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1. Introduction

A measurable space is a pair (X,A) where X is a nonempty set and A is

a σ-algebra of subsets of A. A (finite) measure on A is a map µ:A → R+

satisfying

(1) µ(A∪̇B) = µ(A) + µ(B) (additivity)

(2) If Ai ∈ A is an increasing sequence, then

µ(∪Ai) = limµ(Ai) (continuity)

Conditions (1) and (2) together are equivalent to

µ(∪̇Ai) =
∑
µ(Ai) (σ-additivity)

It follows from (2) that

(3) If Ai ∈ A is a decreasing sequence, then µ(∩Ai) = limµ(Ai)

Because of quantum interference, Condition (1) fails for quantum

measures. Instead we have the weaker condition

(4) µ(A∪̇B∪̇C) = µ(A∪̇B) + µ(A∪̇C) + µ(B∪̇C)− µ(A)− µ(B)− µ(C)

We call (4) grade-2 additivity and also call (1) grade-1 additivity.

There are higher grades of additivity but we will not discuss them here.

If µ:A → R+ is grade-2 additive and satisfies (2) and (3), we call µ a

q-measure. If µ is a q-measure on A, then (X,A, µ) is a q-measure space.
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2. Examples

If ν is a measure then µ(A) = ν(A)2 is a q-measure.

If ν is a complex measure (quantum amplitude) then µ(A) = |ν(A)|2 is a

q-measure. In this case

µ(A∪̇B) = |ν(A∪̇B)|2 = |ν(A) + ν(B)|2

= µ(A) + µ(B) + 2Re
[
ν(A)ν(B)

]
Additivity is destroyed by the quantum interference term 2Re

[
ν(A)ν(B)

]
.

More generally, a decoherence functional is a map D:A×A → C

satisfying

(5) D(A∪̇B,C) = D(A,C) +D(B,C)

(6) D(A,B) = D(B,A)

(7) D(A,A) ≥ 0

(8) |D(A,B)|2 ≤ D(A,A)D(B,B)

We say that D is continuous if µ(A) = D(A,A) satisfies (3) and (4). It

can be shown that µ(A) = D(A,A) is then a q-measure. An example of a

continuous decoherence functional from quantum measurement theory is

D(A,B) = tr [WE(A)E(B)]

where W is a density operator (state) and E is a positive operator-valued

measure (observable).
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There are experimental reasons for considering q-measures. Let A1 and A2

be the two slits of a two-slit experiment. If µ(Ai) is the probability that a

particle hits a small region ∆ of the detection screen after going through

slit Ai, i = 1, 2, then

µ(A1∪̇A2) 6= µ(A1) + µ(A2)

in general so µ is not additive. Recent experiments with a three-slit

experiment indicate that µ is grade-2 additive so µ is a q-measure.

Example 1. Let X = {x1, x2, x3, x4} and let P(X) be the power set

on X. Define the measure ν on P(X) by ν(xi) = 1/4, i = 1, 2, 3, 4. We may

think of X as the four outcomes of flipping a fair coin twice. Now consider

the “quantum coin” with “probabilities” given by µ(A) = ν(A)2. Then the

“probability” of each sample point is 1/16 and the “probability” that at

least one head appears is 9/16.

Example 2. Let X = {x1, x2, x3} with µ(∅) = µ(x1) = 0 and

µ(A) = 1 for all other A ∈ P(X). Then µ is a q-measure on P(X).
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Example 3. Let X = {x1, . . . , xm, y1, . . . , ym, z1, . . . , zn} and call

(xi, yi), i = 1, . . . ,m, destructive pairs (or particle-antiparticle pairs).

Denoting the cardinality of a set B by |B| define

µ(A) = |A| − 2 |{(xi, yi):xi, yi ∈ A}|

for every A ∈ P(X). Thus, µ(A) is the cardinality of A after the destructive

pairs in A have annihilated each other. For instance, µ ({x1, y1, z1}) = 1

and µ ({x1, y1, y2, z1}) = 2. Then µ is a q-measure on P(X).

Example 4. This is a continuum version of Example 3. Let

X = [0, 1], let ν be Lebesgue measure on X and let B(X) be the σ-algebra

of Borel subsets of X. Define µ:B(X)→ R+ by

µ(A) = ν(A)− 2ν ({x ∈ A:x+ 3/4 ∈ A})

In this case the pairs (x, x+ 3/4) with x ∈ A and x+ 3/4 ∈ A act as

destructive pairs. For instance µ ([0, 1]) = 1/2 and µ ([0, 3/4]) = 3/4.

Again, µ is a q-measure on B(X).

The symmetric difference of sets A and B is

A∆B = (A ∩B′) ∪ (A′ ∩B)

The next result is the quantum counterpart to the usual formula for

measures: ν(A ∪B) = ν(A) + ν(B)− ν(A ∩B)
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3. Compatibility and the Center

Theorem 3.1. A map µ:A → R+ is grade-2 additive if and only if µ

satisfies

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) + µ(A∆B)− µ(A ∩B′)− µ(A′ ∩B)

The next result shows that grade-2 additivity can be extended to more

than three mutually disjoint sets.

Theorem 3.2. If µ:A → R+ is grade-2 additive, then for any n ≥ 3 we

have

µ

(
n⋃
i=1

· Ai

)
=

n∑
i<j=1

µ(Ai∪̇Aj)− (n− 2)
n∑
i=1

µ(Ai)

Let (X,A, µ) be a q-measure space. We say that A,B ∈ A are

µ-compatible and write AµB if µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B).

Clearly AµA for all A ∈ A and by Theorem 3.1, AµB iff

µ(A∆B) = µ(A ∩B′) + µ(A′ ∩B)

The µ-center of A is Zµ = {A ∈ A:AµB for all B ∈ A}. A set A ∈ A is

µ-splitting if µ(B) = µ(B ∩A) + µ(B ∩A′) for all B ∈ A.

Lemma 3.3. A is µ-splitting iff A ∈ Zµ.

Theorem 3.4. Zµ is a sub σ-algebra of A and µ | Zµ is a measure. If

Ai ∈ Zµ are mutually disjoint, then µ [∪̇(B ∩Ai)] =
∑
µ(B ∩Ai) for every

B ∈ A.

In Examples 3 and 4 we have

Theorem 3.5. TFSAE (a) A ∈ Zµ, (b) AµA′, (c) µ(A) + µ(A′) = 1
2 .
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4. Characterization of Quantum Measures

A signed measure λ on A × A is symmetric if λ(A × B) = λ(B × A) for

all A,B ∈ A. The next lemma shows that a symmetric signed measure λ

on A×A is determined by its values λ(A×A) for A ∈ A.

Lemma 4.1. If λ is a symmetric signed measure on A×A, then for every

A,B ∈ A we have

λ(A×B) = 1
2{λ [(A ∪B)× (A ∪B)] + λ [(A ∩B)× (A ∩B)]

− λ [(A ∩B′)× (A ∩B′)]− λ [(A′ ∩B)× (A′ ∩B)]}

A signed measure λ on A×A is diagonally positive if λ(A×A) ≥ 0

for all A ∈ A.

Theorem 4.2. A map µ:A → R+ is a q-measure iff there exists a diag-

onally positive, symmetric signed measure λ on A × A such that µ(A) =

λ(A×A) for all A ∈ A. Moreover, λ is unique.

Idea of Proof. Uniqueness follows from Lemma 4.1. If µ(A) = λ(A×A),

it is easy to check that µ is a q-measure. Conversely, let µ be a q-measure.

For A,B ∈ A define

λ(A×B) = 1
2 [µ(A ∪B) + µ(A ∩B)− µ(A ∩B′)− µ(A′ ∩B)]

Show that λ extends to a signed measure on A×A.
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5. A Quantum Integral

Let (X,A, µ) be a q-measure space. We first discuss how not to define

a q-integral. If f is a measurable simple function then f has a unique

canonical representation f =
∑
ciχAi

where ci 6= cj , Ai ∩ Aj = ∅, i 6= j,

Ai ∈ A, i = 1, . . . , n. Following Lebesgue we define the naive integral

N
∫
fdµ =

∑
ciµ(Ai). One problem is that N

∫
dµ is ambiguous. Unlike

the Lebesgue integral if we represent f in a noncanonical way f =
∑
diχBi

,

then in general N
∫
fdµ 6=

∑
diµ(Bi). Another problem is that the usual

limit laws do not hold so there seems to be no way to extend this naive

integral to arbitrary measurable functions. For instance, in Example 2,

N
∫

1dµ = 1. If we define the functions

fn = χ{x1,x2} +
(

1− 1
n

)
χ{x3}

then fn is an increasing sequence converging to 1. But

N

∫
fndµ = µ ({x1, x2}) +

(
1− 1

n

)
µ(x3) = 2− 1

n

Hence,

lim
n→∞

N

∫
fndµ = 2 6= 1 = N

∫
1dµ
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We overcome these difficulties by defining∫
fdµ =

∫ ∞
0

µ
[
f−1(λ,∞)

]
dλ−

∫ ∞
0

µ
[
f−1(−∞,−λ)

]
dλ

if both the integrals on the right are finite and dλ is Lebesgue measure. We

then say that f is integrable. Any measurable function has the unique

representation f = f1 − f2 where f1, f2 ≥ 0 are measurable and f1f2 = 0.

In fact, f1 = max(f, 0), f2 = −min(f, 0). We then have∫
fdµ =

∫
f1dµ −

∫
f2dµ

Because of this we can usually study the properties of the integral by con-

sidering nonnegative functions.

Some properties of the integral are:
∫
cfdµ = c

∫
fdµ,∫

(c+ f)dµ = cµ(X) +
∫
fdµ =

∫
cdµ+

∫
fdµ and

∫
fdµ ≥ 0 if f ≥ 0.

The integral is not linear. For example, if µ(A∪̇B) 6= µ(A) + µ(B) we have∫
(χA+χB)dµ =

∫
χA∪̇Bdµ = µ(A∪̇B) 6= µ(A)+µ)(B) =

∫
χAdµ+

∫
χBdµ

Theorem 5.1. If f =
∑n
i=1 αiχAi

where Ai ∩Aj = ∅, i 6= j, and

0 < α1 < · · · < αn, then∫
fdµ

= α1 [µ(A1∪̇A2) + · · ·+ µ(A1∪̇An)−(n− 2)µ(A1)−µ(A2)−· · ·−µ(An)]

+ α2 [µ(A2∪̇A3) + · · ·+ µ(A2∪̇An)−(n− 3)µ(A2)−µ(A3)−· · ·−µ(An)]
...
+ αn−1 [µ(An−1∪̇An)− µ(An)] + αnµ(An)
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For example, we see from Theorem 5.1 that∫
α1χA1dµ = α1µ(A1)∫
(α1χA1 + α2χA2)dµ = α1 [µ(A1∪̇A2)− µ(A2)] + α2µ(A2)∫
(α1χA1 + α2χA2 + α3χA3)dµ

= α1 [µ(A1∪̇A2) + µ(A1∪̇A3)− µ(A1)− µ(A2)− µ(A3)]

+ α2 [µ(A2∪̇A3)− µ(A3)] + α3µ(A3)

We conclude from Theorem 5.1 that if µ happens to be a measure, then∫
fdµ =

∑
αiµ(Ai) = N

∫
fdµ. Thus, the q-integral generalizes the

Lebesgue integral.

Theorem 5.2. If f , g and h are integrable functions with disjoint support,

then ∫
(f + g + h)dµ =

∫
(f + g)dµ+

∫
(f + h)dµ+

∫
(g + h)dµ

−
∫
fdµ−

∫
gdµ−

∫
hdµ

By induction, Theorem 5.2 extends to n integrable functions f, . . . , fn

with mutually disjoint support∫ n∑
i=1

fidµ =
n∑

i<j=1

∫
(fi + fj)dµ− (n− 2)

n∑
i=1

∫
fidµ

For A ∈ A we define
∫
A
fdµ =

∫
fχAdµ.
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Corollary 5.3. If f is integrable, then∫
A∪̇B∪̇C

fdµ =
∫
A∪̇B

fdµ+
∫
A∪̇C

fdµ+
∫
B∪̇C

fdµ−
∫
A

fdµ−
∫
B

fdµ−
∫
C

fdµ

Theorem 5.2 does not extend to arbitrary integrable functions f , g and h.

Consider Example 1 of a “quantum coin.” Let A = {x1, x2}, B = {x2, x3},

C = {x3, x4} and let f = χA, g = χB , h = χC . Since

f + g + h = χ{x1,x4} + 2χ{x2,x3}

by Theorem 5.1 we have∫
(f + g + h)dµ = µ(X)− µ(B) + 2µ(B) = 5/4

However,∫
(f + g)dµ+

∫
(f + h)dµ+

∫
(g + h)dµ−

∫
fdµ−

∫
gdµ−

∫
hdµ

=
∫ (

χ{x1,x3} + 2χ{x2}
)
dµ+

∫
1dµ+

∫ (
χ{x2,x4} + 2χ{x3}

)
dµ− 3/4

= µ ({x1, x2, x3})− µ(x2) + 2µ(x2) + 1 + µ ({x2, x3, x4})− µ(x3)

+ 2µ(x3)− 3/4 = 3/2

These do not coincide. For another example of a q-integral let f be the

number of heads. Then f(x1) = 2, f(x2) = f(x3) = 1, f(x4) = 0 so

f = χ{x2,x3} + 2χ{x1}. Hence,∫
fdµ = µ ({x1, x2, x3})− µ(x1) + 2µ(x1) = 5/8

Compare this to

N

∫
fdµ = µ ({x2, x3}) + 2µ(x1) = 3/8
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6. Convergence Theorem

For measurable functions f, g on X we say that g µ-dominates f

if µ
[
g−1(λ,∞)

]
≥ µ

[
f−1(λ,∞)

]
for every λ ∈ R.

Lemma 6.1. If µ is a measure, then f ≤ g a.e. [µ] implies that g

µ-dominates f .

The converse of Lemma 6.1 does not hold. For example, let X = [0, 1]

and let µ be Lebesgue measure on X. Let f = 1
2χ[1/2,1] and g = χ[0,1/2].

Then g µ-dominates f but f 6≤ g a.e. [µ].

Theorem 6.2. (q-dominated monotone convergence theorem) If fi ≥ 0

is an increasing sequence of measurable functions on a q-measure space

(X,A, µ) converging to f and there exists an integrable function g with g

µ-dominating fi for all i, then lim
i→∞

∫
fidµ =

∫
fdµ.

Let f :X → R+ be measurable and suppose there exists a Lebesgue

integrable function g: R→ R+ such that for every A ∈ A,

µ ({x ∈ A: f(x) > λ}) ≤ g(λ) for all λ ∈ R. Define µ1(A) =
∫
A
fdµ. Then

µ1(A) =
∫
µ ({x ∈ A: f(x) > λ}) dλ ≤

∫
g(λ)dλ <∞

It follows from Corollary 5.3 that µ1 is grade-2 additive.
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Theorem 6.3. µ1 is a q-measure and µ1 � µ (i.e. µ(A) = 0 implies

µ1(A) = 0).

Theorem 6.3 suggests a q-Radon-Nikodym theorem but alas, there is

no such theorem even when X is finite.

Example. As in Example 2, let X = {x1, x2, x3} with µ(∅) = µ(x1) = 0

and µ(A) = 1 for all other A ∈ P(X). Let ν be the measure on P(X) given

by ν(x1) = 0, ν(x2) = ν(x3) = 1, so that ν ({x2, x3}) = ν(X) = 2 and

ν ({x1, x2}) = ν ({x1, x3}) = 1. Then ν � µ. Suppose there exists an f

such that ν(A) =
∫
A
fdµ for every A ∈ P(X). Then

f(x2) = f(x2)µ(x2) =
∫
{x2}

fdµ = ν(x2) = 1

f(x3) = f(x3)µ(x3) =
∫
{x3}

fdµ = ν(x3) = 1

Hence,

2 = ν ({x2, x3}) =
∫
{x2,x3}

fdµ = µ ({x2, x3}) = 1

which is a contradiction.
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7. Quantum Lebesgue Measure

Let X = [0, 1] and let ν be Lebesgue measure on B(X). Define the

q-measure µ on B(X) by µ(A) = ν(A)2. We call µ q-Lebesgue measure. In

the sequel y will denote a fixed element of X. We now compute integrals

of common functions.∫ y

0

1dµ = µ ([0, y]) = y2∫ y

0

xdµ(x) =
∫ ∞

0

ν
(
{x:xχ[0,y](x) > λ}

)2
dλ =

∫ y

0

(y − λ)2dλ

= − (y − λ)3

3

∣∣∣∣y
0

=
y3

3

In general, for any nonnegative integer n∫ y

0

xndµ(x) =
2

(n+ 2)(n+ 1)
yn+2

Surprisingly, we have∫ y

0

(x2 + x)dµ(x) =
1
6
y4 +

1
3
y3 =

∫ y

0

x2dµ(x) +
∫ y

0

xdµ(x)

We call the next result the q-fundamental theorem of calculus.

Theorem 7.1. If f is differentiable and monotone on (0, y), then

1
2
d2

dy2

∫ y

0

f(x)dµ(x) = f(y)
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