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Some personal desires

I Logical foundation for quantum computation

I Logical foundation for representation theory?

I Classical logic as emergent phenomenon?
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Hilbert ortholattices

The set of closed subspaces SH of a Hilbert space H give rise to an
ortholattice LH = (SH ,∧,∨,¬, {0},H) with

I ∧ = intersection,

I ∨ = closure of span of union,

I ¬ = orthogonal complement.

Axioms for an ortholattice (S ,∧,∨, 0, 1):

I (S ,∧, 1) and (S ,∨, 0) are commutative, idempotent monoids,

I a∧ b = a⇔ a∨ b = b for all a, b ∈ L (say a ≤ b if a∨ b = b),

I ¬ : L→ L is an involution such that ¬(a ∨ b) = ¬a ∧ ¬b for
all a, b ∈ L,

I a ∨ ¬a = 1.
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(Ortho)modularity and distributivity

Hilbert lattices also satisfy the orthomodular law, i.e.:

y ≤ x =⇒ y = x ∧ (y ∨ ¬x)

Note: P(y , x) := x ∧ (y ∨ ¬x) is the projection of y onto x .
The n-dimensional Hilbert space Hn is modular, i.e.:

b ≤ x =⇒ x ∧ (a ∨ b) = (x ∧ a) ∨ b

L = (S ,∧,∨, 0, 1) is not necessarily distributive. One only has:

(a ∨ b) ∧ c ≥ (a ∧ c) ∨ (b ∧ c)

LHn is distributive iff n = 1.
A counterexample in H2: a = 〈(1, 0)〉, b = 〈(0, 1)〉, c = 〈(1, 1)〉.
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Validity

A formula φ(a1, . . . an) is a valid in L if φ(a1, . . . an) = 0 for all
choices of a1, . . . , an ∈ L. Let QL(L) denote the set of formulas
valid in L.
Note: a = b iff (a∨ b)∧ (¬a∨¬b) = 0 iff (a∧ b)∨ (¬a∧¬b) = 1.

QL(Hn) becomes weaker as n increases. If Hn+1 = Hn ⊕ v , with
v = 〈v1〉 and 〈h, v1〉 = 0 for all h ∈ Hn, then:

φLHn+1 (a1 ∨ v , . . . an ∨ v) = φLHn (a1, . . . , an) ∨ φLH1 (v , . . . , v).

However, QL(LH∞) 6=
⋂

n∈N QL(LHn) since QL(LH∞) is not
modular.
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Axiomatization of QL(LHn) and QL(LH∞)

I We don’t know how to write a nice set of axioms for QL(LHn)
(or QL(LH∞)).

I Does modular + ortholattice + n-distributive axiomatize
QL(LHn)?

I Does QL(LHn) have a finite axiomatization?
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Decidability of QL(Hn)

∃ undecidable MOLs (Roddy 1989), but QL(LHn) is decidable.
Reduces to decidability of FOL of R (decidable by (Tarski, 1948)).
Sketch:

I For each a ∈ LHn , assign a matrix Ma with kernel a.

I Build Mφ(~a) by structural induction, introducing a new matrix
variable at each stage

I φ is valid iff Mφ(~a) is always the zero matrix.

A MA ∈ Mn(C): A matrix with kernel A.
C = A ∧ B ∀d(MAd = 0 ∧MBd = 0⇔ MC d = 0)
B = ¬A ∀c(MBc = 0⇔ (∀d(MAd = 0⇒ 〈c , d〉 = 0)))
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Decidability of QL(LH∞)

It is not known whether QL(LH∞) is decidable.

Everything in this talk depends on the notion of dimension, which
is less useful in H∞.
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Dimensional dependence part 1

QL(LHn) 6= QL(LHn+1) (Dunn, H., Moss, Wang 2004, H. 2007):
Ideas:

1. Given s ≤ 1, and a formula φ, one may construct a formula
φ|s which expresses the proposition that φ is valid in the
sublattice generated below s.

2. Failure of distributive law is not arbitrary:
If a = p ∨ (q ∧ r), b = (p ∨ q) ∧ (p ∨ r) then

dim((a ∨ b) ∧ (¬a ∨ ¬b)) ≤ bn

2
c.

3. Projections obey dimensional laws:

dim(P(P(P(a, b), a),¬b)) ≤ min(dim(b), dim(¬b) ≤ bn

2
c.

This was, however, not the first (or nicest) proof of this result.
Tobias Hagge Quantum logic on finite dimensional Hilbert spaces
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Dimensional dependence part 0

An ortholattice is n-distributive if

x ∨
∧
i

yi =
∧
j

(x ∨
∧
i 6=j

yi ) (Dn)

for all x , y1, . . . yn ∈ L. (This equation may be replaced by an
equation in three variables.)

(Roddy, Mayet 1986) showed that n-distributivity holds in a
subirreducible MOL iff (among other things) L has height ≤ n.
Thus Dn ∈ QL(LHn) but Dn /∈ QL(LHn+1).
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Dimensional dependence part 2

Work in progress by Giuntini and Freytes puts the result in a
general framework.

A lattice is atomic if for every a ∈ L, a =
∨

i ai , where for each ai ,
b < ai =⇒ b = 0.
Atomic lattices are the most general framework for making
dimension arguments.

Let La = {b ∈ L|b ≤ a}.
Then a < b =⇒ QL(La) ⊃ QL(Lb) in an atomic MOL L iff L is
irreducible.
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Finite submodel property

(We’ll say) QL(L) has the finite submodel property if for any
formula φ /∈ QL(L), L has a finite sublattice L′ such that
φ /∈ QL(L′).

Theorem
QL(LHn) does not have the finite submodel property. Furthermore,
for n ≥ 3 there exists φ /∈ QL(LHn) such that φ ∈ QL(L) for any
sublattice L which is not dense in QL(LHn).

I do not know the full generality in which this theorem holds.
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“Classical” conjunctions

Given a formula φ(−→a ), we can construct φ̃(−→a ,
−→
b ) such that:

1. If φ(−→a ) = 0 then φ̃(−→a ,
−→
b ) = 0 for all

−→
b ,

2. If φ(−→a ) 6= 0, then for some
−→
b , φ̃(−→a ,

−→
b ) = 1.

Then φ̃ ∧ χ is valid in LHn iff for every −→a , either φ(−→a ) = 0 or
χ(−→a ) = 0.
Construction sketch:

I If dim(φ(−→a )) = m > 0 we can choose b, c so that
P(P(φ(−→a ), b), c) is any arbitrary subspace of dimension ≤ m.

I P(P(φ(−→a ), b1), c1) ∨ . . . ∨ P(P(φ(−→a ), bn), cn) can take any
value with appropriate choices of b1, . . . , bn and c1 . . . cn.

A weaker statement is possible in QL(LH∞).
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Dimensional restriction

D̃k |a(a,
−→
b ,−→c ) = 0 if dim(a) ≤ k, gives arbitrary values from

choices of
−→
b and −→c otherwise.

Let
Rk(a,

−→
b1,
−→c1 ,
−→
b2,
−→c2) = D̃k−1|a(a,

−→
b1,
−→c1) ∧ ˜Dn−k−1|¬a(a,

−→
b2,
−→
c2).

Rk(a, . . .) = 0 unless dim(a) = k , arbitrary values if dim(a) = k .

Rk(a, . . .) ∧ φ(a,
−→
d ) is valid iff φ(a,

−→
d ) is valid when dim(a) = k.
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Proof of theorem

By dimensional restriction, let a, b1, b2, b3, c1, c2 be two
dimensional subspaces of H3 such that for i , j ∈ [1 . . . 3] and
k , l ∈ [1, 2] the following hold:

1. dim(a ∧ bi ) = dim(a ∧ ck) = 1,

2. dim(bi ∧ bj) = 1,

3. dim(bi ∧ bj ∧ a) = 1,

4. dim(ck ∧ cl) = 1,

5. dim(ck ∧ cl ∧ a) = 1,

6. dim(bi ∧ ck ∧ a) = 0.

Let b̄i and c̄k denote the intersections of the bi and ck respectively
with an affine C-plane a′ parallel to a. Then

1. b̄1, b̄2 and b̄3 are parallel complex lines,

2. c̄1 and c̄2 are parallel complex lines,

3. Each b̄i and c̄k intersect in a single point pi ,k .

Tobias Hagge Quantum logic on finite dimensional Hilbert spaces



Inspiration
Hilbert Lattices, axiomatization, and decidability

Dimension in QL(LHn )
Finite submodel property

Proof of theorem (continued)

One gets the following:

c1

c2
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Proof of theorem (continued)

One gets the following:

b1

b2

b3

c1

c2
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Proof of theorem (continued)

One gets the following:

b3

b1

b2

c2

c1
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Proof of theorem (continued)

One gets the following:

b2

b3

b1

c1

c2
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Proof of theorem (continued)

One gets the following:

b2

b3

b1

c1

c2
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Proof of theorem (continued)

One gets the following:

b1

b2

b3

c2

c1
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Proof of theorem (continued)

One gets the following:

b1

b2

b3

c2

c1

Continuing, one gets a dense set of points in R3.
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Proof of theorem (conclusion)

Let φ be a formula which is not valid in QL(LH3).
Let

χ(. . .) =R2(a,
−→
da)

∧
i

R2(bi ,
−→
dbi

)
∧
k

R2(ck ,
−→
dck

)∧
i 6=j

R1(bi ∧ bj ,
−−−→
dbi∧bj

)
∧
i 6=j

R1(bi ∧ bj ∧ a,
−−−−−→
dbi∧bj∧a)

∧ R1(c1 ∧ c2,
−−−→
dc1∧c2) ∧ R1(c1 ∧ c2 ∧ a,

−−−−−→
dc1∧c2∧a)∧

i ,k

R0(bi ∧ ck ∧ a,
−−−−−→
dbi∧ck∧a) ∧ φ(−→e )

Then χ is not valid in QL(LH3), but is valid in any non-dense
sublattice. By restricting to three dimensional subspaces with
appropriate intersection properties, one may construct similar
formulas for LHn .
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Thanks!
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