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Abstract. In quantum computational logic meanings of sentences are
identified with quantum information quantities: systems of qubits or,
more generally, mixtures of systems of qubits. We consider two kinds of
quantum computational semantics: 1) a compositional semantics, where
the meaning of a compound sentence is determined by the meanings
of its parts; 2) a holistic semantics, which makes essential use of the
characteristic “holistic” features of the quantum-theoretic formalism.
We prove that the compositional and the holistic semantics characterize
the same logic.

1. Introduction

The main difference between orthodox quantum logic (first proposed by
Birkhoff and von Neumann [1]) and quantum computational logic [2] con-
cerns a basic semantic question: how to represent the meanings of the sen-
tences of a given language? The answer given by Birkhoff and von Neumann
was the following: the meanings of the elementary experimental sentences
of quantum theory have to be regarded as determined by appropriate sets of
states of quantum objects (mathematically represented by closed subspaces
of a Hilbert space). The answer given in the framework of quantum com-
putational logics is quite different. The meaning of a sentence is identified
with a quantum information quantity: a system of qubits or, more generally,
a mixture of systems of qubits.

We will consider two kinds of quantum computational semantics:

• A compositional semantics, where (like in classical logic) the meaning
of a compound sentence is determined by the meanings of its parts.

• A holistic semantics, which makes essential use of the characteris-
tic “holistic” features of the quantum-theoretic formalism. Hence,
in this framework, the meaning of a compound sentence generally
determines the meanings of its parts, but not the other way around.

We will prove that the compositional and the holistic semantics charac-
terize the same logic.
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2. Qubits, quregisters and qumixes

Let us first recall some basic definitions of quantum computation. Con-
sider the two-dimensional Hilbert space C2 (where any vector |ψ〉 is repre-

sented by a pair of complex numbers). Let B(1) = {|0〉, |1〉} be the canonical
orthonormal basis for C2, where |0〉 = (1, 0) and |1〉 = (0, 1).

Definition 2.1 (Qubit).
A qubit is a unit vector |ψ〉 of the Hilbert space C2.

¿From an intuitive point of view, a qubit can be regarded as a quantum
variant of the classical notion of bit: a kind of “quantum perhaps”. In this
framework, the two basis-elements |0〉 and |1〉 represent the two classical bits
0 and 1, respectively. From a physical point of view, a qubit represents a
state of a single particle, carrying an atomic piece of quantum information.
In order to carry the information stocked by n qubits, we need of course a
compound system, consisting of n particles.

Definition 2.2 (Quregister).
An n-qubit system (also called n-quregister) is a unit vector in the n-fold
tensor product Hilbert space ⊗nC2 := C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸

n−times

(where ⊗1C2 := C2).

We will use x, y, . . . as variables ranging over the set {0, 1}. At the same

time, |x〉, |y〉, . . . will range over the basis B(1). Any factorized unit vector
|x1〉⊗ . . .⊗|xn〉 of the space ⊗nC2 will be called a classical register. Instead

of |x1〉 ⊗ . . . ⊗ |xn〉 we will simply write |x1, . . . , xn〉. The set B(n) of all
classical registers is an orthonormal basis for the space ⊗nC2.

Quregisters are pure states: maximal pieces of information about the
particles under consideration. Both in quantum theory and in quantum
information, one cannot help referring also to mixed states (or mixtures),
which represent pieces of information that are not maximal and might be
enriched. In the framework of quantum computation, mixed states (mathe-
matically represented by density operators of an appropriate Hilbert space)
are also called qumixes.

Definition 2.3 (Qumix).
A qumix is a density operator of ⊗nC2 (where n ≥ 1).

Needless to say, quregisters correspond to particular qumixes that are
pure states (i.e. projections onto one-dimensional closed subspaces of a
given ⊗nCn). We will indicate by D(⊗nC2) the set of all density operators
of ⊗nC2. Hence the set D =

⋃∞
n=1 D(⊗nC2) will represent the set of all

possible qumixes.
A classical register |x1, . . . , xn〉 is called true, when xn = 1; false, oth-

erwise. The idea is that any classical register corresponds to a classical
truth-value that is determined by its last element. Hence, in particular, the
bit |1〉 corresponds to the truth-value Truth, while the bit |0〉 corresponds
to the truth-value Falsity .
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On this basis, we can identify, in any space ⊗nC2, two special projection-

operators (P
(n)
1 and P

(n)
0 ) that represent, in this framework, the Truth-

property and the Falsity-property, respectively. The projection P
(n)
1 is de-

termined by the closed subspace spanned by the set of all true registers,

while P
(n)
0 is determined by the closed subspace spanned by the set of all

false registers. As is well known, in quantum theory, projections have the
role of mathematical representatives of possible physical properties of the
quantum objects under investigation. Hence, it turns out that Truth and
Falsity behave here as special cases of physical properties.

As a consequence, one can naturally apply the Born rule that determines
the probability-value that a quantum system in a given state satisfies a given
property . Consider any qumix ρ, which represents a possible state of a quan-
tum system in the space ⊗nC2. By applying the Born rule, we obtain that
the probability-value that a physical system in state ρ satisfies the Truth-

property P
(n)
1 is the number tr(P

(n)
1 ρ) (where tr is the trace functional).

This suggests the following natural definition of the notion of probability of
a given qumix.

Definition 2.4 (Probability of a qumix).
For any qumix ρ ∈ D(⊗nC2):

p(ρ) = tr(P
(n)
1 ρ).

¿From an intuitive point of view, p(ρ) represents the probability that the
information stocked by the qumix ρ is true. In the particular case where ρ
corresponds to the qubit

|ψ〉 = c0|0〉 + c1|1〉,
we obtain that p(ρ) = |c1|2.

Given a quregister |ψ〉, we will also write p(|ψ〉) instead of p(P|ψ〉), where
P|ψ〉 is the density operator represented by the projection onto the one-
dimensional subspace spanned by the vector |ψ〉.

3. Quantum Gates

In quantum computation, quantum logical gates (briefly, gates) are uni-
tary operators that transform quregisters into quregisters. Being unitary,
gates represent characteristic reversible transformations. The canonical gates
(which are studied in the literature) can be naturally generalized to qumixes.
Generally, gates correspond to some basic logical operations that admit a re-
versible behaviour. We will consider here the following gates: the negation,
the Petri-Toffoli gate and the square root of the negation.

Let us first describe these gates in the framework of quregisters.

Definition 3.1 (The negation).

For any n ≥ 1, the negation on ⊗nC2 is the linear operator Not(n) such that
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for every element |x1, . . . , xn〉 of the basis B(n):

Not(n)(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

In other words, Not(n) inverts the value of the last element of any basis-
vector of ⊗nC2.

Definition 3.2 (The Petri-Toffoli gate).
For any n ≥ 1 and any m ≥ 1 the Petri-Toffoli gate is the linear operator
T(n,m,1) defined on ⊗n+m+1C2 such that for every element |x1, . . . , xn〉 ⊗
|y1, . . . , ym〉 ⊗ |z〉 of the basis B(n+m+1):

T(n,m,1)(|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|z〉) := |x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|xnym ⊕ z〉,

where ⊕ represents the sum modulo 2.

One can easily show that both Not(n) and T(n,m,1) are unitary operators.
Consider now the set R of all quregisters |ψ〉 “living” in ⊗nC2, for an

n ≥ 1. The gates Not and T can be uniformly defined on this set in the
expected way:

Not(|ψ〉) := Not(n)(|ψ〉), if |ψ〉 ∈ ⊗nC2

T(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉),
if |ψ〉 ∈ ⊗nC2, |ϕ〉 ∈ ⊗mC2 and |χ〉 ∈ C2.

On this basis, a conjunction And, a disjunction Or, can be defined for any
pair of quregisters |ψ〉 and |ϕ〉:

And(|ψ〉, |ϕ〉) := T(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

Or(|ψ〉, |ϕ〉) := Not(And(Not(|ψ〉), Not(|ϕ〉))).
Clearly, |0〉 represents an “ancilla” in the definition of And.
The quantum logical gates we have considered so far are, in a sense, “semi-

classical”. A quantum logical behaviour only emerges in the case where our
gates are applied to superpositions. When restricted to classical registers,
such operators turn out to behave as classical (reversible) truth-functions.
We will now consider an important example of a genuine quantum gate that
transforms classical registers (elements of B(n)) into quregisters that are
superpositions. This gate is the square root of the negation.

Definition 3.3 (The square root of the negation).
For any n ≥ 1, the square root of the negation on ⊗nC2 is the linear operator√
Not

(n)
such that for every element |x1, . . . , xn〉 of the basis B(n):

√
Not

(n)
(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗

1

2
((1 + i)|xn〉 + (1 − i)|1 − xn〉),

where i :=
√
−1.
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One can easily show that
√
Not

(n)
is a unitary operator. The basic prop-

erty of
√
Not

(n)
is the following:

for any |ψ〉 ∈ ⊗nC2,
√
Not

(n)
(
√
Not

(n)
(|ψ〉)) = Not(n)(|ψ〉).

In other words, applying twice the square root of the negation means negat-
ing.

¿From a logical point of view,
√
Not

(n)
can be regarded as a “tentative

partial negation” (a kind of “half negation”) that transforms precise pieces
of information into maximally uncertain ones. For, we have:

p(
√
Not

(1)
(|1〉)) =

1

2
= p(

√
Not

(1)
(|0〉)).

As expected, also
√
Not can be uniformly defined on the set R of all

quregisters.
Interestingly enough, the gate

√
Not seems to represent a typically quan-

tum logical operation that does not admit any counterpart either in classical
logic or in standard fuzzy logics (see [4]).

The gates considered so far can be naturally generalized to qumixes [8].
When our gates will be applied to density operators, we will write: NOT,√
NOT, T, AND, OR (instead of Not,

√
Not, T, And, Or).

Definition 3.4 (The negation).
For any qumix ρ ∈ D(⊗nC2),

NOT(n)(ρ) := Not(n) ρ Not(n).

Definition 3.5 (The square root of the negation).
For any qumix ρ ∈ D(⊗nC2),

√
NOT

(n)
(ρ) :=

√
Not

(n)
ρ
√
Not

(n)∗
,

where
√
Not

(n)∗
is the adjoint of

√
Not

(n)
.

It is easy to see that for any n ∈ N+, both NOT(n)(ρ) and
√
NOT

(n)
(ρ) are

qumixes of D(⊗nC2).

Definition 3.6 (The conjunction).
Let ρ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

AND(n,m,1)(ρ, σ) = T(n,m,1)(ρ, σ, P
(1)
0 ) := T(n,m,1)(ρ⊗ σ ⊗ P

(1)
0 )T(n,m,1).

Like in the quregister-case, the gates NOT,
√
NOT, T, AND, OR can be uni-

formly defined on the set D of all qumixes.
An interesting preorder relation that can be defined on the set of all

qumixes.

Definition 3.7 (Preorder).
ρ � σ iff the following conditions hold:

(i) p(ρ) ≤ p(σ);
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(ii) p(
√
NOT(σ)) ≤ p(

√
NOT(ρ)).

One immediately shows that � is reflexive and transitive, but not anti-
symmetric. Counterexamples can be easily found in D(C2).

4. The compositional quantum computational semantics

Both the compositional and the holistic semantics are based on the follow-
ing intuitive idea: any sentence α of the language is interpreted as an appro-
priate qumix, that generally depends on the logical form of α; at the same
time, the logical connectives are interpreted as special operations defined
in terms of gates. We will consider a minimal (sentential) quantum com-
putational language L that contains a privileged atomic sentence f (whose
intended interpretation is the truth-value Falsity) and the following primi-
tive connectives: the negation (¬), the square root of the negation (

√¬),
a ternary conjunction

∧
(which corresponds to the Petri-Toffoli gate). For

any sentences α and β, the expression
∧

(α, β, f) is a sentence of L. In
this framework, the usual conjunction α ∧ β is dealt with as metalinguistic
abbreviation for the ternary conjunction

∧
(α, β, f).

Let FormL be the set of all sentences (formulas) of L. We will use
the following metavariables: q, r . . . for atomic sentences and α, β, . . . for
sentences. The connective disjunction (∨) is supposed to be defined via
de Morgan (α ∨ β := ¬(¬α ∧ ¬β)). This minimal quantum computational
language can be extended to richer languages containing other primitive
connectives.

We will first introduce the notion of compositional quantum computational
model (briefly, compositional QC-model or qumix-model).

Definition 4.1 (Compositional QC-model).
A compositional QC-model of L is a map Qum that associates a qumix to
any sentence α of L, satisfying the following conditions:

Qum(α) :=







a density operator of D(C2) if α is an atomic sentence;

P0 if α = f ;

NOT(Qum(β)) if α = ¬β;√
NOT(Qum(β)) if α =

√¬β;

T(Qum(β), Qum(γ), Qum(f)) if α =
∧

(β, γ, f).

The concept of compositional QC-model seems to have a “quasi inten-
sional” feature: the meaning Qum(α) of the sentence α partially reflects the
logical form of α. In fact, the dimension of the Hilbert space where Qum(α)
“lives” depends on the number of occurrences of atomic sentences in α.

Definition 4.2 (The atomic complexity of α).

At(α) =







1 if α is an atomic sentence;

At(β) if α = ¬β or α =
√¬β;

At(β) +At(γ) + 1 if α =
∧

(β, γ, f).
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Lemma 4.1. If At(α) = n, then Qum(α) ∈ D(⊗nC2).

We can say that the space ⊗At(α)C2 represents the semantic space where
all possible meanings of α should “live”. Accordingly we will also write Hα

instead of ⊗At(α)C2.
Given a model Qum, any sentence α has a natural probability-value, which

can be also regarded as its extensional meaning with respect to Qum.

Definition 4.3 (The probability-value of α in a model Qum).

pQum(α) := p(Qum(α)).

As we already know, qumixes are preordered by the relation �. This
suggests a natural definition of a logical consequence relation.

Definition 4.4 (Consequence in a model Qum).
A sentence β is a consequence in a model Qum of a sentence α (α |=Qum β)
iff Qum(α) � Qum(β).

Definition 4.5 (Logical consequence).
A sentence β is a logical consequence of a sentence α (α |= β) iff for any
model Qum, α |=Qum β.

We call quantum computational logic (QCL) the logic that is semanti-
cally characterized by the logical consequence relation we have just defined.
Hence, β is a logical consequence of α in the logic QCL (α |=QCL β) iff β

is a consequence of α in any model Qum.
So far we have considered models, where the meaning of any sentence is

represented by a qumix. A natural question arises: do density operators
have an essential role in characterizing the logic QCL? This question has a
negative answer. In fact, one can prove that quregisters are sufficient for our
logical aims in the case of the minimal quantum computational language L.

Let us first introduce the notion of qubit-model.

Definition 4.6 (Qubit-model).
A qubit-model of L is a function Qub that associates a quregister to any
sentence α of L, satisfying the following conditions:

Qub(α) :=







a qubit in C2 if α is an atomic sentence;

|0〉 if α = f ;

Not(Qub(β)) if α = ¬β;√
Not(Qub(β)) if α =

√¬β;

T(Qub(β), Qub(γ), Qub(f)) if α =
∧

(β, γ, f).

The notions of consequence and logical consequence are defined like in the
case of qumix-models, mutatis mutandis.

One can prove that the qubit-semantics and the qumix-semantics charac-
terize the same logic (see [2]).

Quantum computational logic turns out to be a non-standard form of
quantum logic. Conjunction and disjunction do not correspond to lattice
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operations, because they are not generally idempotent (α 2QCL α ∧ α, α ∨
α 2QCL α). Unlike Birkhoff and von Neumann’s quantum logic, the weak
distributivity principle breaks down ((α ∧ β) ∨ (α ∧ γ) 2QCL α ∧ (β ∨ γ)).
At the same time, the strong distributivity, that is violated in orthodox
quantum logic, is here valid (α ∧ (β ∨ γ) |=QCL (α ∧ β) ∨ (α ∧ γ)). Both
the excluded middle and the non-contradiction principles are violated. As a
consequence, one can say that the logic arising from quantum computation
represents, in a sense, a new example of fuzzy logic.

The axiomatizability of QCL is an open problem.

5. Quantum trees

The meaning and the probability-value of any sentence α can be naturally
described (and calculated) by means of a special configuration called quan-
tum tree, that illustrates a kind of reversible transformation of the atomic
subformulas of α.

The notion of quantum tree can be dealt with either in the framework
of the qubit-semantics or in the framework of the qumix-semantics. In the
first case quantum trees will be called qubit trees, while in the second case
we will speak of qumix trees. Before dealing with quantum trees, we will
first introduce the notion of syntactical tree of a sentence α (abbreviated as
STreeα). Consider all subformulas of α.

Any subformula may be:

• an atomic sentence q (possibly f);
• a negated sentence ¬β;
• a square-root negated sentence

√¬β;
• a conjunction

∧
(β, γ, f).

The concept of syntactical tree can be illustrated as follows. Every occur-
rence of a subformula of α gives rise to a node of STreeα. The tree consists
of a finite number of levels and each level is represented by a sequence of
subformulas of α:

Levelk(α)

...

Level1(α).

The bottom-level (denoted by Level1(α)) consists of α. From each node
of the tree at most 3 edges may branch according to the branching-rule
(Figure 1). The second level (Level2(α)) is the sequence of subformulas of
α that is obtained by applying the branching-rule to α. The third level
(Level3(α)) is obtained by applying the branching-rule to each element
(node) of Level2(α), and so on. Finally, one obtains a level represented
by the sequence of all atomic occurrences of α. This represents the top-level
of STreeα. The height of Streeα (denoted by Height(α)) is then defined as
the number of levels of STreeα.
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Figure 1.

Branching rules for the construction of syntactical trees.

As an example, consider the following sentence: α = q∧¬q =
∧

(q,¬q, f).
The syntactical tree of α is the following:

Level3(α) = (q,q, f);

Level2(α) = (q,¬q, f);

Level1(α) =
∧

(q,¬q, f).

For any choice of a qubit-model Qub, the syntactical tree of α determines a
corresponding sequence of quregisters. Consider a sentence α with n atomic
occurrences (q1, . . . ,qn). Then, Qub(α) ∈ ⊗nC2 (where ⊗nC2 represents
the semantic space Hα of α). We can associate a quregister |ψi〉 to each
Leveli(α) of STreeα in the following way. Suppose that:

Leveli(α) = (β1, . . . , βr).

Then:

|ψi〉 = Qub(β1) ⊗ . . .⊗ Qub(βr).

Instead of Qub(β1) ⊗ . . .⊗ Qub(βr), we will briefly write Qub(Leveli(α)).
Notice that all Qub(Leveli(α)) belong to the space Hα.
The notion of qubit tree of a sentence α (QubTreeα) can be now defined as

a particular sequence of unitary operators that is uniquely determined by the

syntactical tree of α. Let Levelji (α) represent the j-th element of Leveli(α).

Each node Levelji (α) (where 1 ≤ i < Height(α)) can be naturally associated

to a unitary operator Opji , according to the following operator-rule:

Op
j
i :=







I(1) if Levelji (α) is an atomic sentence;

Not(r) if Levelji (α) = ¬β and Qub(β) ∈ ⊗rC2;
√
Not

(r)
if Levelji (α) =

√¬β and Qub(β) ∈ ⊗rC2;

T(r,s,1) if Levelji (α) =
∧

(β, γ, f), Qub(β) ∈ ⊗rC2 and Qub(γ) ∈ ⊗sC2,

where I(1) is the identity operator of C2.
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On this basis, one can associate an operator Ui to each Leveli(α) (such
that 1 ≤ i < Height(α)):

Ui :=

|Leveli(α)|
⊗

j=1

Op
j
i ,

where |Leveli(α)| is the length of the sequence Leveli(α).
Being the tensor product of unitary operators, every Ui turns out to be a

unitary operator. One can easily show that all Ui are defined on the same
space, Hα.

Definition 5.1 (The qubit tree of α).
The qubit tree of α (denoted by QTreeα) is the operator-sequence

(U1, . . . , UHeight(α)−1)

that is uniquely determined by the syntactical tree of α.

As an example, consider again the sentence: α =
∧

(q,¬q, f).
In order to construct the qubit tree of α, let us first determine the oper-

ators Opji corresponding to each node of Streeα. We will obtain:

• Op1
1 = T(1,1,1), because

∧
(q,¬q, f) is connected with (q,¬q, f) (at

Level2(α));

• Op1
2 = I(1), because q is connected with q (at Level3(α));

• Op2
2 = Not(1), because ¬q is connected with q (at Level3(α));

• Op3
2 = I(1), because f is connected with f (at Level3(α)).

The qubit tree of α is represented by the operator-sequence (U1, U2),
where:

U1 = Op1
1 = T(1,1,1);

U2 = Op1
2 ⊗Op2

2 ⊗Op3
2 = I(1) ⊗ Not(1) ⊗ I(1).

Apparently, QTreeα is independent of the choice of Qub.

Theorem 5.1. Let α be a sentence whose qubit tree is the operator-sequence
(U1, . . . , UHeight(α)−1), and let Qub be a qubit-model. Then,

Ui(Qub(Leveli+1(α)) = Qub(Leveli(α))

(for any i such that 1 ≤ i < Height(α)).

The qubit tree of α can be naturally regarded as a quantum circuit that
computes the output Qub(α), given the input Qub(q1), . . . , Qub(qn) (where
q1, . . . ,qn are the atomic occurrences of α). In this framework, each Ui is
the unitary operator that describes the computation performed by the i-th
layer of the circuit.

Let us now turn to the notion of qumix tree. Consider a qumix-model
Qum and let α be a sentence such that At(α) = n and Height(α) = k. Let
U1, . . . , Uk−1 be the qubit tree of α. Suppose that Leveli(α) = β1, . . . , βr.
Like in the case of qubit-models, we will briefly write Qum(Leveli(α)) for
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Qum(β1) ⊗ . . .⊗ Qum(βr). We can now define the following sequence of func-
tions on the set D(Hα):

DU1(ρ) = U1 ρU
∗
1

. . .

DUk−1(ρ) = Uk−1 ρU
∗
k−1.

Lemma 5.1. For any ρ ∈ D(Hα), DU1(ρ) is a density operator of D(Hα).

Lemma 5.2. DUi(Qum(Leveli+1(α))) = Qum(Leveli(α)).

The sequence (DU1, . . . ,
DUk−1) (obtained from the qubit tree (U1, . . . , Uk−1))

is called the qumix tree of α (and indicated by QumTreeα).

6. Holistic semantics

In the compositional semantics, the meaning of a molecular sentence is
determined by the meanings of its parts. As a consequence, in this frame-
work, the meaning of a molecular α cannot be a pure state, when some
atomic parts of α are proper mixtures. How to generalize the quantum
computational semantics in order to represent some typical quantum holis-
tic situations, including the possibility of entangled meanings1?

As we have seen, any qumix-model assigns to the top-level of the syn-
tactical tree of a sentence α a factorized meaning , Qum(q1) ⊗ . . .⊗ Qum(qn)
(where q1, . . . ,qn are the atomic sentences occurring in α). The holistic se-
mantics2 is based on the following “more liberal” assumption: the meaning
of the top-level of the syntactical tree of a sentence α might be any qumix
(not necessarily factorized) “living” in the semantic space of α. As a conse-
quence, also the meanings of all other levels of STreeα are not necessarily
factorized.

Suppose that:

Leveli(α) = (β1, . . . , βr).

The space Hα can be naturally regarded as the Hilbert space of a com-
pound physical system consisting of r parts (mathematically represented by
the spaces Hβ1 , . . . ,Hβr), where each part may be compound. On this basis,

for any qumix ρi (associated to Leveli(α)) and for any node Levelji (α), we
can consider the reduced state redj(ρi) with respect to the j-th subsystem
of the system described by ρi. From an intuitive point of view, redj(ρi)
describes the j-th subsystem on the basis of the global information ρi. We

1The basic features of an entangled state |ψ〉 can be sketched as follows: 1) |ψ〉 is a
maximal information (a pure state) that describes a compound physical system S; 2) the
pieces of information determined by |ψ〉 about the parts of S are, generally, non-maximal
(proper mixtures). Hence, the information about the whole is more precise than the
information about the parts.

2In [4] we have presented a weaker version of holistic semantics.
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recall that redj(ρi) is the unique density operator that satisfies the following
condition: for any self-adjoint operator Aj of Hβj ,

tr(redj(ρi)A
j) = tr(ρi(I

1 ⊗ . . .⊗ Ij−1 ⊗Aj ⊗ Ij+1 ⊗ . . .⊗ Ir)),

(where Ih is the identity operator of Hβh).
As a consequence, we obtain that ρi and redj(ρi) are statistically equiva-

lent with respect to the j-th subsystem of the compound system described
by ρi.

Since Leveli(α) = (β1, . . . , βr), the qumix redj(ρi) (which is a density
operator of the space Hβj ) can be regarded as a possible meaning of the
sentence βj .

We can now introduce the basic definitions of the holistic semantics.

Definition 6.1 (Atomic holistic model).
An atomic holistic model is a map HolAt that associates a qumix to any

sentence α of L , satisfying the following conditions:

(1) HolAt(α) ∈ D(Hα);
(2) Let At(α) = n and LevelHeigth(α) = q1, . . . , qn. Then,

(2.1) qj = f ⇒ redj(HolAt(α)) = P0;
(2.2) if qj and qh are two occurrences in α of the same atomic sen-

tence, then redj(HolAt(α)) = redh(HolAt(α)).

Apparently, HolAt(α) represents a global interpretation of the atomic sen-
tences occurring in α. At the same time, redj(HolAt(α)), the reduced state
of the compound system (described by HolAt(α)) with respect to the j-th
subsystem, represents a contextual meaning of qj with respect to the global
meaning HolAt(α). Conditions (2.1) and (2.2) guarantee that HolAt(α) is
well behaved. For, the contextual meaning of f is always the Falsity , while
two different occurrences (in α) of the same atomic sentence have the same
contextual meaning.

The map HolAt (which assigns a meaning to the top-level of the syntactical
tree of any sentence α) can be naturally extended to a map HolTree that
assigns a meaning to each level of the syntactical tree of any α, following
the prescriptions of the qumix tree of α.

Consider a sentence α such that:

QumTreeα = (DU1, . . . ,
DUHeigth(α)−1).

The map HolTree is defined as follows:

HolTree(LevelHeigth(α)) = HolAt(α)

HolTree(Leveli(α)) = DUi(Hol
Tree(Leveli+1(α))

(where Heigth(α) > i ≥ 1).
On this basis, one can naturally define the notion of holistic model of L.
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Definition 6.2 (Holistic model).
A holistic model of L is a map Hol that assigns to any sentence α a qumix

of the space Hα, according to the following condition:

Hol(α) = HolTree(Level1(α)).

Given a sentence γ, Hol determines the contextual meaning, with respect
to the context Hol(γ), of any occurrence of a subformula β in γ.

Definition 6.3 (Contextual meaning of a node).
Let β be a subformula of γ occurring at the j − th position of the i − th

level of the syntactical tree of γ. We indicate by β[ij ] the node of STreeγ

corresponding to such occurrence.The contextual meaning of β[ij ] with respect

to the context Hol(γ) is defined as follows:

Holγ(β[ij ]) = redj(HolTree(Leveli(γ))).

Hence, we have:

Holγ(γ) = HolTree(Level1(γ)) = Hol(γ).

Lemma 6.1.

1. Let β[ij ] be a node of STreeγ and let ¬β[i−1
h ] be the node of STreeγ

obtained by applying the negation ¬ to the occurrence of β at the
node β[ij ]. Then,

Holγ(¬β[i−1
h ]) = NOT(Holγ(β[ij ])).

2. Let β[ij ] be a node of STreeγ and let
√¬β[i−1

h ] be the node of STreeγ

obtained by applying the square root of the negation
√¬ to the oc-

currence of β at the node β[ij ]. Then,

Holγ(
√
¬β[i−1

h ]) =
√
NOT(Holγ(β[ij ])).

3. Let β[ij ], δ[
i
j+1], f [ij+2] be three nodes of STreeγ and let

∧
(β, δ, f)[i−1

h ]

be the node of STreeγ obtained by applying the conjunction
∧

to the
occurrences of β, δ, f at the nodes β[ij ], δ[

i
j+1], f [ij+2]. Then,

Holγ(
∧

(β, δ, f)[i−1
h ]) = T(Holγ(β[ij ]), Hol

γ(δ[ij+1]), Hol
γ(f [ij+2]))).

Lemma 6.2. If β[ij ] and β[hk ] are two nodes of the syntactical tree of γ,
representing two occurrences of the same subformula β, then:

Holγ(β[ij ]) = Holγ(β[hk ]).

In other words, two different occurrences of one and the same subformula
in a sentence γ receive the same contextual meaning with respect to the
context Hol(γ).

On this basis, one can define the contextual meaning of a subformula β of
γ, with respect to the context Hol(γ):

Holγ(β) := Holγ(β[ij ]),
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where β[ij ] is any occurrence of β at a node of STreeγ .
Suppose now that β is a subformula of two different formulas γ and δ.

Generally, we have:
Holγ(β) 6= Holδ(β).

In other words, sentences may receive different contextual meanings in dif-
ferent contexts!

Apparently, Holγ is a partial function that only assigns meanings to the
subformulas of γ. Given a sentence γ, we will call the partial function Holγ

a contextual holistic model of the language.

Lemma 6.3. Any compositional model Qum uniquely determines a holistic
model Hol such that:

1. Qum(α) = Hol(α), for any sentence α;
2. Qum(α) = Holγ(α), for any γ such that α is a subformula of γ.

Proof. Given Qum, define HolAt as follows. For any α s.t. LevelHeigth(α) =
q1, . . . ,qn,

HolAt(α) = Qum(q1) ⊗ . . .⊗ Qum(qn).

�

We can now define the notion of logical consequence in the holistic seman-
tics.

Definition 6.4 (Consequence in a given contextual model Holγ).
A sentence β is a consequence of a sentence α in a given contextual model

Holγ (α |=Holγ β) iff

1. α and β are subformulas of γ;
2. Holγ(α) � Holγ(β).

Definition 6.5 (Logical consequence (in the holistic semantics)).
A sentence β is a consequence of a sentence α (in the holistic semantics)

(α |= β) iff for any sentence γ such that α and β are subformulas of γ and
for any Hol,

α |=Holγ β.

We call HQCL the logic that is semantically characterized by the logical
consequence relation we have just defined. Hence, α |=HQCL β iff for any
sentence γ such that α and β are subformulas of γ and for any Hol,

α |=Holγ β.

Theorem 6.1. HQCL and QCL are the same logic.

Proof.

1. α |=HQCL β ⇒ α |=QCL β.

Suppose α |=HQCL β and α 2QCL β. Then, there exists a com-
positional model Qum, such that: Qum(α) � Qum(β). By Lemma 6.3,
there exists a holistic model Hol such that:

Holα∧β(α) = Qum(α), Holα∧β(β) = Qum(β).
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Hence, Holα∧β(α) � Holα∧β(β), against the hypothesis!
2. α |=QCL β ⇒ α |=HQCL β.

Suppose α |=QCL β and α 2HQCL β. Then, there exist a holistic
model Hol and a sentence γ that contains α and β as subformulas,
such that:

Holγ(α) � Holγ(β).

Consider STreeγ and suppose that:

LevelHeigth(γ) = q1, . . . ,qn.

Define the following compositional model Qum:

Qum(qj) =

{

Holγ(qj), if qj ∈ {q1, . . . ,qn};
P0, otherwise.

Lemma 6.4. If δ is a subformula of γ then

Holγ(δ) � Qum(δ); Qum(δ) � Holγ(δ).

As a consequence of Lemma 6.4, we obtain:

Qum(α) � Qum(β),

because α and β are subformulas of γ. Against the hypothesis!

�
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