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Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown
quantum states cannot be cloned? Yet, the proof of the ‘no-cloning theorem’ is easy, and its consequences
and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually
intriguing and easily derivable physical phenomenon of ‘quantum teleportation’? We claim that the quantum
mechanical formalism doesn’t support our intuition, nor does it elucidate the key concepts that govern the
behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are
kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from
computer science, the quantum mechanical formalism is ‘low-level’. In this review we present steps towards a
diagrammatic ‘high-level’ alternative for the Hilbert space formalism, one which appeals to our intuition.

The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum
systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as
the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports ‘automation’:
it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design
protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential
to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its
unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of
several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality.

The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called
monoidal categories, a product of a fairly recent development in mathematics, and its logical underpinning is
linear logic, an even more recent product of research in logic and computer science. These monoidal categories
do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming
languages, biology, cooking, ... So the challenge is to discover the required additional pieces of structure that
allow us to predict genuine quantum phenomena. These pieces of structure, in turns, represent the capabilities
nature has provided us with in order to manipulate entities subject to the laws of quantum theory.

Keywords: Diagrammatic reasoning, quantum information and computation, quantum foundations,
monoidal categories and linear logic, axiomatic quantum theory

1 Historical context

With John von Neumann’s “Mathematische Grundlagen der Quantenmechanik”, published in
1932 [1], quantum theory reached maturity, now having been provided with a rigourous math-
ematical underpinning. Three year later something remarkable happened. John von Neumann
wrote in a letter to the renowned American mathematician Garrett Birkhoff the following:

I would like to make a confession which may seem immoral: I do not believe absolutely in
Hilbert space no more – sic [2, 3]

In other words, merely three years after completing something that is in many ways the most
successful formalism physics has ever known, both in terms of experimental predictions, techno-
logical applications, and conceptual challenges, its creator denounced his own brainchild. How-
ever, today, more than 70 years later, we still teach John von Neumann’s Hilbert space formalism
to our students. People did try to come up with alternative formalisms, by relying on physically
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motivated mathematical structures other than Hilbert spaces. Most notably, the ‘quantum logic’
proposed by Birkhoff and von Neumann himself in 1936 [4]. But quantum logic’s disciples failed
to convince the wider physics community of this approach’s virtues. There are similar alternative
approaches due to Ludwig, and Foulis and Randall [5], but none proved to be compelling.

Today, more than 70 years later, we meanwhile did learn many new things. For example, we
discovered new things about the quantum world and its potential for applications:

• During the previous century, a vast amount of the ongoing discourse on quantum foundations
challenged in some way or another the validity of quantum theory. The source of this was the
community’s inability to craft a satisfactory worldview in the light of Bell-type non-locality
for compound quantum systems, and related to this, the measurement problem [6]. But the
position that quantum theory is in some way or another ‘wrong’ seems to be increasingly hard
to maintain. Not only have there been impressive experiments which assert quantum theory
in all of its aspects, but also, several new quantum phenomena have been observed, which
radically alter the way in which we need think about nature, and which raise new kinds of
conceptual challenges. Examples of experimentally established new phenomena are quantum
teleportation [7] and quantum key exchange [8]. In particular, the field of quantum information
has emerged from embracing ‘quantum weirdness’, not as a bug, but as a feature !

• Within this quantum informatic endeavour we are becoming increasingly conscious of how cru-
cial the particular behaviour of compound systems is to quantum theory, that is, the existence
of quantum entanglement. The first to point at the key role of quantum entanglement within
quantum theory was Schrödinger in 1935 [9]. But this key role of quantum entanglement is
completely ignored within all previously proposed alternatives to the Hilbert space formalism.
All key concept of those approaches solely apply to individual quantum systems, and, it is a
recognised soft spot of these approaches that they weren’t able to reproduce entanglement in
a canonical manner. In hindsight, this is not that surprising. Neither the physical evidence nor
the appropriate mathematical tools were available (yet) to pursue a research program which
axiomatizes quantum theory in terms of the behaviour of compound quantum systems.

But today, more than 70 years later, this situation has changed, which brings us to other im-
portant recent developments, this time not in physics itself, but in other areas of science:

• Firstly, not many might beware of the enormous effort made by the computer science com-
munity to understand the mathematical structure of general processes, and in particular, the
way in which these interact, how different configurations of interacting processes might result
in the same overall process, and similar fairly abstract questions. An accurate description
of how concurrent processes precisely interact turns out to be far more delicate than one
would imagine at first. Key to solving these problems are appropriate mathematical means
for describing these processes, usually referred to as their semantics. This research area has
produced a vast amount of new mathematical structures and is key to the design of high-level
programming languages. Why do we need these high-level programming languages you may
ask. Simply because otherwise there wouldn’t internet, there wouldn’t be operating systems
for your Mac or PC, there wouldn’t be mobile phone networks, and there wouldn’t be secure
electronic payment mechanisms, simply because these systems are so complicated that getting
things right wouldn’t be possible without relying on the programming paradigms present in
high-level programming languages e.g. abstraction, modularity, compositionality ...

• These developments in computer science went hand-in-hand with developments in proof the-
ory (that is, the study of the structure of mathematical proofs), since the study of interacting
programs ‘is isomorphic to’ the study of interacting proofs. The subject of proof theory com-
prehends logic: rather than merely being interested in what is true and what is false (' classical
logic), one is also interested in how one establishes that something is either true or false, and
therefore, the process of proving things becomes an explicit part of the subject. At some point
proof theoreticians became interested in how many times one uses a certain assumption within
proofs. To obtain a clear view on this one needed to strip logic from the implicit abilities to
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copy and delete premisses, that is, the rules A ⇒ A,A and A,B ⇒ A. This resulted in the
birth of linear logic [10], a logic in which one is not allowed to copy and delete premisses.
Having in mind the no-cloning [11, 12] and no-deleting [13] theorems of quantum theory, this
new ‘linear logic’ might be more of a ‘quantum logic’ than the original ‘Birkhoff-von Neumann
quantum logic’, which according to most logicians wasn’t even a ‘logic’. Another important
new feature of linear logic was the fact that it had a manifestly geometrical aspect to it, which
translated in purely diagrammatic characterisations of linear logic proofs [14].

• There exists an algebraic structure which captures interacting processes as well as linear logic,
namely, monoidal categories. These are a ‘two-dimensional’ variant of so-called categories, in
the sense that they involve two interacting modes of ‘composing processes’. Initially categories
were introduced as a meta-theory for mathematical structures, which enables to import results
of one area of mathematics into another. Its consequently highly abstract nature earned it the
not all too flattering name ‘generalised abstract nonsense’. Nonetheless, it meanwhile plays
an important role in several areas of mathematical physics e.g. in a variety of approaches to
quantum field theory and proposals for theories of quantum gravity. Important mathematical
areas such as knot theory also naturally fit within monoidal categories. But for us their highly
successful use in logic and computer science is more relevant. This success of category theory
in computer science is witnessed by the fact that today most appointments involving category
theoreticians are at computer science departments. To pass from categories in computer science
to categories in physics, a mere substitution will start the ball rolling:

‘computational process’ 7→ ‘physical process’.

Once we find ourselves in the world of monoidal categories the language becomes purely
diagrammatical. Indeed, monoidal categories are the semantics of linear logic, and of the
corresponding proof structures. Structuralism becomes picturalism, ...

All these developments together justify a new attempt for a ‘better’ formalism for quantum
theory, say, quantum logic mark II. We are not saying that there is something wrong with the
(current) predictions of quantum theory, but that the way in which we obtain these isn’t great.

Contributors to quantum picturalism. The categorical axiomatisation of quantum theory and
categorical reasoning about quantum phenomena, which provides the passage to a purely dia-
grammatic formalism, was initiated by Samson Abramsky and myself in [15], drawing inspiration
from a theorem on diagrammatic reasoning for teleportation-like protocols in [16] – an alterna-
tive proof of the latter is in [17]. Other key contributions to the categorical axiomatisation of
quantum theory were made by Peter Selinger in [18], and in collaborations with Ross Duncan,
Eric Paquette, Dusko Pavlovic, Simon Perdrix and Jamie Vicary, in [19–24]. Categorical toy
theories and the corresponding analysis of non-locality which we discuss here are due to Bill
Edwards, Rob Spekkens and myself in [25]. Diagrammatic reasoning techniques for monoidal
categories trace back to Penrose’s work in the early 70’s [26]. He used diagrams in a somewhat
more informal way. Our approach substantially relied on existing work mainly done by the ‘Aus-
tralian School of category theory’, namely by Kelly, Carboni, Walters, Joyal, Street and Lack in
[27–30]. Among other things, they provided a rigourous mathematical foundation for diagram-
matic reasoning. Related graphical methods have been around for a bit more than a decade now
in mathematical physics and pure mathematics, for example in [31–35] and references therein. A
proponent of these methods, John Baez, has several online available postings on the topic [36].

Applications of quantum picturalism. Applications currently under development include:

• We already know (as will show below) that we can do a substantial amount of quantum reason-
ing in diagrams, but, to which extend can Hilbert space calculus be completely replaced with
purely diagrammatic reasoning? This is a question which we currently address. An obvious
self-imposed constraint is that the diagrammatic calculations should be substantially simpler
and more natural than those within the Hilbert space formalism. Ultimately we want to write
a quantum computing textbook in which there are no Hilbert spaces anymore, only pictures.
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• In case one doesn’t buy into the above, there is a far more pragmatic, but also very promising
use of these pictures. They constitute a genuine proof system that can be turned into a software
tool that automates reasoning. Key to this is that these structures are discrete, as opposed
to the continuum of complex numbers. Can we make a computer prove new theorems about
quantum theory? We think so. A team of researchers in Oxford and Edinburgh is currently in
the process of producing such a piece of on pictures based automated reasoning software [37].
We anxiously wait what will come out once they push to the start button, ... will they find
new protocols, new algorithms, foundational structures of multipartite entangled states?

• At the same time these pictures provide a new axiomatic foundation for quantum theory, with
many degrees of structural freedom. Hence it provides a canvas to study theories more general
than quantum theory. This enables us to understand what makes quantum theory so special.
Since this axiomatic foundation is very flexible, it also has the potential for unification of
quantum theory with other theories, hence for crafting new theories of physics.

2 What do we mean by ‘high-level’?

We try explain this concept with an example and with a metaphor.

2.1 High-level methods for linear algebra 101

ω1

ω2

ω3

ω4

out

in
Figure 1. Diagrammatic state-
ment of the problem. The boxes
with labels ωi represent the pro-
jectors Pi. The reason why we take
ωi as labeling rather than labelling
them Pi will become clear below.

Exercise: [16] In linear algebra, projectors are linear operators
P : H → H which are both self-adjoint i.e. P† = P, and idempo-
tent i.e. P ◦P = P. They play a very important role in quantum
theory since what happens to a state in a quantum measurement
is described by a projector. We will now look at a special kind
of projectors, namely those of the form P = |Ψ〉〈Ψ| with

|Ψ〉 :=
∑
α,β

ωαβ |αβ〉

where ωαβ are the entries in the matrix of a linear operator
ω : H → H. We will consider four such projectors P1,P2,P3,P4

respectively corresponding with linear operators ω1, ω2, ω3, ω4.
Now, consider a vector described in the tensor product of three
Hilbert spaces, Φ ∈ H1⊗H2⊗H3, which we can think of as the
state of a tripartite quantum system. Then, first apply projector
P1 to H2⊗H3, then projector P2 to H1⊗H2, then projector P3

to H2 ⊗H3, and then projector P4 to H1 ⊗H2. The question is,
given that Φ = φin⊗Ξ with φin ∈ H1, what is resulting vector after applying all four projectors.
In particular, given that the resulting vector will always be of the form Ξ′⊗φout with φout ∈ H3

(something which follows from the fact that the last projector is applied to H1 ⊗H2), what is
the vector φout? Concisely put, can you write φout as a function of φin given that:

(P4 ⊗ 1H3) ◦ (1H1 ⊗ P3) ◦ (P2 ⊗ 1H3) ◦ (1H1 ⊗ P1) ◦ (φin ⊗ Ξ) = Ξ′ ⊗ φout .

Solution. However complicated the problem as stated might look, the solution is simple:

φout = (ω3 ◦ ω̄4 ◦ ωT2 ◦ ω†3 ◦ ω1 ◦ ω̄2)(φin)

where ω̄4 is obtained by conjugating all matrix entries in the matrix of ω4, where ωT2 is the
transposed of ω2, and where ω†3 is the adjoint to ω3. But what is more fascinating is that we
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can ‘read’ this solution directly from the graphical representation – see Figure 2. We draw a line
starting from ‘in’ and whenever we enter a projector at one of its two inputs, we get out via the

ω1

ω2

ω3

ω4

Figure 2. ‘Reading’ the solu-
tion of the exercise.

other input, and whenever we enter a projector at one of its two
outputs, we get out via the other output. The expression

ω3 ◦ ω̄4 ◦ ωT2 ◦ ω†3 ◦ ω1 ◦ ω̄2 (1)

is obtained by following this line and by composing all labels we en-
counter on our way, in the order we encounter them, and whenever
we encounter it after entering from an input we moreover conjugate
all matrix entries, and whenever we encounter it while going from
right to left we also take the transposed. Note that the resulting
order of these labels ω1, . . . , ω4 in expression (1) seems to ignore the
order in which we applied the corresponding projectors P1, . . . ,P4.

This exercise shows that what at first might seems to be pure ‘number cracking’ is gov-
erned by some beautiful ‘hidden’ geometry. This principle is not specific to the above four-
projector situation. The same reading applies to any configuration of this kind of projectors [16].

Figure 3. The structural core of
quantum teleportation protocol.

ω

Figure 4. The structural core of
logic-gate teleportation protocol.

Figure 5. The structural core of en-
tanglement swapping protocol.

But while at first the beauty of the geometry is appealing,
the fact that it completely ignores the causal order in which we
apply the projectors might be somewhat disturbing. Here we
won’t discuss the physical interpretation of this ‘line’, but just
mention that the ‘seemingly acausal’ flow of information in
this diagram has been a source of confusion e.g. [38]. A logical
analysis which allows one to overcome this seemingly acausal
flow of information without loosing the geometry is in [23].

Also, at first sight it might seem that the problem which
we solved is totally artificial without any applications. But it
isn’t, since as we will see further, special cases of this exercise,
depicted here on the right, constitute the structural core of
the quantum teleportation protocol [7], the logic-gate telepor-
tation protocol [39], and the entanglement swapping protocol
[40] – missing labels stand for identities. For a full derivation
of these protocols from the geometrical reading of projectors
as exposed in the above exercise the reader may consult [16].
But even more so, there is a striking connection of these di-
agrams with the proof structures of linear logic. Because of
the fact that monoidal categories provide semantics for linear
logic, this prompted the development of a categorical axiomatisation of the quantum formalism.

The above example shows that pictures can do more than merely providing an illustration or a
convenient representation: they can provide reasoning mechanisms i.e. logic. We now show that
they can also comprehend equational content. The representation of linear operators as pictures
which we implicitly relied on in the previous exercise went as follows:

f ≡ f 1A ≡ g ◦ f ≡
g

f
f ⊗ g ≡ f fg (2)

So operators are represented by boxes with and input and an output wire. In fact, we will
also allow for more than one wire or none. Identities are represented by wires, composition by
connecting input wires to output wires and tensor by putting boxes side-by-side.
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You may or you may not know that any four linear operators satisfy the equation:

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) (3)

It is a easy although somewhat tedious exercise to verify this equation. How does this equation,
which only involves composition and tensor, translates into pictures? We have:

g ◦ f ≡
g

f

and k ◦ h ≡
k

h
so (g ◦ f)⊗ (k ◦ h) ≡

k

h

g

f

On the other hand we have:

f ⊗ h ≡ f fh and g ⊗ k ≡ g fk so (g ⊗ k) ◦ (f ⊗ h) ≡
k

h

g

f

So we obtain a tautology ! This means that the so innocent looking way in which we represented
composition and tensor of linear operators as pictures already implies validity of eq.(3). Hence
these simple pictures already carry non-trivial equational content.

2.2 A metaphor: what do we look at when watching television?

So we just saw that there is more to linear algebra than ‘hacking’ with matrices. Other features,
namely the role played by the line in the above exercise and the tautological nature of eq.(3)
show that there are structures which emerge from the underlying matrix manipulations.

Similar situations also occur in everyday life. When watching television, we don’t observe the
‘low-level’ matrices of tiny pixels the screen is made up from, but rather the ‘high-level’ gestalts
of each of the figuring entities (people, animals, furniture, ...) which make up the story that
the images convey. These entities and their story is the essence of the images, while the matrix
of pixels is just a technologically convenient representation, something which can be send as a
stream of data from broadcaster to living room. What is special about this representation is
that, provided the pixels are small enough, they are able to capture any image.

An alternative representation consists of a library which includes images of all figuring entities,
to which we attribute coordinates. This is done in computer games. While this representation
is much closer to the actual content of the images, it would be technologically unfeasible for a
medium such as television. Sometimes the particular identity of these entities is also not essential
for the story, but rather the overall story they convey. In a football match it is the configuration
of the players relative to the ball and the changes thereof which constitute the essence.

In modern computer programming, one does not ‘speak’ in terms of arrays of 0s and 1s,
although that’s truly the data stored within the computer, but rather relies on high-level concepts
about information flow. A typical example are the flow charts which are purely diagrammatic.

We sense an analogy of all of this with the status of the current quantum mechanical formalism.
The way we nowadays reason about quantum theory is still very ‘low-level’, in terms of arrays of
complex numbers and matrices which transform these arrays. Just like the pixels of the television
screen, the arrays of complex numbers have the special property that they allow to represent all
entities of the quantum story. So while we do obtain accurate representations of physical reality,
it might not be the best way to understand it, and in particular, reason about it.
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3 General compositional theories

Groups and vector spaces are examples of algebraic structures that are well-known to physicists.
Obviously there are many other kinds of algebraic strictures. In fact, there exists an algebraic
structure which is such that ‘something is provable from the axioms of this algebraic structure’
if and only if ‘something can be derived within the above sketched diagrammatic language’.

Let us make this more precise. An algebraic structure typically consists of: (i) some elements
a, b, c, ...; (ii) some operations such as multiplying, taking the inverse, and these operations also
include special elements such as the unit; (iii) some axioms (or otherwise put, laws). For example,
for a group the operations are a binary operation −·− which assigns to each pair of elements a, b
another element a ·b, a unitary operation (−)−1 which assigns to each element a another element
a−1, and a special element e. The axioms for a group are x · (y · z) = (x · y) · z, x · e = e · x = x,
and x−1 · x = x · x−1 = e, where x, y, z are now variables that range over all elements of the
group. These axioms tell us that the operation −·− is associative and has e as its unit, and that
the operation (−)−1 assigns the inverse to each element. The case of a vector space is a bit more
complicated as it involves two sets of elements, namely the elements of the underlying field as
well as the vectors themselves, but the idea is again more or less the same.

Let us be a bit more precise by what we mean by an axiom. By a formal expression we mean
an expression involving both elements and operations, and typically the elements are variables.
For example, in the case of a group x · (y · z)−1 is such a formal expression. An axiom is an
equation between two formal expressions which holds as part of the definition of the algebraic
structure. But there are of course other equations between two formal expressions that hold,
e.g. x · (y · z)−1 = (x · z−1) · y−1 for groups. What we claim is that there is a certain algebraic
structure defined in terms of elements, operations and axioms, such that the following holds:

(1) to each picture we can associate a unique formal expression for that algebraic structure;
(2) any equation between two pictures is derivable from the intuitive rules in the diagram-

matic calculus if and only it is derivable from the axioms of the algebraic structure.

In other words, the picture calculus and the algebraic structure are essentially the same, despite
the fact that at first sight they look very different. But rather than just formally defining this
algebraic structure, we want to provide the reader first with an intuitive feel for it, as it is quite
different from the algebraic structures physicists are used to manipulate.

Previous experiences have, somewhat surprisingly, indicated the nature of this structure, and
its generality, is best conveyed without making reference to physics. Therefore we present, ...

3.1 The algebra of cooking

Let A be a raw potato. A admits many states e.g. dirty, clean, skinned, ... We want to process
A into cooked potato B. Also B admits many states e.g. boiled, fried, deep fried, baked with
skin, baked without skin, ... Correspondingly, there are several ways to turn A into B e.g. boiling,
frying, baking, respectively referred to as f , f ′ and f ′′. We make the fact that these cooking
process apply to A and produce B explicit within the notation of these processes:

A
f- B A

f ′- B A
f ′′- B

Our use of colours already indicated that states are themselves processes too:

I
ψ- A

where I stands for unspecified or unknown, i.e. we don’t need to know from what system A has
been produced, just that it is in state ψ and available for processing. Let

A
f- B

g- C = A
g ◦ f- C



February 4, 2009 9:20 Contemporary Physics QuantumPicturalism

8 Bob Coecke

be the composite process of first boiling = A
f- B and then salting = B

g- C and let

X
1X- X

be doing nothing to X. Clearly we have 1Y ◦ ξ = ξ ◦ 1X = ξ for all processes X
ξ- Y . Let

A⊗D be potato A and carrot D and let

A⊗D
f⊗h- B ⊗ E and C ⊗ F

x- M

respectively be boiling potato A while frying carrot D, and, mashing spiced cooked potato C
and spiced cooked carrot F . The whole process from raw ingredients A and D to meal M is:

A⊗D
f⊗h- B ⊗ E

g⊗k- C ⊗ F
x- M = A⊗D

x◦(g⊗k)◦(f⊗h)- M.

A recipe is the sequence of consecutive processes which we apply:(
A⊗D

f⊗h- B ⊗ E , B ⊗ E
g⊗k- C ⊗ F , C ⊗ F

x- M
)
.

Of course, many recipes might actually result in the same process – cf. in a group it is possible
that while x 6= x′ and y 6= y′, and hence (x, y) 6= (x′, y′), we have x · y = x′ · y′. Some equational
statements may only apply to specific recipes while others apply at the level of formal expressions,
and we refer to the latter as laws govering receipts. Here is one such law governing receipts:

(1Y ⊗ ζ) ◦ (ξ ⊗ 1Z) = (ξ ⊗ 1U ) ◦ (1X ⊗ ζ) .

For example, for X := A, Y := B, Z := C, U := D, ξ := f and ζ := g we have:

boil potato then fry carrot = fry carrot then boil potato .

This law is only an instance of a more general law on recipes, namely

(ζ ◦ ξ)⊗ (κ ◦ ω) = (ζ ⊗ κ) ◦ (ξ ⊗ ω) ,

which in the particular case of ξ := f , ζ := g, κ := k and ω := h reads as:

boil potato then salt potato, while, fry carrot then pepper carrot
||

boil potato while fry carrot, then, salt potato while pepper carrot

Note in particular that we rediscover eq.(3) of the previous section, which was then a tautology
within the picture calculus, and is now a general low on cooking processes.

It should be clear to the reader that in the above we could easily have replaced cooking pro-
cesses, by either biological or chemical processes, or mathematical proofs or computer programs,
or, obviously, physical processes. So eq.(3) is a general principle that applies whenever we are
dealing with any kind of systems and processes thereon. The mathematical structure of these is
a bit more involved than that of a group. While for a group we had elements, operations, and
laws i.e. equations between formal expressions, here:

(C1) Rather than an underlying set of elements, as in the case of a group, we have two sorts of
things, one to which we referred as systems, and the other to which we referred as processes.

(C2) There is an operation − ⊗ − on systems as well as an operation − ⊗ − on processes, with
respective units I and 1I. Both of these are very similar to the multiplication of the group. In
addition to this operation, there is also an operation −◦− on processes, but for two processes
A

f- B and C
g- D, their composite g ◦ f exists if and only if we have B = C.
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(C3) The way in which −⊗− and − ◦ − interact with each other is given by the laws:

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) and 1A⊗B = 1A ⊗ 1B .

The items (C1), (C2) and (C3), up to some subtleties for which we refer the reader to [41–
43], define what it means to be a monoidal category, a mathematical structure which has been
around now for some 45 years [44]. It has become prominent in computer science, and is gaining
prominence in physics. Systems are typically referred to as objects, processes are referred to as
morphisms, the operation − ◦ − as composition, and the operation −⊗− as the tensor.

The words then and while we used to refer to − ◦ − and − ⊗ − are clearly connected to the
‘time-like’ and ‘space-like’ separation one has in relativistic spatio-temporal causal structure.
Put differently, we can compose processes both ‘sequentially’ and ‘in parallel’. We will refer to
such a theory of systems and processes thereon, in which we have two interacting compositions
in the above described sense, as compositional theories. Hence we distinguish between the theory
itself and the mathematical model, that is, monoidal categories, in which we describe it.

Remark: At several occasions it was pointed out to us that theories in the above sense do not
cover all possible physical theories, namely: (1) field theories have no clear concept of system
due to creation and annihilation operators; (2) in a theory of quantum gravity there should be
no strict distinction between space-like and time-like degrees of freedom. These are not valid
criticisms. While the particular discourse conducted above relies on a clearly defined notion
of system, this was only done in order to convey a clear story to the reader. This is not that
essential, and can in fact be undone by adding extra structures, as the many formalisations
of field theories in terms of monoidal categories demonstrate. The clear separation between
space-like and time-like degrees of freedom can also be undone by adding extra structure.

3.2 Another metaphor: why does a tiger have stripes and a lion doesn’t?

One strategy for finding an answer to this question would be to dissect the tiger and the lion.
Maybe the explanation is hidden in the nature of the building blocks which these two animals
are made up from. We find intestines but they seem to be very much the same in both cases.
With a tiny knife we further dissect till we identify a smaller kind of building block we now refer
to as a ‘cell’. Again, no obvious difference for tigers and lions at this level. We need to go even
smaller, till we discover DNA and this constituent truly reveals a difference. So yes, now we know
why tigers have stripes and lions don’t. Do we really? It seems to us that the real explanation
for the fact that tigers have stripes and lions don’t is the process

prey ⊗ predator ⊗ environment
hunt

- dead prey ⊗ eating predator

which represents the successful challenge of a predator, operating within a certain environment,
on a certain prey. Key to the likeliness that such a challenge will be successful is the predator’s
camouflage. Lions hunt in sandy savanna while tigers hunt in the forest and it is relative to this
environment that stripes happen to be adequate camouflage for tigers and plain sandy colours
happen to be adequate camouflage for lions. The fact that this difference is encoded in their
respective DNA is an evolutionary consequence of this, via the process of natural selection.

This example clearly illustrates that there are different levels of structural description that
apply to a certain situation, and that some of these might be more relevant than others. Rather
than looking at the individual structure of entities, and their constituents, above we looked
at how they interact with others, namely environment and prey. It is this passage which is
enabled by monoidal categories; more traditional structures such as groups and C*-algebras are
intrinsically monolithic. Philosophically this passage enables us to (at least to some extend)
consider other perspectives than a purely reductionistic one. In particular, for quantum theory,
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it enables us to put more emphasis on the way in which quantum systems interact. Let it be
clear that we do not want to take a particular philosophical stance here, since the results we
will present are totally independent of it. But one should be aware that certain paradigms or
perspectives, such as reductionism, might lead one to not properly understand important things.

3.3 Compositional theories ≡ picture calculi

kh

g

f

l

Figure 6. Compound
processes as pictures

We already introduced some basics of the diagrammatic language in
eqs.(2). For example, on the right is the diagrammatic representation of

l ◦ (g ⊗ 1) ◦ (f ⊗ h⊗ k) ,

or, by eq.(3) which both applies to pictures and compositional theories ,

l ◦ ((g ◦ (f ⊗ h))⊗ k) ,

where we relied on 1 ◦ k = k. We represent the ‘unspecified’ system I by ‘nothing’, that is, no
wire. We represent states (cf. kets), effects (cf. bras), and numbers (e.g. bra-kets) by:

I
ψ- A ≡ ψ A

π- I ≡ π I
π- I ≡ s

Note how these triangles and diamonds are essentially the same as Dirac notation:

Hence the graphical language builds further on something physicists already know very well.
Within the mathematical definition of a monoidal category these special morphisms state, effect
and number are subject to some equational constraints, but in the graphical calculus this is
completely accounted for by the fact that it corresponds to ‘no wire’.

g

f g
=

f
=

Figure 7. Laws on ‘swapping systems’.

Sometimes one wishes to have a process

A⊗B
σA,B- B ⊗A

that swaps systems in compositional theories.
Again this can be made mathematically pre-
cise and is captured by the mathematical notion of symmetric monoidal category. This involves
substantially more equational requirements but each of these is again intuitively evident in dia-
grammatic terms e.g. above on the right we depicted:

σB,A ◦ σA,B = 1A,B and σA,B ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,B .

Theorem 3.1 : [29] The graphical calculus for monoidal categories and symmetric monoidal
categories is such that an equational statement between formal expressions in the language of
(symmetric) monoidal categories holds if and only if it is derivable in the graphical calculus.

The theory of graphical languages for a variety of different species of monoidal categories,
including so-called braided ones, is surveyed in a recent paper by Selinger [45].
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4 Picture calculus for quantum theory I: lots from little

In standard quantum theory processes are described by certain linear maps. Therefore the sym-
metric monoidal category which has Hilbert spaces as objects, (bounded/Hilbert-Schmidt) linear
maps as morphisms, and the tensor product as the tensor, plays an important role for us. We
denote it by Hilb. When restricting to finite dimensional Hilbert spaces we write FHilb. Up
to issues to do with redundancy of global phases, which can be dealt with categorically [46] but
which we ignore here, FHilb can be interpreted as the compositional theory of all post-selected1

processes for quantum systems with finite degrees of freedom.
In FHilb we have I := C, since for any Hilbert space, when conceiving C as a one-dimensional

Hilbert space, that H ⊗ C ' H. Consequently, states are linear maps ψ : C → H. If we know
ψ(1) ∈ H, then the whole map is determined by linearity. Hence these linear maps are in bijective
correspondence with the vectors in H. Similarly one shows that the linear maps ψ : C → C are
in bijective correspondence with the complex numbers.

pics: f ψ

cats: object A morphism A
f- B I I

ψ- B

FHilb: Hilbert space H linear map f : H → H′ C ψ ∈ H

So FHilb is ‘a naive version of quantum theory’ recast as a compositional theory, but by still
explicitly referring to Hilbert spaces. What we truly would like to do is to describe quantum
theory purely in diagrammatic terms, without reference to Hilbert space. In the remainder of
this section we will adjoin two intuitively natural features to the graphical language which bring
us substantially closer to the fundamental concepts of the quantum realm, and will already allow
for some protocol derivation. These results appeared in a joint paper with Abramsky [15].

4.1 Concepts derivable from flipping boxes upside-down

pics: f f

cats: A
f- B B

f†- A

FHilb: linear map its adjoint

Assume that for each graphical element there is a
corresponding one obtained by flipping it upside-
down. To make this visible in the graphical calcu-
lus we introduce asymmetry. In the case of FHilb
we can interpret this ‘flipping’ in terms of the
linear-algebraic adjoint, obtained by transposing
a matrix and conjugating its entries. Therefore we
also denote such a ‘flipping’ operation by † in arbitrary monoidal categories. We call a monoidal
category with such a flipping operations a dagger monoidal category.

Again, while in the graphical language we can simply define this operation by saying that
we flip things upside-down, in category-theoretic terms we have to specify several equational
requirements, for example, (f ⊗ g)† = f † ⊗ g†, (g ◦ f)† = f † ◦ g† and 1†A = 1A.

So what do adjoints buy us? They let us define the following in any dagger monoidal category:

Definition 4.1: The inner product of two states I
ψ- A and I

φ- A is φ† ◦ψ. A morphism
A

f- B is unitary iff f † = f−1 where B
f−1

- A is defined by f ◦ f−1 = 1B and f−1 ◦ f = 1A.
A morphism A

f- A is self-adjoint iff f = f † and it is a projector if moreover f ◦ f = f .

The names of these concepts are justified by the fact that in FHilb they coincide with the
usual ones. Hence, for example, self-adjointness of a linear operator translates in diagrammatic

1Post-selected means that in measurements we condition on the outcome. Arbitrary linear maps can be realised by means
of post-selected logic-gate teleportation [39]. Arbitrary amplitudes can be obtained by amplification.
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terms as ‘invariance under flipping it upside-down’. In any dagger monoidal category we can
derive the more usual definition of unitarity in terms of preservation of the inner-product:

Proposition 4.2: Unitary morphisms preserve inner-products.

pics:

=

f
f =

f
f

ψ

φ

ψ

φ

=

ψ
φ

cats: f † ◦ f = 1B (f ◦ φ)† ◦ (f ◦ ψ) = φ† ◦ (f † ◦ f) ◦ ψ = φ† ◦ ψ

FHilb: f is isometry 〈f(φ)|f(ψ)〉 = 〈φ|(f † ◦ f)(ψ)〉 = 〈φ|ψ〉

The proof of this
proposition is de-
picted in the table
on the right. Re-
call here that f is
unitary if and only
if both f and f †

are isometries, and
that a linear map
f : H → H′ is an
isometry iff f † ◦ f = 1H. Also the notion of positivity generalises to dagger monoidal categories,
but more interesting is the notion of complete positivity. In standard quantum theory completely
positive maps, roughly speaking, assign to each density matrix another density matrix in such a
way that mixtures of pure states are preserved. They are of key importance to describing noisy
processes, open systems, and decohence. It turns out that they can already be defined at the
general level of dagger monoidal categories, such that in the case of FHilb we obtain the usual
notion. We only mention this result here, and refer the reader to [18, 47] for a detailed discussion
of this generalised notion of completely positive maps, and applications thereof.

4.2 Concepts derivable from U-turns

We adjoin new graphical elements to the graphical calculus, a ∪-shaped and a ∩-shape wire.

element 1 element 2 rule

pics:

=yank

cats: I
ηA- A⊗A A⊗A

εA- I (εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A

FHilb:
∑

i |ii〉
∑

i〈ii| (
∑

i〈ii| ⊗ 1H) (1H ⊗
∑

i |ii〉) = 1H

We refer to ∪’s as Bell-states and to ∩’s as Bell-effects. These ∪’s and ∩’s obey an intuitive graphi-

=

ηA

1AεA
1A

1A

Figure 8. Comparison of the diagram-
matic and the category-theoretic de-
scription of ‘straightening/yanking’.

cal rule. While symbolically this rule is quite a mouthful,
graphically it is so simple that it looks somewhat silly: a
line involving ∪’s and ∩’s can always been ‘straightened’ or
‘yanked’. The reason for depicting the identity as will
become clear when we use this rule in applications. In Fig-
ure 8 we show how the diagrammatic and the symbolic de-
scritions of this rule relate. States and effects satisfying this

property do exist in FHilb and indeed correspond to Bell-states and Bell-effects. Depending on
one’s taste one can depict a Bell-state either as or as ; we pick the latter.

These ∪’s and ∩’s turn out to capture a surprising amount of linear-algebraic structure. They

pics: f

=

f f

cats: A
f- B f∗ = B

(εB⊗1A)◦(1B⊗f⊗1A)◦(1B⊗ηA)- A

FHilb: linear map its transposed

for example allow to gen-
eralise the linear-algebraic
notion of transpose to ar-
bitrary compositional the-
ories. Graphically we de-
note this adjoint by rotat-
ing the box representing
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the morphism by 180 degrees. This choice is not at all arbitrary. As shown in Figure 9, the

=

=

f

=

f

f

= =

f

Figure 9. Proof of the sliding rule. We apply yanking to the
picture at the top to obtain bottom-left and bottom right. The
bottom-middle picture follows by the definition of the transpose.

definition of the transpose together with
the yanking axiom for the ∪’s and ∩’s al-
lows us to prove that we can ‘slide’ boxes
along these ∪’s and ∩’s, which indeed ex-
actly corresponds to rotating the box 180
degrees. We’ll see further how this prin-
ciple alone will allow us to derive several
quantum informatic protocols.

These cups and caps also generalise
so-called ‘map-state’ duality to arbi-
trary compositional theories. Let us re-
call what this map-state duality is about.
To a linear map f : H → H′ with ma-
trix (mji)ji in basis {|i〉}i of H and basis
{|j〉′}j of H′ we can always associate a

bipartite vector Ψf :=
∑

jimji · |i〉 ⊗ |j〉′ ∈ H ⊗ H′. This correspondence between linear maps
from H to H′ and vectors in H⊗H′ is a bijective one. In particular, we can write this bipartite
state in terms of f itself and a Bell-state, namely as Ψf = (1H ⊗ f)

∑
ii |ii〉, and this expression

straightforwardly lifts to the graphical calculus. So does the bijective correspondence

f f (4)

due to the yanking rule, and it also lifts to completely positive maps, resulting in a generalisation

pics: f

cats: tr(f) = I
ηA◦(f⊗1A)◦εA- I

FHilb: trace i.e.
∑

imii

Figure 10. Also the trace allows a diagrammatic
presentation in terms of ∪’s and ∩’s. It’s abstract
category-theoretic axiomatisation is in [48].

of the Choi-Jamiolkowski Isomorphism. Other con-
cepts of linear algebra which can be expressed in
terms of ∪’s and ∩’s are the trace, the partial trace,
and the partial transpose, which all play an impor-
tant role in quantum theory.

Remark: Rather than defining ∪’s as morphisms
A ⊗ A

εA- I , like we did above, there are good
reasons to define ∪’s as morphisms A∗⊗A εA- I ,
where A∗ is referred to as the dual. For example,
when we take H∗ to be the dual Hilbert space of a Hilbert space H (i.e. the space of functionals)
then the Bell-states are basis independent, and hence so are the trace and transposed. We won’t
go into this issue any further and refer the reader to [15, 23].

4.3 2 × 2 = 4

pics: f

=

f f

cats: A
f- B f ] = A

(εA⊗1B)◦(1A⊗f†⊗1B)◦(1A⊗ηB)- B

FHilb: linear map its conjugate

If we combine the struc-
tures introduced in the
previous two sections
we can construct the
transposed of the ad-
joint, or equally, as is
obvious from the graph-
ical calculus, the adjoint of the transposed. In FHilb this corresponds to conjugating matrix
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f

f

f

f
†

#

entries. On the left we summarise the graphical representation
of the adjoint, the conjugate and the transposed, and the ways
they relate to each other. This is the setting in which things
start to become interesting, and we can start exploring the
area quantum informatic protocols. All the results apply to
arbitrary compositional theories in which we can flip boxes
upside-down and have ∪’s and ∩’s, so in particular, to FHilb.

First we derive the quantum teleportation protocol. Assume that f is a unitrary morphism
i.e. its adjoint is equal to its inverse. Physically it represents a reversible operation. We have:

=

f

f =

f f

f

ALICE

BOB

=

ALICE

BOB

f

The picture on the left describes the setup. Alice and Bob share a Bell-state (= the white triangle
at the bottom). Alice also possesses another qubit in unknown state (= the leftmost black wire
at the bottom). She performs a bipartite measurement on her two qubits for which the resulting
corresponding effect is the remaining triangle, that is, symbolically, (Ψf∗)† in the notation of the

=

ω1

ω1

ω2

ω2

ω3

ω3

ω

ω4

4

ω1

ω4 ω3
ω4

ω1
ω2

ω3

ω2

previous section. By map-state duality we know
that any bipartite-effect can be represented in this
manner for some f . The fact that here f is unitary
guarantees that the effect is maximally entangled.
Finally Bob performs the adjoint to f on his qubit.
The picture on the right shows that the overall
result of doing all of this is that Alice’s qubit ends
up with Bob. Importantly, the fact that Alice and
Bob’s operation are labelled by the same symbol f
implies that Alice needs to communicate what her
f is (i.e. her measurement outcome) to Bob – and
hence this process does not violate no-faster-than-
light-communication imposed by special relativity.

On the right you find the solution to the exercise
we presented in Section 2.1. Indeed, that’s all there is to it. Since FHilb is an example of a
compositional theory this general proof implies the result for the specific case of linear algebra.

We also derive the entanglement swapping protocol:

=

f

f
f

f ff f
f

f

f

f f

= =

a-b c-d
a-d

b-c

The four qubits involved, a, b, c, d, are initially in two Bell-states, a-b and c-d. By performing
a (non-destructive) measurement on b and c (= yellow square), and performing corresponding
unitaries on c and d, we get a situation where the Bell-states are now a-d and b-c.

Dagger symmetric monoidal categories in which each object comes with a ∪ and ∩, subject to
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certain conditions which make all of these live happily together, are dagger compact categories.
Theorem 3.1 extends to dagger compact categories.

Theorem 4.3 : [18, 27] The graphical calculus for dagger compact categories is such that an
equational statement between formal expressions in the language of dagger compact categories
holds if and only if it is derivable in the graphical calculus.

But in fact, now there is even more. As mentioned before, FHilb is an example of a dagger
compact category, but of course there are also many other ones. To give two examples [42, 49]:

• Taking sets as objects, relations as morphisms, the cartesian product as tensor, and relational
converse as the dagger, results in a dagger compact category Rel.

• Taking closed n − 1-dimensional manifolds as objects, n-dimensional manifolds connecting
these as morphisms (= cobordisms), the disjoint union of these manifolds as the tensor, and
reversal of the manifold as the dagger, results in a dagger compact category nCob.

Remark: Following Atiyah in [54], topological quantum field theories can be succinctly defined as
monoidal functors from nCob into FHilb, i.e. maps that send objects to objects and morphisms
to morphisms, and which preserve both composition and tensor – details are in [42, 49, 50].

The dagger compact categories Rel and nCob, in particular the latter, are radically different
from FHilb. This would make one think that there is nothing special about FHilb within the
context of dagger compact categories. But in fact, FHilb is very special as a dagger compact
category, as the following result due to Selinger demonstrates, inspired by an earlier result in
[51] due to Hasegawa, Hofmann and Plotkin for a related kind of monoidal categories:

Theorem 4.4 : [52] An equational statement between formal expressions in the language of
dagger compact categories holds if and only if it holds in the dagger compact category FHilb.

Let us spell out what this exactly means. Obviously, any statement provable for dagger com-
pact categories carries over to FHilb since the latter is an example of a dagger compact category.
So anything that we prove in the graphical calculus automatically applies Hilbert spaces and
linear maps. But this theorem now tells us that the converse is also true, that is, if some equa-
tional statement happens to hold for Hilbert spaces and linear maps, which is expressible in the
language of dagger compact categories, then we can always derive it in the graphical language.
This of course does not mean that all that we can prove about quantum theory can be proven
diagrammatically. But all those statements involving identities, adjoints, (partial) transposes,
conjugates, (partial) traces, composition, tensor products, Bell-states and Bell-effects, and also
Hilbert spaces, numbers, states and linear maps as variables, can be proven diagrammatically.
For dagger compact categories such as Rel and nCob there does not exist an analogous result.

A current challenge is to extend this so-called completeness theorem to richer graphical lan-
guages, e.g. the one presented in the next section of this paper, which capture even more of
the Hilbert space structure. The ultimate challenge would be to find a graphical language which
captures the complete Hilbert space structure, if that is even possible of course. These results are
very important for the automation of quantum reasoning, discussed in the introduction. They
tell us the space of theorems which a ‘theorem prover’ based on a certain logic is able to prove.

Obviously most of the results in quantum informatics use a much richer language than that of
dagger compact categories. But that doesn’t necessarily mean that it could not be formulated
merely in this restrictive language. An example is the no-cloning theorem. While usually stated
in linear-algebraic terms, the no-cloning theorem can in fact already be proven for arbitrary
dagger compact categories, a result due to Abramsky that reads as follows:

Theorem 4.5 : [53] If in a dagger compact category there exists a universal cloning morphism
then this dagger compact category must be a trivial one. In other words, there are no non-trivial
dagger compact categories which admit a universal cloning morphism.
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5 Picture calculus for quantum theory II: complementary observables and phases

The aim is now to further refine our graphical language to the extend that we can describe
arbitrary linear maps within it, hence the whole of quantum theory. This will enable to perform
more sophisticated computations diagrammatically, and study important quantum phenomena
such as non-locality in a high-level manner. This in fact only requires few additional concepts.

5.1 Observables as pictures

Here are things not expressible in the graphical language of dagger compact categories:

f

ALICE

BOB

f

Figure 11. We want to depict a clas-
sical channel, here indicated by a dot-
ted arrow, also by wires, different
from a quantum channel of course.

• In our graphical description of teleportation of the previ-
ous section we mentioned that the fact that f appears both
at Alice’s and Bob’s site implied that they needed to com-
municate with each other. A comprehensive diagrammatic
presentation of this protocol should therefore have a second
kind of wire which represents such a classical channel.

• The graphical description of teleportation included effects
labelled by f and we mentioned that f may vary due to the
non-deterministic nature of measurements. But we didn’t
express which such effects together make up a measurement.
In other words, we have no diagrammatic descriptions of the
projector spectra and eigenstates of observables.

We only need one kind of additional graphical element to be able to articulate each of these
graphically. There are two complementary presentations of it, each pointing at distinct features.
To one we refer to as spiders, and the other as a copying-deleting-pair. The results presented
here appeared in joint papers with Pavlovic, Vicary and Paquette [20, 22, 55].

5.1.1 Spider presentation
m︷ ︸︸ ︷

........

....

....

....

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

Figure 12. Rule for composing spiders. It is
essential that the spiders ‘shake hands/legs’
i.e. the two dots corresponding to the spiders’
heads need to be connected via a wire.

A non-degenerate observable or basis for an object A in
a dagger symmetric monoidal category is a family of spi-
ders with n front and m back legs, one for each n,m ∈ N,

depicted as

m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

and denoted by A⊗n
δm

n- A⊗m.

The composition axiom which governs these spiders is
depicted on the right. In words, whenever we have two
spiders such that at least one leg of spider 1 is connected
to a leg of spider 2 then we can fuse them into a single spider. We also require δ11 to be the
identity, and that the set of spiders in invariant under upside-down flipping and leg-swapping.
Spiders and their composition rules generalise the cup’s, cap’s and their yanking rule of the pre-
vious section. Indeed, when comparing Figure 8 and Figure 12 one sees that one obtains cup’s,
cap’s and their yanking rule by interpreting δ20 = as the cup and δ02 = as the cap.
So if on an object we have a non-degenerate observable then we also have cup’s and cap’s.

You may rightfully ask yourself what the hell these spiders have to do with the observables of
quantum theory. The answer is given by the following not so trivial theorem.

Theorem 5.1 : [22] In FHilb we have that non-degenerate observables {H⊗n δm
n- H⊗m}n,m

in the above sense exactly correspond with orthonormal bases on the underlying Hilbert space H.

So on a Hilbert space H in FHilb these non-degenerate observables in terms of spiders and
orthonormal bases are one-and-the-same thing. To establish which orthonormal basis on a Hilbert



February 4, 2009 9:20 Contemporary Physics QuantumPicturalism

Contemporary Physics 17

space H corresponds to a given non-degenerate observable {H⊗n δm
n- H⊗m}n,m we will first pass

to an alternative but equivalent presentation of non-degenerate observables in dagger symmetric
monoidal categories. From a pictorial point of view this alternative presentation is less attractive,
but both from a physical and an algebraic point of view it makes more sense.

5.1.2 Copying-deleting-pair presentation

=

=

=

=

=(1)

(2)

(3)

(4)

(5)

A non-degenerate observable or basis for an object A in a dagger sym-
metric monoidal category consists of a copying operation A

δ- A⊗A
and a deleting operation A

ε- I which satisfy the following axioms:

(1) ε is a unit for (the comultiplication) δ i.e. (ε⊗ 1A) ◦ δ = 1A ;
(2) δ is coassociative i.e. (1A ⊗ δ) ◦ δ = (δ ⊗ 1A) ◦ δ ;
(3) δ is cocommutative i.e. σA,A ◦ δ = δ ;
(4) δ is an isometry i.e. δ† ◦ δ = 1A ;
(5) δ satisfies the Frobenius law introduced in [28] i.e.:

(δ† ⊗ 1A) ◦ (1A ⊗ δ) = δ ◦ δ†.

When introducing graphical objects δ = and ε = we obtain the
graphical rules depicted on the right. In standard mathematical jargon all of these together mean
that (A, δ, ε) is a so-called special dagger Frobenius commutative comonoid. It is quite remarkable
that this set of axioms exactly corresponds to the spiders discussed above. To pass from spiders
to a copying-deleting-pairs we set δ := δ21 and ε := δ01 . Conversely, from the above axioms it
follows that any composite of δ’s, ε’s, their adjoints, identities, by using both composition and
tensor, and provided its graphical representation is connected, only depends on the number of
inputs n and outputs m [30, 55]. The spider δmn then represents this unique morphism.

So how does such a copying-deleting-pair (and hence also the spiders) encode a basis? Given a
basis {|i〉}i of a Hilbert space H we define the copying operations as the linear map which ‘copies
these basis vectors’ i.e. δ : H → H⊗H :: |i〉 7→ |ii〉, while the deleting operation is the linear map
which ‘uniformly deletes these basis vectors’ i.e. ε : H → C :: |i〉 7→ 1. That these maps faithfully
encode this basis, and no other basis, follows directly from the no-cloning theorem [11, 12]: as
the only vectors that can be copied by such an operation have to be orthogonal, they can only
be the basis vectors we started from. Explicitly put, with the above prescription of δ the only
non-zero vectors |ψ〉 ∈ H satisfying the equation δ(|ψ〉) = |ψ〉 ⊗ |ψ〉 are the basis vectors {|i〉}i.
Eigenvectors obtained in this way are the same as those of the self-adjoint operator

∑
i ai|i〉〈i|,

which is the representation of this observable in the usual quantum mechanical formalism.
More generally, in any dagger symmetric monoidal category one can define eigenstates (or

eigenvectors) for an observable in the copying-deleting-pair sense as a state that is copied by δ.

Graphically this means that these generalised eigenstates ψ satisfy the equation:

ψ ψ ψ

=

. (5)

This is a strong property since it means that the ‘connected’ picture on the left can be replaced
by the ‘disconnected’ one on the right. Obviously this has major implications in computations.

The copying-deleting-pair presentation also points at a physical interpretation of non-
degenerated our observables. The copying and deleting maps witness those states that can be
copied, and hence, again by the no-cloning theorem, those that happily live together within a
classical realm. This indicates a picture of the classical-quantum distinction which is somewhat
opposite to the usual one: rather than constructing a quantum version of a classical theory via
quantisation, here we extract a classical version out of a quantum theory, say classicization. We
won’t go any deeper in this issue and the philosophical speculations this raises.
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So the observables defined in terms of spiders are all non-degenerated. But one can define
degenerated counterparts to these which, in fact, more clearly elucidates their conceptual signif-
icance. The main idea is that given a spider on A we define arbitrary not-necessarily degenerated
observables as certain morphisms B

m- A⊗B. In this case B stands for the quantum system
and A stands for the classical data (i.e. the measured values or the spectrum) for the observ-
able. Since B appears both before and after the measurement we are considering non-demolition
measurements here. We define measurements as those such morphism obeying:

= ==

(6)

where the single wire stands for the classical data A while the double wire stands for the quantum
system B – the structural reason for this single-double distinction is in [24]. The first of these
conditions states: if after a measurement we perform the same measurement again then this is
the same as copying the outcome we obtained in the first measurement. This of course is the
same as: we obtain the same outcome in the second measurement as in the first one.

Theorem 5.2 : [20] Linear maps f : H1 → H2 ⊗H1 in FHilb satisfying eqs.(6) relative to a
chosen basis (cf. Theorem 5.1) exactly correspond to projector spectra of self-adjoint operators
on H1 for which the number of non-equal eigenvalues is equal to the dimension of H2.

One can verify that for the non-degenerated observables defined as triples (A, δ, ε) the mor-

phism A
δ- A ⊗ A provides an example of such a measurement, with B := A. The fact that

both the classical data and the quantum system are represented by the same symbol might look
a bit weird at first but poses no structural problem: the classical values are represented by the
triple (A, δ, ε) and not by A alone. The analogy in Hilbert space quantum mechanics is that we
think of the Hilbert space as the quantum system while the pair consisting of a Hilbert space and
an observable ‘thereon’ represents the classical values for that observable. Moreover, to avoid
conceptual confusion we can represent the quantum system by an isomorphic copy of A.

So now we’ve got ourselves a graphical representation of arbitrary observables at hand. As
already mentioned at the beginning of this section this also allows us to reason about classical
data flow diagrammatically – cf. the caption of Figure 11. We won’t discuss this here but refer
the interested reader to [20, 24], where also the role of decoherence in measurements is discussed,
which applies to all measurements in dagger symmetric monoidal categories. Rather than fo-
cussing on the interaction of the classical and the quantum relative to a given observable, we
will investigate how different observables interact, all still within the diagrammatic realm.

5.2 A pair of complementary observables in pictures

|0〉

|1〉
|+〉

|−〉

Now that we have a graphical representation for observables at hand a nat-
ural question arises: are there diagrammatic laws which describe comple-
mentary [56] (or unbiased [57]) observables?

This question was addressed by Duncan and the author in [21]. The
most famous example of complementary observables are obviously the po-
sition and momentum observables. The simplest example are the Z- and
X-observables for a qubit. For the Z-observable the eigenstates are |0〉 and
|1〉 while for the Z-observable the eigenstates are |+〉 := 1√

2
· (|0〉+ |1〉) and

|−〉 := 1√
2
· (|0〉 − |1〉). What it means for the Z- and X-observables to be

complementary is that the eigenstates for one are unbiased for the other. By
unbiasedness of a (normalised) vector |ψ〉 relative to an observable we mean that |〈ψ|e〉|2 = 1

N
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where N is the dimension of the Hilbert space and |e〉 is any eigenstate of the observable. This
in particular means that when the system is in state |ψ〉 and we measure the observable, all
outcomes are equally probable, hence the term ‘unbiased’. One could alternatively say that such

observable eigenstates unbiased states

Z |0〉, |1〉 |0〉+ eiα|1〉 e.g. |+〉, |−〉

X |+〉, |−〉 |+〉+ eiα|−〉 e.g. |0〉, |1〉
(A, δ, ε) |ψ〉 in eq.(5) |ψ〉 in eq.(7)

a pair of observables are ‘max-
imally non-classical’, that is,
‘maximally quantum’, in that
the eigenstates of one fail to
be an eigenstate of the other
in an ‘extremal manner’. Hence
one would expect a substantial
chunk of quantum mechanical structure to be captured by complementary observables, and a
diagrammatic account on these would substantially boost the power of the graphical calculus.
Unbiasedness of a state for an observable (A, δ, ε) can be expressed in arbitrary dagger symmetric
monoidal categories and depicts as follows:

ψ ψ

=

(7)

The states obeying this equation won’t be normalised, but have the square-root of the dimension
as length. This can be easily overcome by introducing the dimension in the lefthandside of the
equation, but we won’t elaborate on this issue here. What this equation says in the case of
FHilb is easily computed: taking δ to be the linear map which copies the vectors in {|i〉}i=ni=1
then δ† : H⊗H → H :: |ii〉 7→ |i〉; |ij(6= i)〉 7→ 0 so for |ψ〉 = (ψ1, . . . , ψn) we obtain

δ†(|ψ〉 ⊗ |ψ〉) = (ψ1ψ1, . . . , ψnψn) =
(
|〈ψ|1〉|2, . . . , |〈ψ|n〉|2

)
while ε† = (1, . . . , 1) .

Hence δ†(|ψ〉⊗ |ψ〉) = ε† indeed implies unbiasedness of state |ψ〉 relative to observable (H, δ, ε).
Since we now both know what ‘eigenstate’ –cf. eq.(5)– and ‘unbiased’ –cf. eq.(7)– mean in

arbitrary dagger symmetric monoidal categories we can define complementarity for them:

Definition 5.3: Two observables (A, δZ , εZ) and (A, δX , εX) in a dagger symmetric monoidal
category are complementary if the eigenstates of one are unbiased for the other.

Graphically, to distinguish between two observables we will use colouring, green and red.

Theorem 5.4 : [21] If a dagger symmetric monoidal category has ‘enough states’ then two
observables (A, δZ , εZ) and (A, δX , εX) are complementary if and only if they satisfy:

δ†Z ◦ δX = εZ ◦ ε†X i.e.

=

. (8)

Observe the radical topology change from the lefthandside to the righthandside of the equation.
The reader can easily verify that for the Z- and the X-observables, respectively defined as:

δZ ::
{
|0〉 7→ |00〉
|1〉 7→ |11〉 εZ ::

{
|0〉 7→ 1
|1〉 7→ 1 δZ ::

{
|+〉 7→ |+ +〉
|−〉 7→ | − −〉 εZ ::

{
|+〉 7→ 1
|−〉 7→ 1
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this equation indeed holds, up to a scalar multiple that is. But one verifies that also:

(δ†Z ⊗ δ†Z) ◦ (1H ⊗ σH,H ⊗ 1H) ◦ (δX ⊗ δX) = δX ◦ δ†Z i.e.

=

. (9)

holds for these Z- and the X-observables. In fact this equation holds not just for the Z- and

= = ==

the X-observables but seems to hold for all pairs
of complementary observables in Hilbert spaces of
arbitrary dimension that one encounters in the lit-
erature.1 It is in fact a strictly stronger statement
than eq.(8) as the proof on the right exposes; in the
first step we rely on spiders to rewrite the wire with
the yellow dot as everything in the second picture
within the yellow region, the second step uses eq.(9), the third step uses the fact that the adjoint
to the deleting operation for one observable is an eigenstate for the other observable, a choice
which we can always make [21], and the last step again uses spiders.

It should be mentioned that eq.(9) has also appeared in the study of so-called bialgebras, of
which quantum groups are special examples [58]. The connections between their occurrence in
this algebraic context and in that of complementary observables isn’t completely clear yet.

5.2.1 Example: computing with quantum logic gates

An important gate in quantum computing is the two-qubit controlled-not gate:

cnot : H⊗H → H⊗H ::
{
|0x〉 7→ |0x〉
|1x〉 7→ |1not(x)〉 with not : H → H ::

{
|0〉 7→ |1〉
|1〉 7→ |0〉 .

For the Z- and X-observable one can verify that

=

, which we therefore can

depict as . This is fact exactly cnot. We denote σH,H ◦ cnot ◦ σH,H = by cnotσ.
The standard result that cnot ◦ cnotσ ◦ cnot = σH,H, of which the computation which usually
proceeds by multiplying three four by four matrices, can now be derived from graphical laws:

cnot ◦ cnotσ ◦ cnot =

= = = =

= σH,H

where the 2nd diagrammatic step uses eq.(9), the 3rd relies on spiders and the 4th uses eq.(8).

5.3 Phases in pictures

The general notion of observable (A, δ, ε) in dagger symmetric monoidal categories comes with
a corresponding notion of (relative) phase. We denote the set of all states ψ : I → A which are
unbiased for (A, δ, ε) as S(A, δ, ε). For two such states we moreover set

ψ � φ := δ† ◦ (ψ ⊗ φ) = ψ φ .

1The full scope of this equation is subject to ongoing investigations, as are many questions on complementary observables.
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Given any state ψ : I → A we can also consider Uψ := δ† ◦ (ψ⊗ 1A) = ψ and one can show

that Uψ is unitary (i.e. its adjoint is equal to its inverse) if and only if ψ is unbiased for (A, δ, ε).
We denote the set of all these unitary morphisms of the form Uψ := δ† ◦ (ψ ⊗ 1A) by U(A, δ, ε).

Theorem 5.5 : [21] For any observable (A, δ, ε) in a dagger symmetric monoidal category
(S(A, δ, ε),�, ε) and (U(A, δ, ε), ◦, 1A) are isomorphic abelian groups. For S(A, δ, ε) the inverses
are provided by conjugates and for (U(A, δ, ε), ◦, 1A) the inverses are provided by adjoints.

α

For a qubit in FHilb and basis {|0〉, |1〉} we obtain |0〉 + eiα|1〉 as the el-

ements of S(A, δ, ε†) and the unitaries with matrices
(

1 0
0 eiα

)
as the ele-

ments of U(A, δ, ε). So we indeed obtain phases and hence refer to this group
as the phase group. Since (|0〉 + eiα|1〉) � (|0〉 + eiα

′ |1〉) = |0〉 + ei(α+α′)|1〉
the multiplication in the group corresponds to adding angles, and since
(|0〉 + eiα|1〉) � (|0〉 + e−iα|1〉) = |0〉 + |1〉 = ε† the inverse in the group corre-

sponds to reverses angles. To emphasise this connection of unbiased states for the particular case
of qubits in FHilb with angles we will from now on denote unbiased states for non-degenerated

........

....

....

....
α

β

=

....

....

α+β

Figure 13. Spiders decorated with phases can
still be fuzed together provided we add the phases.

observables in arbitrary dagger symmetric monoidal
categories as α. For the same reasons we from now
on denote the group’s multiplication � as +.

Due to the fact that these generalised phases are
derivable from a non-degenerate observable in a dag-
ger symmetric monoidal category, that is, a family
of spiders, they interact particularly well with these
spiders. In fact, we obtain a much richer family of
spiders, of which the heads are now decorated with these generalised phases. Strictly speaking
the heads of these spiders shouldn’t be symmetrical since they are not invariant under conju-
gation, but given that we depict them in a particular way, i.e. as circles with a Greek letter,
it should be clear that to the reader that they change under conjugation. Special examples of
decorated spiders are unbiased states α = α and generalised phase gates δ† ◦ (α⊗ 1A) = α .

5.3.1 Example: information flows in quantum computational models

By FHilb2 we mean the restriction of the category FHilb to Hilbert spaces of which the
objects are restricted to powers of two-dimensional Hilbert spaces. In other words, objects cor-
respond to n qubits where n takes values within N.

Theorem 5.6 : Every linear map in FHilb2 can be expressed in the language of a pair of
complementary observables and the corresponding phases. In other words, it can be written down
using only red and green decorated spiders.

π/3π/3

π/3

π/3

Figure 14. The GHZ-state and the W-state
[59] expressed in terms of decorated spiders.
The latter crucially involves three π/3 phases.

Proof. Any unitary operation from n qubits to n qubits
can be expressed in terms of the two-qubit cnot gate
and one-qubit phase gates [60]. Above we showed how
the cnot gate can be expressed in terms of a green and a
red (non-decorated) spider and that phase gates arise as
special cases of decorated spiders. So we can express any
unitary operation on qubits using only red and green
decorated spiders. By applying an appropriate unitary to an n-qubit state which we can represent
as spiders, e.g. |+ . . .+〉 = .... , we can obtain an arbitrary n-qubit state. Finally, via ∩’s,
which are also special cases of spiders, we can obtain any linear maps from m to k qubits from
an m+ k-qubit state, by relying on the map-state duality of eq.(4). �
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.... HH H

....
α

H

....
α

H H ....= Hence the phase group structure enables us to diagrammatically
represent all of quantum computing with finite spectra.

Jointly with Duncan we showed in [21] how to reason about
algorithms and a variety of quantum computational models in
this diagrammatic language. We present one such example here.

For this purpose it proved to be useful to assume that there is an operation which ‘changes

colours’ cf. the picture on the left. For qubits in FHilb the Hadamard gate, which has 1√
2

(
1 1
1 −1

)
as its matrix, plays this role. Since cphase = (1⊗H) ◦ cnot ◦ (1⊗H) with

cphase : H⊗H → H⊗H ::
{
|0x〉 7→ |0x〉
|1x〉 7→ |1phase(x)〉 with phase : H → H ::

{
|0〉 7→ |0〉
|1〉 7→ −|1〉 .

H

H

H

H

α β γ 0 =

α β γH HH H

=

α
β
γwe have cphase = H .

As can be seen on the
right, we can now easily
derive how we can im-
plement an arbitrary one
qubit unitary gate when
the available resources are qubits in the |+〉-state, cphase-gates and postselected measurements
(i.e. effects) of |0〉+ eiα|1〉. The first step fuses decorated spiders and the second step is just the
action of the colour changer. The righthandside represents an arbitrary one qubit unitary gate
in terms of its Euler angle decomposition. This example is important in the context of so-called
measurement base quantum computing [61] since the portion of the lefthandside picture consist-
ing of the |+〉-states and the cphase-gates is a so-called cluster state. The computation shows
that via postselected measurements of |0〉+ eiα|1〉 applied to this entangled state we can obtain
arbitrary one-qubit unitary gates, which is essential for showing universality of measurement
base quantum computing as a computational model. Implicitly the diagrammatic calculation
also transforms the measurement based setup into a circuit.

While this is of course a very simple example, it indicates the potential for simplifying far
more complicated configurations. It also indicates the potential for translating implementations
in one quantum computational model, to other quantum computational models.

Since these computations only involve discrete ingredients,1 as compared to the continuum of
the complex numbers, one can hope to automate these. At the moment we do not have a clear
view on what the equational statements are that we can derive from the laws on complementary
observables and the fusing rules for decorated spiders. Having a better view on this is crucial for
knowing which equational statements a ‘theorem prover’ may be able to find.

5.3.2 Example: the origin of quantum non-locality

We report on recent work, with Edwards and Spekkens in [25], in which we trace back non-
locality of theories to phase groups, and nothing but phase groups. In [62] Spekkens proposed
a toy theory which looked remarkably similar to quantum theory. More precisely, there is an
important restriction of quantum theory, its stabeliser fragment, in which for a qubit we only
consider the eigenstates of the Z-, X- and Y -observables, but which already carries an important
fragment of quantum theory. In particular, it is non-local. It is this fragment of quantum theory
which Spekkens’ toy theory aims to mimic, and at first sight it does this on-the-nose. However,
there is a crucial difference: Spekkens’ toy theory happens to be local. Given that these two
theories seem so similar, what makes one local and the other one non-local?

It turns out that the here discussed framework for general compositional theories provides
a very precise answer to this question. In [63] Spekkens’ toy theory was succinctly recast as a

1The derivations do not require to specify what the phase group concretely is.



February 4, 2009 9:20 Contemporary Physics QuantumPicturalism

Contemporary Physics 23

dagger symmetric monoidal category, called Spek. The same can easily be done for the stabiliser
fragment of quantum theory, to which we refer as Stab. One can show that the observables for a
qubit, now of course in our more generalised sense, exactly match in these theories. In particular,
in both a qubit has three mutually complementary observables (in our generalised sense).

There are many other correspondences between these, namely in both cases all qubit states are
either an unbiased state or an eigenstate for any qubit observables. There is a notion of GHZ-
state and GHZ-correlations that applies to arbitrary dagger symmetric monoidal categories. For
three qubits there are tripartite GHZ-states both in Spek and in Stab. Hence we can speak
of GHZ-correlations in both theories, that is, which outcomes one can simultaneously obtain in
measurements of each of the qubits in a GHZ-state. It is here that things become interesting.

Theorem 5.7 : [25] In all dagger symmetric monoidal categories, observables and GHZ-states
are in a canonical bijective corresponce. Moreover, if for a certain object all states are either
eigenstates or unbiased relative to an observable, then the phase group of that observable com-
pletely determines the GHZ-correlations for the corresponding GHZ-states.

Figure 15. The different phase groups for
the compositional theories Spek and Stab.

GHZ-states are spiders with three front and no back legs
i.e. δ30 = . We also know that phase groups are
commutative groups. Both for the qubits in Spek and
Stab these contain four elements, and in fact, there are
exactly two four element groups, namely Z4 and Z2 ×
Z2. For observables on qubits in Spek the phase group
happens to be Z2×Z2, while for observables on qubits in
Stab the phase group is Z4. One can moreover show that
having Z4 as a phase group is enough for a theory to be non-local. This result (at least to some
extend) unveils which ‘piece’ of the Hilbert space puzzle causes non-locality.

6 Experimental verification: kindergarten quantum mechanics

In physics and science in general, traditionally, claims have to be substantiated by experiments.
Is there any way we can substantiate our claims concerning the low-levelness of the quantum
mechanical formalism via actual experiments? Here is a sketch for such an experiment.

Experiment. Consider ten children of ages between six and ten and consider ten high-school
teachers of physics and mathematics. The high-school teachers of physics and mathematics will
have all the time they require to refresh their quantum mechanics background, and also to update
it with regard to recent developments in quantum information. The children on the other hand
will have quantum theory explained in terms of the graphical formalism. Both teams will be
given certain set of questions, for the children formulated in diagrammatic language, and for the
teachers in the usual quantum mechanical formalism. Who solves the most problems and solves
them in the fastest time wins. If the diagrammatic language is much more intuitive, it should
be possible for the children to win.
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