ knP
(n)
1 ) = 1, p(ρ ⊕ knP

(n)
0 ) = p(ρ) and

p(ρ⊕ NOT(ρ)) = 1.
The preorder 4 (where 4 represents either 4w or 4s or 4ss) permits us to

define on the set of all qumixs an equivalence relation ≡ (where ≡ represents either
≡w or ≡s or ≡ss, respectively) in the expected way.

Definition 34:

ρ ≡ σ iff ρ 4 σ and σ 4 ρ.

Clearly, ≡ is an equivalence relation. Let

[D]≡ := {[ρ]≡ : ρ ∈ D} .
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Unlike the qumixs (which are only preordered by 4), the equivalence-classes of
[D]≡ can be partially ordered in a natural way.

Definition 35:

[ρ]≡ 4 [σ]≡ iff ρ 4 σ.

The relation 4 (which is well defined) is a partial order.

Lemma 36:

(i) ∀n ∈ N+: [P1]≡ =
[
knP

(n)
1

]
≡
;

(ii) ∀n ∈ N+: [P0]≡ =
[
knP

(n)
0

]
≡
;

(iii) ∀n ∈ N+ ∀λ ∈ [0, 1]:
[
ρ
(1)
λ

]
≡

=
[
ρ
(n)
λ

]
≡
.

Proof: (i)-(ii) The proof follows from Theorem 18 (iv), Theorem 20 (ii) and from
the fact that ∀n ∈ N+: p(P (1)

1 ) = 1 = p(knP
(n)
1 ) and p(P (1)

0 ) = 0 = p(knP
(n)
0 ).

(iii) The proof follows from Lemma 22.

We will now consider three quotient-structures based on the three quotient-sets
[D]≡ss , [D]≡s and [D]≡w , respectively.

Theorem 37:

(i) ≡ss is a congruence with respect to the operations AND, ⊕, NOT,
√
NOT,

√
I;

(ii) ≡s is a congruence with respect to AND, ⊕, NOT,
√
NOT and is not a congruence

with respect to
√
I;

(iii) ≡w is a congruence with respect to AND, ⊕, NOT and is not a congruence with
respect to

√
NOT and

√
I.

Proof: The proof that ≡ is a congruence with respect to AND, ⊕, NOT is straightfor-
ward. The relation ≡s is not a congruence with respect to

√
I, because the following

situation is possible: [ρ]≡s = [σ]≡s and [
√
I(ρ)]≡s 6= [

√
I(σ)]≡s . Consider for exam-

ple the following qubit |ψ〉1/2 = 1√
2
|0〉+ 1√

2
|1〉 and qumix ρ1/2 = 1

2P0+ 1
2P1. It turns

out that p(|ψ〉1/2) = p(ρ1/2) = 1
2 and p(

√
Not(|ψ〉1/2)) = p(

√
NOT(ρ1/2)) = 1

2 . Ac-
cordingly, [P|ψ〉1/2

]≡s = [ρ1/2]≡s . However, p(
√
I(|ψ〉1/2)) = 0 and p(

√
I(ρ1/2)) = 1

2 .
Consequently, [P|ψ〉1/2

]≡ss 6= [ρ1/2]≡ss . The relation ≡w is not a congruence with
respect to

√
NOT, because the following situation is possible: [ρ]≡w = [σ]≡w and

[
√
NOT(ρ)]≡w 6= [

√
NOT(σ)]≡w . Consider for example the following unit vectors

of C2: |ψ〉 :=
√

2
2 |0〉 +

√
2

2 |1〉 and |ϕ〉 :=
√

2
2 |0〉 + 1+i

2 |1〉. It turns out that
p(|ψ〉) = p(|ϕ〉) = 1

2 . Accordingly, [P|ψ〉]≡w = [P|ϕ〉]≡w . However, p(
√
Not(|ψ〉)) = 1

2

and p(
√
Not(|ϕ〉)) = 1

2 −
√

2
4 ≈ 0.146447. Consequently, [P|ψ〉]≡s 6= [P|ϕ〉]≡s .

In this framework, we can define, in the expected way, the operations:
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• AND, ⊕, NOT on [D]≡;
• √NOT on [D]≡s ;
• √NOT and

√
I on [D]≡ss

.

Let ≡s∗ represent either ≡s or ≡ss.

Definition 38:
Let ρ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

(i) [ρ]≡AND[σ]≡ = [AND(ρ, σ)]≡;
(ii) [ρ]≡ ⊕ [σ]≡ = [ρ⊕ σ]≡;
(iii) NOT([ρ]≡) = [NOT(ρ)]≡;
(iv)

√
NOT([ρ]≡s∗) = [

√
NOT(ρ)]≡s∗ ;

(v)
√
I([ρ]≡ss) = [

√
I(ρ)]≡ss .

Lemma 39:

(i) The operation AND is associative and commutative;
(ii) The operation ⊕ is associative and commutative;
(iii) NOT(NOT([ρ]≡)) = [ρ]≡;
(iv)

√
NOT(

√
NOT([ρ]≡s∗)) = NOT([ρ]≡s∗);

(v)
√
I(
√
I([ρ]≡ss)) = [ρ]≡ss .

Proof: Straightforward.

On this basis, we can define the following three quotient-structures:

• (
[D]≡w , AND ,⊕ , NOT , [P0]≡w , [P1]≡w , [ρ1/2]≡w

)
• (

[D]≡s , AND ,⊕ , NOT ,
√
NOT , [P0]≡s , [P1]≡s , [ρ1/2]≡s

)

•
(
[D]≡ss , AND ,⊕ , NOT ,

√
NOT ,

√
I , [P0]≡ss , [P1]≡ss , [ρ1/2]≡ss

)
.

We will call such structures the standard irreversible weak quantum computa-
tional algebra (briefly, the IWQC-algebra), the standard irreversible strong quantum
computational algebra (briefly, the ISQC-algebra), the standard irreversible super-
strong quantum computational algebra (briefly, the ISSQC-algebra), respectively.

An interesting relation between the weak, the strong and the super-strong pre-
order is described by the following theorem.

Theorem 40: For any ρ, σ ∈ D:
[ρ]≡w 4w [σ]≡w iff [ρ]≡s AND [P1]≡s 4s [σ]≡s AND [P1]≡s

iff [ρ]≡ss AND [P1]≡ss 4ss [σ]≡ss AND [P1]≡ss .

Proof: Suppose p(ρ) ≤ p(σ). By Theorem 19(i), we obtain

p(AND(ρ, P1)) = p(ρ) ≤ p(σ) = p(AND(σ, P1)).

By Theorem 19(ii) and Theorem 20 (vii),
p(
√
NOT(AND(ρ, P1))) = 1

2 = p(
√
NOT(AND(σ, P1)))
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p(
√
I(AND(ρ, P1))) = 1

2 = p(
√
I(AND(σ, P1))).

Thus, [ρ]≡ss
AND [P1]≡ss

4ss [σ]≡ss
AND [P1]≡ss

([ρ]≡s AND [P1]≡s 4s [σ]≡s AND [P1]≡s).
Vice versa, suppose [ρ]≡ss AND [P1]≡ss 4ss [σ]≡ss AND [P1]≡ss

([ρ]≡s
AND [P1]≡s

4s [σ]≡s
AND [P1]≡s

).
Then,

p(ρ) = p(ρ)p(P1) = p(AND(ρ, P1)) ≤ p(AND(σ, P1)) = p(σ).

5. The Poincaré quantum computational structures

We will now restrict our analysis to the qumixs living in the two-dimensional space
C2. As is well known, every density operator of D(C2) has the following matrix
representation:

1
2

(I + r1X + r2Y + r3Z) ,

where r1, r2, r3 are real numbers such that r2
1 + r2

2 + r2
3 ≤ 1 and X,Y, Z are the

Pauli matrices:

X =
(

0 1
1 0

)
Y =

(
0 −i

i 0

)
Z =

(
1 0
0 −1

)
.

It turns out that a density operator 1
2 (I + r1X + r2Y + r3Z) is pure iff r2

1 +
r2
2 + r2

3 = 1. Consequently,

• Pure density operators are in 1 : 1 correspondence with the points of the surface
of the Poincaré sphere;

• Proper mixtures are in 1 : 1 correspondence with the inner points of the Poincaré
sphere.

Let ρ be a density operator of D(C2). We will denote by ρ̄ the point of the Poincaré
sphere that is univocally associated to ρ.

Let (r1, r2, r3) be a point of the Poincaré sphere. We will denote by ̂(r1, r2, r3)
the density operator univocally associated to (r1, r2, r3).

Lemma 41: Let ρ ∈ D(C2) such that ρ̄ = (r1, r2, r3). The following conditions
hold:

(i) p(ρ) = 1−r3
2 , p(

√
NOT(ρ)) = 1−r2

2 , p(
√
I(ρ)) = 1−r1

2 ;
(ii) 0 < p(ρ) < 1, 0 < p(

√
NOT(ρ)) < 1 and 0 < p(

√
I(ρ)) < 1, whenever ρ is a

proper mixture.

Proof: (i) Easy computation;
(ii) Since proper mixtures are in 1:1 correspondence with inner points of the
Poincaré sphere, we have: r2

1 + r2
2 + r2

3 < 1. Hence: r2
1, r

2
2, r

2
3 < 1 and −1 <

r1, r2, r3 < 1. Consequently: 0 < p(ρ) = 1−r3
2 < 1, 0 < p(

√
NOT(ρ)) = 1−r2

2 < 1 and
0 < p(

√
I(ρ)) = 1−r1

2 < 1.
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An irreversible conjunction can be now naturally defined on the set of all qumixs
of D(C2).

Definition 42: (The irreversible conjunction).
Let τ, σ ∈ D(C2).

IAND(τ, σ) := ρ
(1)
p(τ)p(σ)

Interestingly enough, the density operator IAND(τ, σ) can be described as a
reduced state of AND(τ, σ). Suppose we have a compound physical system consisting
of r (possibly compound) subsystems, and let

H = Hn1
1 ⊗ . . .⊗Hnr

r

be the Hilbert space associated to the total system (where Hnj

j = ⊗njC2).
Let ρ ∈ D(H) and 1 ≤ j ≤ r. The reduced state of ρ with respect to the

j-th subsystem is the unique density operator redj(ρ) that satisfies the following
condition, for any self-adjoint operator Aj of Hnj

j :

tr(Aj redj(ρ)) = tr((I(n1) ⊗ . . .⊗ I(nj−1) ⊗Aj ⊗ I(nj+1) ⊗ . . .⊗ I(nr))ρ),

(where I(nh) is the identity operator of Hnh

h ).
Clearly, ρ and redj(ρ) turn out to be statistically equivalent with respect to the

j-th subsystem of the total system.
One can prove that:

IAND(τ, σ) = red 3(AND(τ, σ)) = red 3(T(τ, σ, P0)).

In other words, IAND(τ, σ) represents the reduced state of AND(τ, σ) on the third
subsystem.

An interesting situation arises when both τ and σ are pure states. For instance,
suppose that:

τ = P|ψ〉 and σ = P|ϕ〉,

where |ψ〉 and |ϕ〉 are proper qubits. Then,

AND(τ, σ) = PT (1,1,1)(|ψ〉⊗|ϕ〉⊗|0〉),

which is a pure state. At the same time, we have:

IAND(τ, σ) = red 3(PT (1,1,1)(|ψ〉⊗|ϕ〉⊗|0〉)),

which is a proper mixture. Apparently, when considering only the properties of the
third subsystem, we loose some information. As a consequence, we obtain a final
state that does not represent a maximal knowledge. As is well known, situations
where the state of a compound system represents a maximal knowledge, while
the states of the subsystems are proper mixtures, play an important role in the
framework of entanglement-phenomena.

Lemma 43:
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(i) IAND is associative and commutative;
(ii) IAND(ρ, P0) = P0;
(iii) IAND(ρ, P1) = ρp(ρ);
(iv) p(IAND(ρ, σ)) = p(ρ)p(σ);
(v) p(

√
NOT(IAND(ρ, σ))) = 1

2 ;
(vi) p(

√
I(IAND(ρ, σ))) = 1

2 .

Proof: Easy.

Consider now the structure(
D(C2) , IAND ,⊕ , NOT ,

√
NOT ,

√
I , P0, P1 , ρ1/2

)
.

We will call such a structure the Poincaré irreversible quantum computational
algebra (briefly, the Poincaré IQC-algebra).

We can refer to the relation ¹≡, representing the restriction of ≡ to D(C2). For
any ρ ∈ D(C2), let

[ρ]¹≡ :=
{
σ ∈ D(C2) : ρ ≡ σ

}
.

Furthermore, define

[D(C2)]¹≡ :=
{
[ρ]¹≡ : ρ ∈ D(C2)

}
.

The operations IAND ,⊕ , NOT ,
√
NOT ,

√
I and the relation 4 can be defined on

[D(C2)]¹≡ in the expected way.
Consider now the three quotient-structures

• (
[D(C2)]¹≡w , IAND ,⊕ , NOT , [P0]¹≡w , [P1]¹≡w , [ρ1/2]¹≡w

)

• (
[D(C2)]¹≡s , IAND ,⊕ , NOT ,

√
NOT , [P0]¹≡s , [P1]¹≡s , [ρ1/2]¹≡s

)

•
(
[D(C2)]¹≡ss , IAND ,⊕ , NOT ,

√
NOT ,

√
I , [P0]¹≡ss , [P1]¹≡ss , [ρ1/2]¹≡ss

)
.

We will call these structures the contracted Poincaré irreversible weak quantum
computational algebra (briefly, the contracted Poincaré IWQC-algebra), the con-
tracted Poincaré irreversible strong quantum computational algebra (briefly, the con-
tracted Poincaré ISQC-algebra), the contracted Poincaré irreversible super-strong
quantum computational algebra (briefly, the contracted Poincaré ISSQC-algebra),
respectively. By contracted Poincaré algebra we will mean anyone of this three
structures.

Theorem 44: The contracted Poincaré algebra is isomorphic to the corresponding
standard irreversible quantum computational algebra, via the map
g : [D(C2)]¹≡ → [D]≡ such that ∀ρ ∈ D(C2):

g([ρ]¹≡) = [ρ]≡.

Moreover, for any ρ , σ ∈ D(C2): [ρ]¹≡ 4 [σ]¹≡ iff g( [ρ]¹≡) 4 g([σ]¹≡).
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Proof: Let us consider the contracted Poincaré ISSQC-algebra. One can readily
see that g preserves the operation NOT,

√
NOT,

√
I and ⊕. By Theorem 19, Theorem

20(vii) and Lemma 43(iv-vi), g preserves also the operation IAND. Clearly, the map
g is injective. Let us prove that g is also surjective. To this aim, it is sufficient to
show that for any n ∈ N+ and for any ρ ∈ D(⊗nC2), there exists a density operator
ρ′ ∈ D(C2) such that:

(i) p(ρ) = p(ρ′);
(ii) p(

√
NOT(ρ)) = p(

√
NOT(ρ′));

(iii) p(
√
I(ρ)) = p(

√
I(ρ′)).

Let ρ ∈ D(⊗nC2) and let ρ′ be the reduced state of ρ with respect to the n-th
subsystem. Accordingly, for any self-adjoint operator A of C2, we have:

tr((I(n−1) ⊗A)ρ) = tr(Aρ′). (1)

Thus, p(ρ) = tr(P (n)
1 ρ) = tr((I(n−1) ⊗ P

(1)
1 )ρ) = tr(P (1)

1 ρ′) = p(ρ′).
We now prove (ii).
p(
√
NOTρ) = tr(P (n)

1 (I(n−1) ⊗M)ρ(I(n−1) ⊗M∗))
= tr((I(n−1) ⊗M∗P (1)

1 M)ρ)
= tr(M∗P (1)

1 Mρ′) (1)
= p(

√
NOT(ρ′)). Finally, we prove (iii).

p(
√
I(ρ)) = tr(P (n)

1 (I(n−1) ⊗H)ρ(I(n−1) ⊗H))
= tr((I(n−1) ⊗HP

(1)
1 H)ρ)

= tr(HP
(1)
1 Hρ′) (1)

= p(
√
I(ρ′)). In a similar way, one can prove the theorem for the contracted Poincaré

ISQC-algebra and for the contracted Poincaré IWQC-algebra.

Interestingly enough, any density operator ρ of C2 is associated to a qubit |ψρ〉
that is “statistically equivalent” to ρ. In a sense, |ψρ〉 represents a “purification” of
ρ.

Lemma 45: For any ρ ∈ D(C2) such that ρ̄ = (r1, r2, r3), there exists a qubit |ψρ〉
that satisfies the following conditions:

(i) p(ρ) = p(|ψρ〉);
(ii) p(

√
NOT(ρ)) = p(

√
Not(|ψρ〉)).

Proof: Let ρ ∈ D(C2) such that ρ̄ = (r1, r2, r3). Consider the vector

|ψρ〉 =

√
1− r2

2 − r2
3 − ir2√

2(1− r3)
|0〉+

√
1− r3

2
|1〉,

which turns out to be a qubit. An easy computation shows that

p(|ψρ〉) =
1− r3

2
and p(

√
Not|ψρ〉) =

1− r2

2
.
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Thus by Lemma 41(i), we can conclude that

p(|ψρ〉) = p(ρ) and p(
√
Not(|ψρ〉)) = p(

√
NOTρ).

As an interesting application of Lemma 45 consider a density operator whose
form is: ρλ = (1− λ)P0 + λP1. Then, by Lemma 45, there exists a qubit |ψρλ

〉 such
that p(|ψρλ

〉) = λ. It turns out that

|ψρλ
〉 =

√
1− λ|0〉+

√
λ|1〉.

One can easily prove that for any choice of a proper mixture ρ ∈ D(C2) there
exists no qubit |ψ〉 such that p(|ψ〉) = p(ρ), p(

√
Not(|ψ〉)) = p(

√
NOT(ρ)) and

p(
√
I(|ψ〉)) = p(

√
I(ρ)). As an example, consider ρ1/2 that is a fixed point of

√
NOT

and
√
I. Let ψ be any qubit such that p(

√
Not(|ψ〉)) = p(|ψ〉) = 1

2 . Hence, |ψ〉 =
eiϑ√

2
(|0〉 ± |1〉), but p

(√
I

(
eiϑ√

2
(|0〉+ |1〉)

))
= 0 and p

(√
I

(
eiϑ√

2
(|0〉 − |1〉)

))
= 1.

Theorem 46: Let f : Dn → D(C2). Consider the set Q of all qubits. Then, there
exists a map

fQ : Qn → Q

such that for any qubits |ψ1〉, . . . , |ψn〉 the following conditions hold:

(i) p(fQ(|ψ1〉, . . . , |ψn〉)) = p(f(P|ψ1〉, . . . , P|ψn〉));
(ii) p(

√
Not(fQ(|ψ1〉, . . . , |ψn〉))) = p(

√
NOT(f(P|ψ1〉, . . . , P|ψn〉))).

Proof: Let |ψ1〉, . . . , |ψn〉 ∈ Q. Then P|ψ1〉, . . . , P|ψn〉 ∈ D and f(P|ψ1〉, . . . , P|ψn〉)
∈ D(C2). By lemma 45, there exists a qubit |ψf(P|ψ1〉,...,P|ψn〉)〉 such that
p(f(P|ψ1〉, . . . , P|ψn〉)) = p(|ψf(P|ψ1〉,...,P|ψn〉)〉) and p(

√
NOT(f(P|ψ1〉, . . . , P|ψn〉))) =

p(
√
Not(|ψf(P|ψ1〉,...,P|ψn〉)〉)).

Thus, we can put fQ(|ψ1〉, . . . , |ψn〉) := |ψf(P|ψ1〉,...,P|ψn〉)〉.

As a significant application of Theorem 46, we obtain that a ÃLukasiewicz dis-
junction ⊕Q and an irreversible conjunction IAndQ can be naturally defined for
any qubits |ϕ〉 = a0|0〉+ a1|1〉 and |χ〉 = b0|0〉+ b1|1〉:

|ϕ〉 ⊕Q |χ〉 :=
{√

1− |a1|2 − |b1|2|0〉+
√
|a1|2 + |b1|2|1〉, if |a1|2 + |b1|2 ≤ 1;

|1〉, otherwise;

IAndQ(|ϕ〉, |χ〉) :=
√

1− |a1b1|2|0〉+ |a1b1||1〉.
From an intuitive point of view, it is interesting to compare IAndQ(|ϕ〉, |χ〉) with

IAND(P|ϕ〉, P|χ〉) and with And(|ϕ〉, |χ〉). As we already know, And(|ϕ〉, |χ〉) represents
a pure state of a compound physical system (living in the space ⊗3C2). Hence, one is
dealing with a maximal knowledge, that also includes a maximal knowledge about
the component systems (described by the pure states |ϕ〉 and |χ〉, respectively).
Furthermore, the transformation (|ϕ〉, |χ〉) 7→ And(|ϕ〉, |χ〉) is reversible. The state
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IAND(P|ϕ〉, P|χ〉), instead, is generally a proper mixture: a non-maximal knowledge
about a (non-decomposed) system, representing the output of a computation, where
the original information about the component systems (the inputs) has been lost.
The transformation (P|ϕ〉, P|χ〉) 7→ IAND(P|ϕ〉, P|χ〉) is typically irreversible.

The state IAndQ(|ϕ〉, |χ〉) represents a “purification” of IAND(P|ϕ〉, P|χ〉): one is
dealing with a maximal knowledge about the output, that does not preserve the
original information about the inputs.

6. Quantum computational logics

The quantum computational structures we have investigated suggest a natural se-
mantics, based on the following intuitive idea: any sentence α of the language is
interpreted as a convenient qumix, that generally depends on the logical form of
α; at the same time, the logical connectives are interpreted as operations that ei-
ther are gates or can be conveniently defined in terms of gates. We will consider a
minimal (sentential) quantum computational language L that contains a privileged
atomic sentence f (whose intended interpretation is the truth-value Falsity) and the
following primitive connectives: a negation (¬), a square root of the negation (

√¬),
a square root of the identity (

√
id), a ternary conjunction

∧
(which corresponds to

the Petri-Toffoli gate). For any sentences α and β, the expression
∧

(α, β, f) is a
sentence of L. In this framework, the usual conjunction α∧β is dealt with as meta-
linguistic abbreviation for the ternary conjunction

∧
(α, β, f). The occurrence of f

as the third element in the formula
∧

(α, β, f) is called a non-genuine occurrence of
f . All other occurrences of atomic sentences in a formula are called genuine.

Let FormL be the set of all sentences of L. We will use the following metavari-
ables: q, r, . . . for atomic sentences and α, β, . . . for sentences. The connective dis-
junction (∨) is supposed to be defined via de Morgan (α ∨ β := ¬(¬α ∧ ¬β)),
while the privileged sentence t representing the Truth is defined as the negation
of f (t := ¬f). This minimal quantum computational language can be extended
to richer languages containing other primitive connectives (for instance, a connec-
tive corresponding to the ÃLukasiewicz irreversible disjunction ⊕) that we will not
consider here.

We will first introduce the notion of reversible quantum computational model
(briefly, RQC-model).

Definition 47: (RQC-model).
A RQC-model of L is a function Qum : FormL → D (which associates to any
sentence α of the language a qumix):

Qum(α) :=





a density operator of D(C2) if α is an atomic sentence;
P0 if α = f ;
NOT(Qum(β)) if α = ¬β;√
NOT(Qum(β)) if α =

√¬β;√
I(Qum(β)) if α =

√
id β;

T(Qum(β), Qum(γ), Qum(f)) if α =
∧

(β, γ, f).
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The concept of RQC-model seems to have a “quasi-intensional” feature: the
meaning Qum(α) of the sentence α partially reflects the logical form of α. In fact,
the dimension of the Hilbert space where Qum(α) “lives” depends on the number of
occurrences of atomic sentences in α.

Definition 48: (The atomic complexity of α).

At(α) =





1 if α is an atomic sentence;
At(β) if α = ¬β or α =

√¬β or α =
√

id β;
At(β) + At(γ) + 1 if α =

∧
(β, γ, f).

Lemma 49: If At(α) = n, then Qum(α) ∈ D(⊗nC2).

Proof: Straightforward.

Given a reversible quantum computational model Qum, any sentence α has a nat-
ural probability-value, which can be also regarded as its extensional meaning with
respect to Qum.

Definition 50: (The probability-value of α in a model Qum).

pQum(α) := p(Qum(α)).

As we already know, qumixs are naturally preordered by three basic relations:
the weak preorder 4w, the strong preorder 4s and the super-strong preorder 4ss.
This suggests to introduce three different consequence relations: the weak, the strong
and the super-strong consequence.

Definition 51: (Weak, strong and super-strong consequence in a model Qum).

(i) A sentence β is a weak consequence in a model Qum of a sentence α (α |=w
Qum β)

iff Qum(α) 4w Qum(β).
(ii) A sentence β is a strong consequence in a model Qum of a sentence α (α |=s

Qum β)
iff Qum(α) 4s Qum(β).

(iii) A sentence β is a super-strong consequence in a model Qum of a sentence α

(α |=ss
Qum β) iff Qum(α) 4ss Qum(β).

The notions of weak, strong and super-strong truth in a model Qum, weak, strong
and super-strong logical consequence, weak, strong and super-strong logical truth can
be now defined in the expected way.

Definition 52: (Weak, strong and super-strong truth in a model Qum).

(i) A sentence α is weakly true in a model Qum iff t |=w
Qum α.

(ii) A sentence α is strongly true in a model Qum iff t |=s
Qum α.

(iii) A sentence α is super-strongly true in a model Qum iff t |=ss
Qum α.

Definition 53: (Weak, strong and super-strong logical consequence).
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(i) A sentence β is a weak logical consequence of a sentence α (α |=w β) iff for
any model Qum, α |=w

Qum β.
(ii) A sentence β is a strong logical consequence of a sentence α (α |=s β) iff for

any model Qum, α |=s
Qum β.

(iii) A sentence β is a super-strong logical consequence of a sentence α (α |=ss β)
iff for any model Qum, α |=ss

Qum β.

Definition 54: (Weak, strong and super-strong logical truth).

(i) A sentence α is a weak logical truth iff for any model Qum, α is weakly true in
Qum.

(ii) A sentence α is a strong logical truth iff for any model Qum, α is strongly true
in Qum.

(iii) A sentence α is a super-strong logical truth iff for any model Qum, α is super-
strongly true in Qum.

The weak, strong and super-strong logical consequence relations permit us to
characterize semantically three different forms of quantum computational logic. We
will indicate by QCLw,QCLs,QCLss the logics that are semantically character-
ized by the weak, strong and super-strong logical consequence relation respectively.
In other words, we have:

• β is a logical consequence of α in the logic QCLw (α |=QCLw β) iff β is a weak
logical consequence of α;

• β is a logical consequence of α in the logic QCLs (α |=QCLs β) iff β is a strong
logical consequence of α;

• β is a logical consequence of α in the logic QCLss (α |=QCLss β) iff β is a
super-strong logical consequence of α.

Clearly, QCLss is a sublogic of QCLs and QCLs is a sublogic of QCLw. For:

α |=QCLss β implies α |=QCLs β implies α |=QCLw β.

But not the other way around!
An interesting relation between the three logics QCLss, QCLs and QCLw is

described by the following theorem:

Theorem 55: α |=QCLw β iff α ∧ t |=QCLs β ∧ t iff α ∧ t |=QCLss β ∧ t.

Proof: The theorem is a direct consequence of the definition of QCLss, QCLs

and QCLw and of Theorem 40.

We will indicate by QCL the generic quantum computational logic (either
QCLss or QCLs or QCLw).

Let us now turn to the concept of irreversible quantum computational model
(briefly, IQC-model), where the “quasi-intensional” character of reversible models
is lost. In fact, the interpretation of a sentence in an irreversible model does not
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generally reflect the logical form of our sentence: the meaning of the whole does not
include the meanings of its parts. In spite of this, we will prove that reversible and
irreversible models turn out to characterize the same logic.

Definition 56: (IQC-model).
An IQC-model of L is a function QumC

2
: FormL → D(C2) (which associates to

any sentence α of the language a qumix of C2):

QumC
2
(α) :=





P0 if α = f ;
NOT(QumC

2
(β)) if α = ¬β;√

NOT(QumC
2
(β)) if α =

√¬β;√
I(QumC2

(β)) if α =
√

id β;
IAND(QumC

2
(β), QumC

2
(γ)) if α =

∧
(β, γ, f).

The weak, strong and super-strong notions of consequence, truth, logical conse-
quence, logical truth are defined like in the reversible case, mutatis mutandis. The
logics that are determined by the weak, strong and super-strong irreversible logi-
cal consequence will be denoted by IQCLw, IQCLs, IQCLss, respectively; while
IQCL will represent the generic irreversible quantum computational logic.

Lemma 57: Let Qum be a RQC-model and let QumC
2

be an IQC-model such that for
any atomic sentence q: Qum(q) = QumC

2
(q). Then, for any sentence α ∈ FormL:

p(Qum(α)) = p(QumC
2
(α)).

Proof: The proof is by induction on the length (i.e. the number of connectives) of
α.

Corollary 58:

(i) For any RQC-model Qum, there exists an IQC-model QumC
2

such that for any
α ∈ FormL:

p(Qum(α)) = p(QumC
2
(α));

(ii) For any IQC-model QumC
2

there exists a RQC-model Qum such that for any
α ∈ FormL:

p(QumC
2
(α)) = p(Qum(α)).

Theorem 59:

(i) α |=QCLss β iff α |=IQCLss β;
(ii) α |=QCLs β iff α |=IQCLs β;
(iii) α |=QCLw β iff α |=IQCLw β.

Proof: The theorem is a direct consequence of Corollary 58.

Hence, each QCL and its corresponding IQCL are the same logic.
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So far we have considered (reversible and irreversible) models, where the mean-
ing of any sentence is represented by a qumix. A natural question arises: do density
operators have an essential role in characterizing QCL? This question has a nega-
tive answer in the case of QCLs and QCLw.

Let us first introduce the notion of (reversible) qubit-model (which is the basic
concept of the qubit-semantics described in Refs. 1 and 10).

Definition 60: (Reversible qubit-model).
A reversible qubit-model of L is a function Qub : FormL → R (which associates to
any sentence α of the language a quregister):

Qub(α) :=





a qubit in C2 if α is an atomic sentence;
|0〉 if α = f ;
Not(Qub(β)) if α = ¬β;√
Not(Qub(β)) if α =

√¬β;√
I(Qub(β)) if α =

√
id β;

T (Qub(β), Qub(γ), Qub(f)) if α =
∧

(β, γ, f).

The notions of (weak, strong and super-strong) consequence, truth, logical conse-
quence, logical truth are defined like in the case of reversible qumix-models, mutatis
mutandis.

We will write α |=Qub
QCLs β, when β is a strong logical consequence of α in the

qubit-semantics. In a similar way, we will write α |=Qub
QCLw β when β is a weak

logical consequence in the same semantics.
Instead of the class R of all quregisters, we could equivalently refer to the class

DR of all pure density operators having the form P|ψ〉, where |ψ〉 is a quregister.
One can easily show that DR is closed under the gates NOT,

√
NOT,

√
I, AND. At the

same time, DR is not closed under IAND, because (as we have seen) IAND(P|ψ〉, P|ϕ〉)
is, generally, a proper mixture.

Lemma 61: Consider a reversible qubit-model Qub and let Qum be a RQC-model
such that for any atomic sentence q, Qum(q) = PQub(q). Then, for any sentences α:

Qum(α) ≡ PQub(α).

Proof: Easy.

On this basis we can prove that the qubit-semantics and the qumix-semantics
characterize the same logics QCLs and QCLw.

Theorem 62:

(i) α |=QCLs β iff α |=Qub
QCLs β;

(ii) α |=QCLw β iff α |=Qub
QCLw β.

Proof:
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(i) (a) Suppose that α |=QCLs β. Then for any RQC-model Qum:Qum(α) 4s Qum(β).
Hence, for any Qum such that Qum(α) and Qum(β) are pure density operators:
Qum(α) 4s Qum(β).
Consequently, by Lemma 61, for any qubit-model Qub:Qub(α) 4s Qub(β).

(b) Suppose, by contradiction, that α |=Qub
QCLs β and α 2QCLs β. Then, by The-

orem 59 there exists an irreversible model QumC2

such that QumC2

(α) �s

QumC2

(β). By Lemma 45, there exists a qubit-model Qub such that for
any sentential letter q: p(Qub(q)) = p(QumC2

(q)) and p(
√
Not(Qub(q))) =

p(
√
NOT(QumC2

(q))). One can easily prove that for any α, p(Qub(α)) =
p(QumC2

(α)) and p(
√
Not(Qub(α))) = p(

√
NOT(QumC2

(α))) (by induc-
tion on the length of α).
Consequently, α 2QubQCLs β, contradiction.

(ii) Similarly.

The proof of Theorem 62 cannot be extended to the case of QCLss. As we
have seen, for any proper mixtures ρ ∈ D(C2) there exists no qubit |ψ〉 such that
p(|ψ〉) = p(ρ), p(

√
Not(|ψ〉)) = p(

√
NOT(ρ)) and p(

√
I(|ψ〉)) = p(

√
I(ρ)). Hence, the

following situation is possible:

• QumC2

(q) is a proper mixture;
• there exists no qubit-model Qub such that:

p(Qub(q)) = p(QumC2

(q));

p(
√
Not(Qub(q))) = p(

√
NOT(QumC2

(q)));

p(
√
I(Qub(q))) = p(

√
I(QumC2

(q))).

A remarkable property of the logics QCL is the following: our logics do not
admit any “genuine” logical truth. In other words, any sentence α, that does not
contain the atomic sentence f , cannot be a logical truth.

Let us first prove the following theorem:

Theorem 63: Let Qum be a RQC-model and let α be any sentence. If p(Qum(α)) ∈
{0, 1}, then there is an atomic subformula q of α such that p(Qum(q)) ∈ {

0, 1
2 , 1

}
.

Proof: Suppose that p(Qum(α)) ∈ {0, 1}. The proof is by induction on the length
of α.
(i) α is an atomic sentence. The proof is trivial.
(ii) α = ¬β. By Theorem 16(iii), p(Qum(α)) = 1 − p(Qum(β)) ∈ {0, 1}. The conclu-
sion follows by induction hypothesis.
(iii) α =

√¬β. By hypothesis and by Theorem 19(ii), β cannot be a conjunction.
Consequently, only the following cases are possible: (iiia) β = q; (iiib) β = ¬γ; (iiic)
β =

√¬γ; (iiid) β =
√

id γ.
(iiia) β = q. By hypothesis, p(

√¬β) ∈ {0, 1}. One can easily show that p(q) = 1
2 .
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(iiib) β = ¬γ. By Theorem 18(iii), p(Qum(
√¬¬γ)) = p(Qum(¬√¬γ)) = 1 −

p(Qub(
√¬γ)). The conclusion follows by induction hypothesis.

(iiic) β =
√¬γ. Then p(Qum(

√¬√¬γ)) = p(Qum(¬γ)) = 1− p(Qum(γ)). The conclu-
sion follows by induction hypothesis.
(iiid) β =

√
id γ. By Theorem 20(vi), p(Qub(

√¬
√

id γ)) = 1 − p(Qub(
√¬γ)). The

conclusion follows by induction hypothesis.
(iv) α =

√
id β. By hypothesis and by Theorem 20(vii), β cannot be a conjunction.

Consequently, only the following cases are possible: (iva) β = q; (ivb) β = ¬γ; (ivc)
β =

√¬γ; (ivd) β =
√

id γ.
(iva) β = q. By hypothesis, p(

√
id β) ∈ {0, 1}. One can easily show that p(q) = 1

2 .
(ivb) β = ¬γ. By Theorem 20(v), p(Qum(

√
id¬γ)) = p(Qum(

√
id γ)). The conclusion

follows by induction hypothesis.
(ivc) β =

√¬γ. Then p(Qum(
√

id
√¬γ)) = p(Qum(

√
id γ)). The conclusion follows

by induction hypothesis.
(ivd) β =

√
id γ. Then p(Qum(

√
id
√

id γ)) = p(Qum(γ)). The conclusion follows by
induction hypothesis.
(v) α =

∧
(β, γ, f). By Theorem 19(i), p(Qum(

∧
(β, γ, f)) = p(Qum(β))p(Qum(γ)) ∈

{0, 1}. The conclusion follows by induction hypothesis.

As a consequence, we immediately obtain the following Corollary.

Corollary 64: If α does not contain any genuine occurrence of f , then α is not a
logical truth of QCL.

Proof: Suppose, by contradiction, that α is a logical truth of QCL. Then, we
obtain that: p(α) = 1. Let q1, . . . ,qn be the atomic sentences genuinely occurring
in α. Since α does not contain any genuine occurrence of f , there exists a RQC-model
Qum such that for any i (1 ≤ i ≤ n), p(Qum(qi)) /∈ {0, 1

2 , 1}. Then, by Theorem 63,
p(Qum(α)) /∈ {0, 1}, contradiction.

We will now list some interesting logical consequences and rules that hold for
the logics QCL. We will indicate by α |= β the logical consequence relation that
refers to QCL. According to the usual notation we will write:

α1 |= β1, . . . , αn |= βn

γ |= δ
,

to be read as: if α1 |= β1, . . . , αn |= βn, then γ |= δ. We will also write α ≡ β as an
abbreviation for: α |= β and β |= α.

Since QCLss is a sublogic of both QCLs and QCLw, any logical consequence
that holds in QCLss will also hold in QCLs and in QCLw. At the same time,
some rules that hold in QCLss may be violated in QCLs and in QCLw (and, of
course, vice versa). A similar relation holds for QCLs and QCLw.

Theorem 65: (Logical consequences and rules of QCL).
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(i) α |= α;
(identity)

(ii) α |= β, β |= γ
α |= γ ;

(transitivity)

(iii) α ≡ ¬¬α;
(double negation)

(iv)
√¬√¬α ≡ ¬α;
(the double square root of the negation principle)

(v) ¬√¬α ≡ √¬¬α;
(permutation of the negations)

(vi)
√¬f |= √¬t;
(a “tentative negation” of the falsity implies a “tentative negation” of the
truth)

(vii)
√

id
√

id α ≡ α;
(the double square root of the identity principle)

(viii) α ∧ β ≡ β ∧ α, α ∨ β ≡ β ∨ α;
(commutativity)

(ix) α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ, α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ;
(associativity)

(x) ¬(α ∧ β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α ∧ ¬β;
(de Morgan)

(xi) α ∧ (β ∨ γ) |= (α ∧ β) ∨ (α ∧ γ), (α ∨ β) ∧ (α ∨ γ) |= α ∨ (β ∧ γ);
(distributivity 1)

(xii) f ∧ f ≡ f , t ∧ t ≡ t;
(idempotence for the truth and the falsity)

(xiii) f ∧ t ≡ f , f ∨ t ≡ t;

(xiv) α ≡ β
¬α ≡ ¬β ;
(logical equivalence is a congruence for the negation)
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(xv) α ≡ γ, β ≡ δ
α∧β ≡ γ∧δ ;

(logical equivalence is a congruence for the conjunction)

(xvi)
√¬(α ∧ β) |= √¬t;

Proof: Easy.

Let us now consider examples of logical consequences and rules that hold in
QCLs (QCLw) and are violated in QCLss.

Theorem 66: (Logical rules of QCLs and QCLw that fail in QCLss).

(i) α |= β
¬β |= ¬α ;
(contraposition for the negation)

(ii)
√¬α |= √¬t

α∧β |= α ,
√¬β |= √¬t

α∧β |= β ;

(iii)
√¬α |= √¬t

f |=α .

(Weak Duns Scotus)

Proof: Easy.

Theorem 67: (Logical consequences of QCLw that fail both in QCLss and
QCLs).

(i) α ∧ β |=QCLw α, α ∧ β |=QCLw β;

(ii) α |=QCLw α ∨ β, β |=QCLw α ∨ β;

(iii) α ∧ α |=QCLw α, α |=QCLw α ∨ α;
(semiidempotence 1)

(iv) f |=QCLw α.

(Duns Scotus)

Proof: Easy.

Theorem 68: (A rule that holds both in QCLs and QCLss and fails in QCLw).

α ≡ β√¬α ≡ √¬β
.

Proof: Easy.
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In other words, logical equivalence is a congruence for the square root of the
negation.

Theorem 69: (A rule that holds in QCLss and fails both in QCLs and QCLw).

α ≡ β√
id α ≡

√
id β

.

Proof: Easy.

In other words, logical equivalence is a congruence for the square root of the
identity.

Theorem 70: (Logical consequences that fail in QCL).

(i) α 6|= α ∧ α;
(semiidempotence 2)

(ii) t 6|= α ∨ ¬α;
(excluded middle)

(iii) t 6|= ¬(α ∧ ¬α);
(non contradiction)

(iv) (α ∧ β) ∨ (α ∧ γ) 6|= α ∧ (β ∨ γ), α ∨ (β ∧ γ) 6|= (α ∨ β) ∧ (α ∨ γ).
(distributivity 2)

Proof: Easy.

Apparently, the logics QCL turn out to be non standard forms of quantum
logic. Conjunction and disjunction do not correspond to lattice operations, because
they are not generally idempotent. Unlike Birkhoff and von Neumann’s quantum
logic, the weak distributivity principle ((α∧β)∨(α∧γ) |= α∧(β∨γ)) breaks down.
At the same time, the strong distributivity (α ∧ (β ∨ γ) |= (α ∧ β) ∨ (α ∧ γ)), that
is violated in orthodox quantum logic, is here valid. Both the excluded middle and
the non contradiction principles are violated. As a consequence, one can say that
the logics arising from quantum computation represent, in a sense, new examples
of fuzzy logics.

The axiomatizability of QCL is an open problem.

7. Quantum trees

An interesting feature of the quantum computational semantics is the following: the
meaning and the probability-value of any molecular sentence α can be naturally
described (and calculated) by means of a convenient quantum tree, that illustrates
a kind of reversible transformation of the atomic subformulas of α.
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The notion of quantum tree can be dealt with either in the framework of the
qubit-semantics or in the framework of the qumix-semantics. In the first case quan-
tum trees will be called qubit-trees, while in the second case we will speak of qumix-
trees. Before dealing with quantum trees, we will first introduce the notion of syn-
tactical tree of a sentence α (abbreviated as STreeα). Consider all subformulas of
α.

Any subformula may be:

• an atomic sentence q (possibly f);
• a negated sentence ¬β;
• a square root negated sentence

√¬β;
• a square root sentence

√
id β;

• a conjunction
∧

(β, γ, f).

The intuitive idea of syntactical tree can be illustrated as follows. Every occur-
rence of a subformula of α gives rise to a node of STreeα. The tree consists of a
finite number of levels and each level is represented by a sequence of subformulas
of α:

Levelk(α)
...

Level1(α)

The root-level (denoted by Level1(α)) consists of α. From each node of the tree at
most 3 edges may branch according to the branching-rule (Fig. 1).

T{º,�, }f

º f

Ï¬º

º �

q

q

¬º

º

Fig. 1. Branching rules for the construction of syntactical trees.

The second level (Level2(α)) is the sequence of subformulas of α that is obtained
by applying the branching-rule to α. The third level (Level3(α)) is obtained by
applying the branching-rule to each element (node) of Level2(α), and so on. Finally,
one obtains a level represented by the sequence of all atomic occurrences of α. This
represents the last level of STreeα. The height of Streeα (denoted by Height(α))
is then defined as the number of levels of STreeα.

A more formal definition of syntactical tree can be given by using some standard
graph-theoretical notions.

For example, the syntactical tree of α = ¬q∧(r∧√¬q) is the following (Fig. 2).
Clearly the height of Streeα is 4.
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Leve (�)=l q  r q  f¬ ¬TÏ2

Level (�)=�1

q r f

f

f

r

Fig. 2. The syntactical tree of α = ¬q ∧ (r ∧√¬q).

For any choice of a qubit-model Qub, the syntactical tree of α determines a
corresponding sequence of quregisters. Consider a sentence α with n atomic occur-
rences (q1, . . . ,qn). Then Qub(α) ∈ ⊗nC2. We can associate a quregister |ψi〉 to
each Leveli(α) of Streeα in the following way. Suppose that:

Leveli(α) = (β1, . . . , βr).

Then:

|ψi〉 = Qub(β1)⊗ . . .⊗ Qub(βr).

Hence:

|ψHeight(α)〉 = Qub(q1)⊗ . . .⊗ Qub(qn)
...

|ψ1〉 = Qub(α)

where all |ψi〉 belong to the same space ⊗nC2.
From an intuitive point of view, |ψHeight(α)〉 can be regarded as a kind of epis-

temic state, corresponding to the input of a computation, while |ψ1〉 represents the
output.

We obtain the following correspondence:

LevelHeight(α)(α) ! |ψHeight(α)〉 : the input
. . . ! . . .

Level1(α) ! |ψ1〉 : the output

The notion of qubit-tree of a sentence α (QubTreeα) can be now defined as a
particular sequence of unitary operators that is uniquely determined by the syn-
tactical tree of α. As we already know, each Leveli(α) of STreeα is a sequence
of subformulas of α. Let Levelji (α) represent the j-th element of Leveli(α). Each
node Levelji (α) (where 1 ≤ i < Height(α)) can be naturally associated to a unitary
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operator Opj
i , according to the following operator-rule:

Opj
i :=





I(1) if Levelji (α) is an atomic sentence;
Not(r) if Levelji (α) = ¬β and Qub(β) ∈ ⊗rC2;√
Not

(r)
if Levelji (α) =

√¬β and Qub(β) ∈ ⊗rC2;√
I
(r)

if Levelji (α) =
√

id β and Qub(β) ∈ ⊗rC2;
T (r,s,1) if Levelji (α) =

∧
(β, γ, f), Qub(β) ∈ ⊗rC2 and Qub(γ) ∈ ⊗sC2.

On this basis, one can associate an operator Ui to each Leveli(α) (such that
1 ≤ i < Height(α)):

Ui :=
|Leveli(α)|⊗

j=1

Opj
i ,

where |Leveli(α)| is the length of the sequence Leveli(α).
Being the tensor product of unitary operators, every Ui turns out to be a unitary

operator. One can easily show that all Ui are defined on the same space ⊗nC2, where
n is the atomic complexity of α.

The notion of qubit-tree of a sentence can be now defined as follows.

Definition 71: (The qubit-tree of α).
The qubit-tree of α (denoted by QubTreeα) is the operator-sequence

(U1, . . . , UHeight(α)−1)

that is uniquely determined by the syntactical tree of α.

As an example, consider the following sentence: α = q ∧¬q =
∧

(q,¬q, f). The
syntactical tree of α is the following:

Level3(α) = (q,q, f);
Level2(α) = (q,¬q, f);
Level1(α) =

∧
(q,¬q, f).

In order to construct the qubit-tree of α, let us first determine the operators
Opj

i corresponding to each node of Streeα. We will obtain:

• Op1
1 = T (1,1,1), because

∧
(q,¬q, f) is connected with (q,¬q, f) (at Level2(α));

• Op1
2 = I(1), because q is connected with q (at Level3(α));

• Op2
2 = Not(1), because ¬q is connected with q (at Level3(α));

• Op3
2 = I(1), because f is connected with f (at Level3(α)).

The qubit-tree of α is represented by the operator-sequence (U1, U2), where:

U2 = Op1
2 ⊗Op2

2 ⊗Op3
2 = I(1) ⊗ Not(1) ⊗ I(1);

U1 = Op1
1 = T (1,1,1).

Apparently, QubTreeα is independent of the choice of Qub.



January 27, 2004 11:22 WSPC/INSTRUCTION FILE LQC-ijqi

36 M. L. Dalla Chiara, R. Giuntini, and R. Leporini

Theorem 72: Let α be a sentence whose qubit-tree is the operator-sequence
(U1, . . . , UHeight(α)−1). Given a qubit-model Qub, consider the quregister-sequence
(|ψ1〉, . . . , |ψHeight(α)〉) that is determined by Qub and by the syntactical tree of α.
Then, Ui(|ψi+1〉) = |ψi〉 (for any i such that 1 ≤ i < Height(α)).

Proof: Straightforward.

The qubit-tree of α can be naturally regarded as a quantum circuit that com-
putes the output Qub(α), given the input Qub(q1), . . . , Qub(qn) (where q1, . . . ,qn

are the atomic occurrences of α). In this framework, each Ui is the unitary operator
that describes the computation performed by the i-th layer of the circuit.

Let us now turn to the notion of qumix-tree. Consider a sentence α, its syn-
tactical tree STreeα and its qubit-tree QubTreeα. Suppose that At(α) = n. The
syntactical tree of α will have the following form:

Levelk(α) = q1, . . . ,qn

...
Level1(α) = α

where k is the height of STreeα and q1, . . .qn are the atomic sentences occurring
in α. At the same time the qubit-tree of α will have the following form:

U1, . . . , Uk−1,

where each Ui (1 ≤ i ≤ k − 1) is a unitary operator of ⊗nC2, which represents the
“semantic space” of α.

Let Qub be a qubit-model of the language L. We have:

Qub(α) ∈ ⊗nC2.

Let Leveli(α) = β1, . . . , βr be the i-th level of STreeα. We will briefly write:
Qub(Leveli(α)) for Qub(β1)⊗ . . .⊗ Qub(βr). Hence, we obtain:

Qub(Levelk(α)) = Qub(q1)⊗ . . .⊗ Qub(qn)
. . .

Qub(Level1(α)) = Qub(α)

By Theorem 72, we have:

Ui(Qub(Leveli+1(α))) = Qub(Leveli(α)).

We will now generalize the qubit-tree representation to the qumix-semantics. Con-
sider a model Qum. Suppose again that Leveli(α) = β1, . . . , βr. Like in the case of
qubit-models, we will briefly write Qum(Leveli(α)) for Qum(β1)⊗ . . .⊗Qum(βr).
Define now, the following sequence of functions on the set D(⊗nC2):

DUk−1(ρ) = Uk−1 ρU∗
k−1

. . .
DU1(ρ) = U1 ρ U∗

1 ,
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where (U1, . . . , Uk−1) is the qubit-tree of α.

Lemma 73: For any ρ ∈ D(⊗nC2), DUi(ρ) is a density operator of D(⊗nC2).

Lemma 74: DUi(Qum(Leveli+1(α)) = Qum(Leveli(α)).

The sequence (DU1, . . . ,
DUk−1) (obtained from the qubit-tree (U1, . . . , Uk−1))

will be also called the qumix-tree of α (and will be indicated by QumTreeα).
Any Ui of QubTreeα is a unitary operator. Hence its inverse U−1

i is a unitary
operator. We have for any Qub:

U−1
i (Qub(Leveli(α))) = Qub(Leveli+1(α)).

One can easily show that for any i (1 ≤ i ≤ k − 1), DU−1
i is a function. Consider

the sequence

(DU−1
1 , . . . , DU−1

k−1).

Like in the pure case, one can prove:
DU−1

i (Qum(Leveli(α))) = Qum(Leveli+1(α)).

8. Holistic semantics and entanglement

The quantum computational semantics we have investigated so far is typically non-
holistic (compositional). As happens in the case of standard classical semantics, the
meaning of a molecular sentence is determined by the meanings of its parts. As a
consequence, in this framework, the meaning of a molecular α cannot be a pure
state, when some atomic parts of α are proper mixtures. An interesting question
arises: is it possible to generalize the quantum computational semantics in order to
represent some typical quantum holistic situations? For instance, a significant case
would be the following: the meaning of a molecular α is a maximal information
quantity that corresponds to an entangled state, while the meanings of the atomic
parts are proper mixtures (non-maximal pieces of information).

Definition 75: (Holistic pseudo-model).
A holistic pseudo-model of the language L is a map Hol : FormL → D s.t. for any
sentence α whose atomic complexity is n:

Hol(α) ∈ D(⊗nC2).

Hol(α) reflects the atomic complexity, but not the logical form of α!
Consider now a sentence α whose atomic complexity is n. The syntactical tree

and the qumix-tree of α will have the following form (where k is the height of the
tree):

• STreeα =
Levelk(α) = q1, . . . ,qn

. . .

Level1(α) = α.
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• QumTreeα = (DU1, . . . ,
DUk−1).

For any choice of a density operator ρ in D(⊗nC2), QumTreeα determines the
following sequence of density operators:

ρk = DU−1
k−1(ρk−1)

. . .

ρ2 = DU−1
1 (ρ1)

ρ1 = ρ

Suppose that Leveli(α) = (Level1i (α), . . . , Levelri (α)) = (β1, . . . , βr).
Clearly, the space Hα (the semantic space of α) can be represented as the

following tensor product:

Hα = HLevel1i (α) ⊗ . . .⊗HLevelri (α), where :

HLevelji (α) = Hβj .

Of course, the space Hβj (the semantic space of βj), is a subspace of Hα.
Consider now redj(ρi), the reduced state of ρi with respect to the j-th sub-

system. Clearly, redj(ρi) ∈ D(HLevelji (α)). Hence, redj(ρi) can be regarded as a
possible meaning of the sentence βj .

Suppose that the pseudo model Hol associates to α the qumix ρ1, i.e.:

Hol(α) = ρ1.

Then, the reduced state redj(ρi) can be naturally regarded as the contextual mean-
ing of the occurrence βj (at the node Levelji (α)) under the global interpretation
Hol(α). We write:

Holα(Levelji (α)) = redj(ρi).

It is worthwhile noticing that different occurrences of the same subformula may
receive different contextual meanings!

Definition 76: (Holistic model of a sentence).
A holistic pseudo-model Hol of the language L is a holistic model of a sentence
α with atomic occurrences q1, . . . ,qn iff the following condition holds (for any
j ∈ {1, . . . , n}):

if qj = f , then Holα(qj) = P0.

In other words, the contextual meaning of the false sentence f is the truth-value
Falsity (P0). This condition guarantees that conjunctions and disjunctions are well
behaved.

Notice that generally:

Hol(qj) 6= Holα(qj).

From an intuitive point of view, Hol(qj) can be regarded as the standard (non-
contextual) meaning under the global interpretation Hol (a kind of first meaning in
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a dictionary). At the same time, Holα(qj) represents the contextual meaning of qj

in the semantic environment Hol(α).
All this gives rise to a typically holistic semantic situation: the meaning of

the whole determines the contextual meanings of its parts, but not vice
versa.

The following situation is possible

• α is a sentence with atomic occurrences q1, . . . ,qn;
• Hol(α) is a pure state;
• Holα(q1), . . . , Holα(qn) are non pure.

As a consequence, if we invert the direction of our procedure, going from the
parts to the whole (instead of from the whole to the parts), we obtain a final result
that is different from the original pure state Hol(α). In fact, the QumTree deter-
mined by STreeα and by Holα(q1), . . . , Holα(qn) gives rise to a proper mixture
that is necessarily different from the pure state Hol(α).

Of course, compositional models turn out to be special cases of holistic models.

Definition 77: (Compositional model with respect to a sentence).
A holistic model Hol is called compositional with respect to a sentence α iff there
exists a compositional model Qum s.t. for any node Levelji (α) in STreeα:

Hol(Levelji (α)) = Qum(Levelji (α)).

The holistic semantics represents a natural environment that permits us to study
entangled meanings. For instance, the meaning of a sentence α might have the
typical form of a singlet-state (as happens in the case of EPR-like situations).

Example: (A singlet-meaning).
Consider the following sentence:

α =
∧

(q,q, f).

The syntactical tree of α is:

Level2(α) = (q,q, f)
Level1(α) =

∧
(q,q, f).

The qubit-tree of α is:

(U1),

where U1 = T (the Petri-Toffoli-gate).
Consider now any holistic pseudo-model Hol such that:

Hol(α) = P|ψ〉,

where

|ψ〉 =
1√
3
|100〉+

√
2
3
|010〉.
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One can easily show that Hol is a holistic model of α. The syntactical tree of α

and Hol determine the following sequence of quregisters:

|ψ2〉 = T−1(|ψ1〉) = 1√
3
|100〉+

√
2
3 |010〉

|ψ1〉 = 1√
3
|100〉+

√
2
3 |010〉

Hence: |ψ1〉 = |ψ2〉.
At the same time, the atomic parts of α receive the following contextual mean-

ings:

• Holα(Level12(α)) = Holα(q) = red1(P|ψ2〉) = 2
3P0 + 1

3P1

• Holα(Level22(α)) = Holα(q) = red2(P|ψ2〉) = 1
3P0 + 2

3P1

• Holα(Level32(α)) = Holα(f) = red3(P|ψ2〉) = P0.

Consider now any other holistic pseudo model Ĥol such that:

Ĥol(α) =
1
3
P1 ⊗ P0 ⊗ P0 +

2
3
P0 ⊗ P1 ⊗ P0.

Ĥol is a holistic model of α. The atomic parts of α receive the following contex-
tual meanings:

• Ĥol
α
(Level12(α)) = Ĥol

α
(q) = red 1

(
1
3P1 ⊗ P0 ⊗ P0 + 2

3P0 ⊗ P1 ⊗ P0

)
= 2

3P0 + 1
3P1

• Ĥol
α
(Level22(α)) = Ĥol

α
(q) = red 2

(
1
3P1 ⊗ P0 ⊗ P0 + 2

3P0 ⊗ P1 ⊗ P0

)
= 1

3P0 + 2
3P1

• Ĥol
α
(Level32(α)) = Ĥol

α
(f) = red 3

(
1
3P1 ⊗ P0 ⊗ P0 + 2

3P0 ⊗ P1 ⊗ P0

)
= P0.

One can easily show that both Hol(α) and Ĥol(α) are not compositional with
respect to α. We have: Hol(α) 6= Ĥol(α). At the same time, the atomic parts of α

receive the same contextual meanings.
The example of the singlet meaning (described above) represents a paradigmatic

entangled semantic situation. The molecular sentence α =
∧

(q,q, f) has a global
meaning, Hol(α), that is a maximal information. At the same time, two parts of α

(two different occurrences of the same atomic sentence q) have two different (am-
biguous) contextual meanings that are represented by two different mixed states
( 2
3P0+ 1

3P1 and 1
3P0+ 2

3P1). These contextual meanings turn out to be also compat-
ible with other global meanings of α (for instance, with the qumix Ĥol(α), which
is different from the pure Hol(α)). Hence, the global meaning of α determines the
meanings of its parts, but not the other way around.

9. Physical models of QCL by means of Mach–Zehnder
Interferometers

The conventional Mach–Zehnder (MZ) interferometer (sketched in Fig. 3) involves
three essential components: symmetric 50:50 beam-splitters (BS), relative phase
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shifters (PS) along the x-direction and mirrors (M)11.

x input

y input

x output

y output

BS

BS

PS

M

Fig. 3. Mach-Zehnder interferometer on the Hilbert space C2.

• A beam-splitter can be built by means of a partially silvered piece of glass, which
reflects a fraction R of the incident light, and transmits T = 1−R.

• A phase shifter can be built by means of a slab of transparent medium with index
of refraction n different from n0, the index of refraction of free space. Propagation
in such a medium through a distance L changes a photon phase by eikL, where
k = nω/c0, and c0 is the speed of light in vacuum.

• Highly reflective mirrors reflect photons and change their propagation direction
in space. Mirrors with 0.01% loss are not unusual12.

The standard quantum description of this scenario is based on the Hilbert space
C2, where the basis-vectors |0〉 and |1〉 are supposed to describe photons (wave
packets) that move along two given directions defined by the geometry of the in-
terferometer. We assume that:

• |1〉 is the pure state representing the wave packet moving along the y-direction;
• |0〉 is the pure state representing the wave packet moving along the x-direction.

In this framework, 50:50 beam-splitters, relative phase shifters and mirrors are
described by the following unitary operators:

UBS =
√
Not Ux(ϑ) =

(
eiϑ 0
0 1

)
UM = Not.

The block diagram corresponding to the Mach–Zehnder interferometer (repre-
sented in Fig. 3) is then the following:
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x input

UBS UBSUM

y input

x output

y output
U ( )

x
h

Fig. 4. Block diagram of the Mach–Zehnder interferometer.

Consequently, the global MZ interferometer is mathematically described by the
following unitary operator (acting on C2):

UMZ(ϑ) = UBS ◦ UM ◦ Ux(ϑ) ◦ UBS =
1
2

(
1 + eiϑ −i(1− eiϑ)

i(1− eiϑ) 1 + eiϑ

)
.

Consider an atomic sentence q (of the language of QCL) asserting that “the
wave packet moves along the y-direction”. The natural semantic interpretation of
q will be the following:

• Qum(q) = P1, if the wave packet actually moves along the y-direction;
• Qum(q) = P0, if the wave packet actually moves along the x-direction.

Apparently, the projection P1 represents, at the same time, the pure state of
a photon moving along the y-direction and a classical bit (which gives the answer
“Yes” to the question “Does the wave packet move along the y-direction?”).

Consider now the following molecular sentence: α =
√¬¬√¬q. Suppose the

source sends a single photon along the y-direction into the MZ device with ϑ = 0.
Hence, according to our semantic convention, we have: Qum(q) = P1. Consequently,
the sentence

√¬q turns out to describe the internal interferometer state, cor-
responding to a quantum superposition of the two possible paths available to
the single photon, before the mirror-action. We have: Qum(

√¬q) =
√
NOT(P1) =

P 1−i
2 |0〉+ 1+i

2 |1〉. The sentence ¬√¬q, instead, describes the state of the photon after

the mirror-action. We have: Qum(¬√¬q) = NOT(
√
NOT(P1)) = P 1+i

2 |0〉+ 1−i
2 |1〉. What

about the final state of the photon, after the action of the second beam splitter?
According to our semantic rules, we obtain:

Qum(α) = Qum(
√¬¬√¬q) =

√
NOT(NOT(

√
NOT(P1))) = P1.

In other words, the outgoing photon is along the y-direction, and this result agrees
with the experimental evidence. Interestingly enough, the internal interferometer
state could not be analyzed in terms of classical or fuzzy logics, because, as we
have learnt, the square root of the negation does not have any Boolean or fuzzy
counterpart.

What happens if we try to analyze the internal interferometer state by observing
the presence of the photon in one arm? In such a case, the state of the photon before
the action of the second beam splitter is represented by the density operator ρ1/2.
Accordingly, the final state of the outgoing photon will be ρ1/2 6= P1 = Qum(α).
Notice that the transformation P1 7→ ρ1/2 cannot be described by a gate (which is,
by definition, a unitary operator).
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In the top–down approach of the Holistic semantics we can invert the procedure
that is characteristic of the compositional semantics. We can start by providing
the global meaning of the sentence α =

√¬¬√¬q. Suppose, for example, that
Hol(α) = P1, which corresponds to sending a single photon along the y-direction
backward in the MZ interferometer. The contextual meanings of the subformulas
of α are determined as follows:

Level12(α) = ¬√¬q ! Holα(¬√¬q) = P 1+i
2 |0〉+ 1−i

2 |1〉
Level13(α) =

√¬q ! Holα(
√¬q) = P 1−i

2 |0〉+ 1+i
2 |1〉

Level14(α) = q ! Holα(q) = P1.

So far we have considered physical models for the connectives ¬ and
√¬. We

know that, in the simplest situation, the corresponding gates are defined on the
space C2. How to deal with physical models of the conjunction, whose corresponding
gate (the Petri-Toffoli gate) refers, in the simplest situation, to the space ⊗3C2? The
idea is to use the conditional Kerr–Mach–Zehnder interferometer (CKMZ). Such
interferometer involves three components: symmetric 50:50 beam-splitters (BS),
relative conditional phase shifters (CPS) along the x-direction and mirrors (M).
The main difference with respect to the standard Mach–Zehnder (outlined in Fig. 3)
is the use of Kerr’s effect to produce intensity–dependent phase shift. A substance
with an intensity dependent refractive index (optical Kerr effect) is placed in both
arms of the device. In such a medium the field encounters a refractive index which
changes according to the field intensity; as a consequence, an intensity dependent
phase shift is obtained13.

A physical model of the Petri-Toffoli gate based on a CKMZ interferometer is
a three–input/three–output device, corresponding to a unitary operator acting on
the space ⊗3C2. In this framework, 50:50 beam-splitters and mirrors are described
by the following unitary operators (defined on C2):

UBS1 =
1√
2

(
1 −1
1 1

)
UBS2 =

1√
2

(
1 1
1 −1

)
UM =

(
0 1
1 0

)

The conditional phase shifter is described by the unitary operator UCPS that is
defined for any element |x, y, z〉 of the computational basis of ⊗3C2 as follows:

UCPS(|x, y, z〉) = eiπxy(1−z)|x, y, z〉.
The block diagram corresponding to the CKMZ interferometer is represented in

Fig. 5.
Consequently, the global CKMZ interferometer is mathematically described by

the following unitary operator acting on the space ⊗3C2 :

UCKMZ = (I ⊗ I ⊗ UBS2) ◦ (I ⊗ I ⊗ UM ) ◦ UCPS ◦ (I ⊗ I ⊗ UBS1).

One can easily show that UCKMZ = T (1,1,1). Hence the global CKMZ interfer-
ometer permits us to realize the Petri-Toffoli gate.

As an example, consider the following sentence: α =
∧

(q,q, f). The two different
occurrences of the atomic sentence q are physically interpreted by two photons,
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Fig. 5. Block diagram of the Mach–Zehnder interferometer with a conditional phase shifter.

prepared in the same state. Suppose that the source sends two photons randomly
along the two directions x and y. Hence, we have: Qum(q) = ρ1/2 (where ρ1/2 ∈
D(C2)). Suppose that a third incoming photon moves along the x-direction. Such
a photon (which is in the pure state P0) can be regarded as an ancilla photon,
representing the physical interpretation of the false sentence f (i.e. Qum(q) = P0).
We obtain:

Qum(α) =
1
4
(P0 ⊗ P0 ⊗ P0 + P0 ⊗ P1 ⊗ P0 + P1 ⊗ P0 ⊗ P0 + P1 ⊗ P1 ⊗ P1).

In other words, the target photon will go out of the CKMZ interferometer along the
y direction with probability 1

4 . Hence, the probability of the truth of the conjunction
q∧q is 1

4 ; at the same time, the probability of the truth of the single sentence q is
1
2 .

In the framework of the holistic semantics we can represent a different situation.
The physical interpretation of the global sentence α may be a pure state. For in-
stance, we might have: Hol(α) = P 1√

2
|01〉+ 1√

2
|10〉⊗P0, which corresponds to sending

a dual–rail single photon12 along the y-direction and an ancilla photon along the
x-direction backward.

The state of the dual–rail single photon is the superposition |ψ〉 = 1√
2
(|01〉 +

|10〉), while the state of the ancilla photon is |0〉. The contextual meanings of the
subformulas of α are the following:

Level12(α) = q ! Holα(q) = ρ1/2

Level22(α) = q ! Holα(q) = ρ1/2

Level32(α) = f ! Holα(f) = P0.

In other words, the compositional model Qum and the holistic model Hol asso-
ciate two different interpretations to the global sentence α. At the same time, the
two models Qum and Hol associate the same meanings to the parts of α.
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