The Arrow Calculus as a Quantum Programming
Language

Juliana Kaizer Vizzotto!, André Rauber Du Bois? and Amr Sabry?

L Mestrado em Nanociéncias, Centro Universitario Franciscano
Santa Maria, RS/ Brazil
2 PPGI, Universidade Catolica de Pelotas
Pelotas, RS/Brazil
3 Department of Computer Science, Indiana University
Bloomington, USA

Abstract. We express quantum computations (with measurements) us-
ing the arrow calculus extended with monadic constructions. This frame-
work expresses quantum programming using well-understood and famil-
iar classical patterns for programming in the presence of computational
effects. In addition, the five laws of the arrow calculus provide a conve-
nient framework for equational reasoning about quantum computations
that include measurements.

1 Introduction

Quantum computation [1] can be understood as a transformation of information
encoded in the state of a quantum physical system. Its basic idea is to encode data
using quantum bits (qubits). Differently from the classical bit, a qubit can be
in a superposition of basic states leading to “quantum parallelism.” This form of
parallelism is due to the non-local wave character of quantum information and is
qualitatively different from the classical notion of parallelism. This characteristic
of quantum computation can greatly increase the processing speed of algorithms.
However, quantum data types are computationally very powerful not only due
to superposition. There are other odd properties like measurement, in which the
observed part of the quantum state and every other part that is entangled with
it immediately lose their wave character.

These interesting properties have led to the development of very efficient
quantum algorithms, like Shor’s quantum algorithm for factorizing integers [2],
and Grover’s quantum search on databases [3]. Another important theme is the
development of quantum cryptographic techniques [4].

Since these discoveries, much research has been done on quantum computa-
tion. Summarizing the field of research we can classify it according three main
areas: 1) physical implementations of quantum computers, ii) development of
new quantum algorithms; and iii) design of quantum programming languages.

This work is about the design of a quantum programming language, and
consequently about a high-level, structured and well-defined way to develop new
quantum algorithms and to reason about them.

We have been working on semantic models for quantum programming. In
previous work [5] we established that general quantum computations (including
measurements) are an instance of the category-theoretic concept of arrows [6], a
generalization of monads [7] and idioms [8]. Translating this insight to a practical
programming paradigm has been difficult however. On one hand, directly using
arrows is highly non-intuitive, requiring programming in the so-called “point-
free” style where intermediate computations are manipulated without giving
them names. Furthermore reasoning about arrow programs uses nine, somewhat
idiosyncratic laws.

In recent work, Lindley et. al. [9] present the arrow calculus, which is a
more friendly version of the original presentation of arrows. The arrow calculus
augment the simply typed lambda calculus with four constructs satisfying five
laws. Two of these constructs resemble function abstraction and application, and
satisfy familiar beta and eta laws. The remaining two constructs resemble the
unit and bind of a monad, and satisfy left unit, right unit, and associativity laws.
Basically, using the arrow calculus we can understand arrows through classic
well-known patterns.

In this work we propose to express quantum computations using the arrow
calculus axtended with monadic constructions. We show that quantum program-
ming can be expressed using well-understood and familiar classical patterns for
programming in the presence of computational effects. Interestingly, the five laws
of the arrow calculus provide a convenient framework for equational reasoning
about quantum computations (including measurements).

This work is organized as follows. The next two sections review the back-
ground material on modeling quantum computation using classical arrows. Sec-
tion 4 presents the arrow calculus. We show the quantum arrow calculus in Sec-
tion 5. We express some traditional examples of quantum computations using
the quantum calculus. Additionally, we illustrate how we can use the calcu-
lus to reason about quantum programs. Section 6 concludes with a discussion of
some related works. Finally, Appendix A presents the constructs of simply-typed
lambda calculus, Appendix B gives an extension of the simply-typed lambda
calculus with monadic constructions, and Appendix C reviews general quantum
computations.

2 Classic Arrows

The simply-typed lambda calculus is an appropriate model of pure functional
programming (see Appendix A). The standard way to model programming in
the presence of effects is to use monads [10] (see Appendix B). Arrows, like
monads, are used to elegantly program notions of computations in a pure func-
tional setting. But unlike the situation with monads, which wrap the results of
computations, arrows wrap the computations themselves.

From a programming point of view, classic arrows extend the simply-typed
lambda calculus with one type and three constants satisfying nine laws (see
Figure 1). The type A ~ B denotes a computation that accepts a value of type
A and returns a value of type B, possibly performing some side effects. The

three constants are: arr, which promotes a function to a pure arrow with no side
effects; >, which composes two arrows; and first, which extends an arrow to
act on the first component of a pair leaving the second component unchanged.

To understand the nine equations, we use some auxiliary functions. The func-
tion second, is like first, but acts on the second component of a pair, and f&&g,
applies arrow f and g to the same argument and then pairs the results.

Fig. 1. Classic Arrows

Types
arr:: (A— B) — (A~ B)
first : (A~ B) - (Ax C~ BxC)
Definitions
second : (A~ B) — (C x A~ C x B)
second = Af.arr swap > first f >> arr swap
(&) : (C~ A) — (C~ B) — (C~ Ax B)
(&) = Af.Ag.arr sup >> first f >> second g

Equations
(~1) arrid > f =f
(~2) f> arrid =f
(~s) (f>g)>h =f>(g>h)
(~4) arr(g.f) =arr f>arrg
(~s) first(arr f) = arr(f X id)
(~) first(f >> g) = first f > first g
(~7) first f>> arr(id x g) = arr(id x g) >> first f
(~3g) first f >> arr fst =arr fst> f
(~9) first(first f) >> arr = arr assoc >> first f

3 Quantum Arrows

Quantum computation is generally expressed in the framework of a Hilbert space
(see Appendix C for a short review of that model). As expressive and as con-
venient is this framework for mathematical reasoning, it is not easily amenable
to familiar programming techniques and abstractions. In recent work [5] how-
ever, we established that this general model of quantum computations (including
measurements) can be structured using the category-theoretic concept of arrows.
Figure 2 explains the main ideas which we elaborate on in the remainder of this
section.

In the figure, we have added type definitions (i.e, type synonyms) for conve-
nience. Type Vec A means that a vector is a function mapping elements from
a vector space orthonormal basis to complex numbers (i.e., to their probabil-
ity amplitudes). Type Lin represents a linear operator (e.g, a unitary matrix)
mapping a vector of type A to a vector of type B. Note that if we uncurry the
arguments A and B, it turns exactly into a square matrix (i.e, Vec (4, B)).

Type Dens A stands for density matrices and it is straight to build from Vec.
Type Super A B means a superoperator mapping a density matrix of type A
to a density matrix of type B. This type can be understood by interpreting it in
the same style as Lin.

Fig. 2. Quantum Arrows

Type Definitions

type Vec A =A-—=C
typeLin AB = A— VecB
type Dens A = Vec (4, A)
type Super A B = (A, A) — Dens B
Syntax
Types A,B,C = ... Vec A|Lin A | Dens A | Super A B
Terms L, M, N ::= ... | return | >= |arr| > | first

Monadic Definitions
return : A — Vec A
return a b = if a == b then 1.0 else 0.0
(>=): Vec A — (A — Vec B) — Vec B
va>=f=Xb.> a(vaa)(fab)
Auxiliary Definitions
fun2lin : (A — B) — Lin A B
fun2lin f = X a.return (f a)
((x)) : Vec A — Vec B — Vec (A, B)
vi{x)v2 = A (a,b).v1 a x v2 b
Arrow Types and Definitions
arr : (A — B) — Super A B
arr f = fun2lin (A (b1,b2) — (f b1, f b2))
(>>) :: (Super A B) — (Super B C) — (SuperA C)
f>g=Xb(fb>=g)
first :: (Super A B) — (Super (A x C) (B x C))
first f ((b1,dv), (b2, d2)) = permute ((f(b1,b2))(x) return (di,dz))
where permute v ((b1,b2), (d1,d2)) = v ((b1,d1), (b2,d2))

We have defined in our previous work [5] the arrow operations for quantum
computations into two levels. First we have proved that pure quantum states (i.e,
vector states) are an instance of the concept of monads [7]. The definitions of
the monadic functions are shown in Figure 2. The function return specifies how
to construct vectors and >= defines the behavior of an application of matrix to
a vector. Moreover we have used the auxiliary functions fun2lin, which converts
a classical (reversible) function to a linear operator, and (x) which is the usual
tensor product in vector spaces.

The function arr constructs a quantum superoperator from a pure function
by applying the function to both vector and its dual. The composition of arrows
just composes two superoperators using the monadic bind. The function first
applies the superoperator f to the first component (and its dual) and leaves the
second component unchanged.

We have proved in our previous work that this superoperator instance of
arrows satisfy the required nine equations [5].

4 The Arrow Calculus

In this section we present the arrow calculus [9] and show the translation of the
calculus to classic arrows (described in Section 2) and vice versa. The translation
is important because it essentially corresponds to the denotational semantic
function for the quantum version of the arrow calculus. The material of this
section closely follows the original presentation in [9].

4.1 The Calculus

The arrow calculus as shown in Figure 3 extends the core lambda calculus with
four constructs satisfying five laws. Type A ~ B denotes a computation that

Fig. 3. Arrow Calculus

Syntax

Types A,BC ==...|A~B

Terms L,M,N == ... | \z.Q

Commands P,Q,R :=LeP |[M]|letz=PinQ

Types

I'iz: AF Q!B I'tL:A~B TI;AFM:A

I'-)\z.Q: A~ B I'sA-LeM!B
INAFM:A I AFPIA T Ax: AFEQ!B
Iy A- M)A I'’Abletz=Pin Q!B

Laws

(7)) (Wz.Q)eM =Q
() Az.(Le[z]) =1L
(left) letx =[M]in Q = Q[z := M|
(right) let x = P in [z] =P
(assoc) lety = (letz=PinQ)inR=letz=Pin (lety =Q in R)

accepts a value of type A and returns a value of type B, possibly performing
some side effects.

There are two syntactic categories. Terms are ranged over by L, M, N, and
commands are ranged over by P,Q,R. In addition to the terms of the core
lambda calculus, there is one new term form: arrow abstraction A®x.Q. There
are three command forms: arrow application L e M, arrow unit [M] (which
resembles unit in a monad), and arrow bind let x = P in @ (which resembles
bind in a monad).

In addition to the term typing judgment ' - M : A there is also a command
typing judgment I'; A+ P!A. An important feature of the arrow calculus is that

the command type judgment has two environments, I" and A, where variables
in I' come from ordinary lambda abstractions Az.N, while variables in A come
from arrow abstraction A*z.Q.

Arrow abstraction converts a command into a term. Arrow abstraction closely
resembles function abstraction, save that the body @ is a command (rather than
a term) and the bound variable = goes into the second environment (separated
from the first by a semicolon).

Conversely, arrow application, L e M!B embeds a term into a command. Ar-
row application closely resembles function application. The arrow to be applied
is denoted by a term, not a command; this is because there is no way to apply
an arrow that is itself yielded. This is why there are two different environments,
I" and A: variables in I" may denote arrows that are applied to arguments, but
variables in A may not.

Arrow unit, [M]!A, promotes a term to a command. Note that in the hy-
pothesis there is a term judgment with one environment (i.e, there is a comma
between I and A), while in the conclusion there is a command judgment with
two environments (i.e, there is a semicolon between I" and A).

Lastly, using let, the value returned by a command may be bound.

Arrow abstraction and application satisfy beta and eta laws, (5™) and (7™),
while arrow unit and bind satisfy left unit, right unit, and associativity laws,
(left), (right), and (assoc). The beta law equates the application of an abstraction
to a bind; substitution is not part of beta, but instead appears in the left unit
law. The (assoc) law has the usual side condition, that z is not free in R.

4.2 Translation

The translation from the arrow calculus to classic arrows, shown below, gives a
denotational semantics for the arrow calculus.

Lo M]a = arr(AA.[M]) > [I]
[[M]]a = arr(AA.[M])
let z = Pin Qla = (arr id & [P]a) > [Qlas

An arrow calculus term judgment I" = M : A maps into a classic arrow judgment
'+ [M] : A, while an arrow calculus command judgment I'; A - P!A maps into a

classic arrow judgment I" - [P]a : A ~ A. Hence, the denotation of a command
is an arrow, with arguments corresponding to the environment A and result of
type A.

We omitted the translation of the constructs of core lambda calculus as they
are straightforward homomorphisms. The translation of the arrow abstraction
A®z.Q) just undoes the abstraction and call the interpretation of @ using .
Application L e P translates to >, [M] translates to arr and let x = P in Q
translates to pairing &&(to extend the environment with P) and composition
>>(to then apply Q).

The inverse translation, from classic arrows to the arrow calculus is defined
as:

l[arr]™t = Af Az [f 2]
[t =AfAgA\z.ge(fex)
[first]t = Af.*z.let x = f e fst z in [(x,snd 2)]

Again we omitted the translation of the constructs of core lambda calculus as
they are straightforward homomorphisms. Each of the three constants from clas-
sic arrows translates to an appropriate term in the arrow calculus.

5 The Arrow Calculus as a Quantum Programming
Language

In this section we discuss how the arrow calculus can be used as a quantum
programming language.

We start by showing quantum programs using the standard quantum circuit
notation. The lines carry quantum bits. The values flow from left to right in steps
corresponding to the alignment of the boxes which represent quantum gates.
Gates connected via bullets to another wire are called controlled operations, that
is, the wire with the bullet conditionally controls the application of the gate. The
circuit in Figure 4 represents a quantum program for the Toffoli gate. Using the

Fig. 4. Circuit for the Toffoli gate

classic arrows approach for quantum programming presented in Section 3 and
using the type of booleans, Bool, as the orthonormal basis for the qubit, this
program would be codded as follows:

toffoli :: Super (Bool, Bool, Bool) (Bool, Bool, Bool)

toffoli = arr (A(ag, bo, co) — (co, (ag, bo))) >>
(first H >> arr (Mc1, (a0, bo)) — ((bo,c1),a0))) >
(first ¢V > arr (A((b1,¢2),a0) — ((ao,b1),c2))) >
(first eNot >> arr (A((a1,b2),c2) — ((ba,c2),a1))) > ...

As already noted by Paterson [11] this notation is cumbersome for programming.
This is a “point-free” notation, rather different from the usual way of writing
functional programs, with A and let. Paterson introduced syntactic sugar for
arrows, which we have used in our previous work [5]. However, the notation
simply abbreviates terms built from the three constants, and there is no claim
about reasoning with arrows. Using the quantum arrow calculus presented in
Figure 5, this program would be like:

toffoli :: Super (Bool, Bool, Bool) (Bool, Bool, Bool)
toffoli = A*.(z,y,2).let 2/ = H e zin

let (y/,2") =cV e (y,2') in

let (',y") = cNot e (x,y)in...

This style is more convenient and elegant as it is very similar to the usual
familiar classical functional programming and is amenable to formal reasoning in
a convenient way. Consider, for instance, the program which applies the quantum
not gate twice. That is obviously equivalent to identity. To do such a simple proof
using the classic arrows we need to learn how to use the nine arrow laws and
also to recover the definitions of the functions arr, >> and first for quantum
computations presented in Figure 2.

The action of the quantum not gate, QNot, is to swap the amplitude proba-
bilities of the qubit. For instance, QNot applied to |0) returns |1), and vice versa.
But QNot applied to «|0) 4+ §]1) returns «|1) + 3|0).

Given the classical definition of not as follows:

not = Az.if x == T'rue then False else True : Bool — Bool
Using the arrow calculus, the QNot would be written as:
QNot = A®y.[not y] : Super Bool Bool.
Then, the program which applies the QNot twice, would be:
'k Xzxletw= (A2z.[not z]) ez in (A*y.[not y]) e w

Again the syntax, with arrow abstraction and application, resembles lambda
calculus. Now we can use the intuitive arrow calculus laws (from Figure 3) to
prove the obvious equivalence of this program with identity. The proof follows
the same style of the proofs in classical functional programming.

Aex.let w = (A*z.[not z]) ez in (A*y.[not y]) ew =)

A*z.let w = [not z] in (A\®y.[not y]) e w =(left)
A*x.(A*y.[not y]) e (not x) =67
A*z.[not(not)] —def.not

Az [x]

It is interesting to note that we have two ways for defining superoperators.
The first way is going directly from classical functions to superoperators as we
did above for not, using the default definition of arr. The other way is going
from the monadic pure quantum functions to superoperators. As monads are a
special case of arrows [6] there is always a translation from monadic functions
to arrows. Hence, any Lin A B is a special case of Super A B.

Hence, we construct the quantum arrow calculus in Figure 5 in three levels.
First we inherit all the constructions from simply-typed lambda calculus with
the type of booleans and with classical let and if (see Appendix A). Then we

Fig. 5. Quantum Arrow Calculus

Syntax

Types A,B,C :=...|Bool |Dens A | Vec A | Super A B
Terms L,M,N == [T]|letz=Min N| X°2.Q |+ | —
Commands P,Q,R :=LeP |[M]|letz=PinQ | meas | trL
Monad Types

I'-M:A I'-M:VecA I,x:AFN:VecB

I'-[M]: Vec A I'tletz=Min N :VecB

I'M,N:VecA Ik M,N:VecA

I'M+N:VecA I'M—-N:VecA
Arrow Types

I'sxe: AF Q! Dens B I'-L:Super AB I;AFM: A

I')*z.QQ : Super A B I''A+LeM!Dens B

IN'AFM:A I'AFP'Dens A I';Ayx: AF Q! Dens B

I'; AF [M]! Dens A I';AbFletz = Pin Q! Dens B

I'sz: AF meas ! Dens (A, A) I'sz: (A,B)FtrL! Dens B

add the monadic unit, [], to build pure vectors (over booleans), let to sequence
computations with vectors, and plus and minus to add and subtract vectors (the
monadic calculus [7] with its laws is presented in Appendix B). Finally, we add
the constructions of the arrow calculus. The appeal of using the arrows approach
is because we can express measurement operations (i.e, extract classical infor-
mation from the quantum system) inside the formalism. Therefore, we have two
computations for measurements on mixed states, meas and trL. The computa-
tion meas returns a classical value and a post-measurement state of the quantum
system. The computation trL traces out or projects part of the quantum state
(the denotation of these operations is provided in Appendix D).

To exemplify the use of the monadic constructions, consider, for example,
the hadamard quantum gate, which is the source of superpositions. For instance,
hadamard applied to |0) returns |0) + |1), and applied to |1) returns |0) — |1).
But, hadamard applied to |0) + |1) returns |0), as it is a reversible gate. To define
this program in the quantum arrow calculus, we just need to define its work for
the basic values, |0) and |1), as follows:

hadamard = Az.if x == T'rue then [False] — [True]
else [False] 4+ [True] : Lin Bool Bool

Then, the superoperator would be:
Had = A*y.[hadamard y] : Super Bool Bool

Another interesting class of operations are the so-called quantum controlled
operations. For instance, the controlled not, Cnot, receives two qubits and applies
a not operation on the second qubit depending on the value of the first qubit.
Again, we just need to define it for the basic quantum values:

cnot = A(x,y).if x then [(z, not y)]
else [(z,y)] : Lin (Bool, Bool) (Bool, Bool)

Again, the superoperator of type Super (Bool, Bool) (Bool, Bool) would be
Cnot = A*(z, y).[cnot (z,y)].

The motivation of using superoperators is that we can express measurement
operations inside of the formalism. One classical example of quantum algorithm
which requires a measurement operation is the quantum teleportation [4]. It
allows the transmission of a qubit to a partner with whom is shared an entangled
pair. Below we define the two partners of a teleportation algorithm.

Alice : Super (Bool, Bool) (Bool, Bool)
Alice = A*(z,y). let (¢/,y') = Cnot e (z,y) in
let g = (Had e 2/, 3) in
let (¢',v) = mease g intrL e (g,v)

Bob : Super (Bool, Bool, Bool) Bool
Bob = A*(z,y, 2). let (2/,2') = Cnot e (2,) in
et (3/,2") = (Czo (3,2")) in trl o (3, /), 2")

6 Conclusion

We have presented a lambda calculus for general quantum programming that
builds on well-understood and familiar programming patterns and reasoning
techniques. Besides supporting an elegant functional programming style for quan-
tum computations, the quantum arrow calculus allows reasoning about general
or mized quantum computations. This is the first work proposing reasoning
about mized quantum computations. The equations of the arrow calculus plus
the equations of the monadic calculus provide indeed a powerful mechanism to
make proofs about quantum programs. In [12] we have proposed very similar
reasoning techniques, however for pure quantum programs. Also, in [13] the au-
thor presents a quantum lambda calculus based on linear logic, but just for pure
quantum computations.

Acknowledgements

We thank Jeremy Yallop for very helpful comments.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Nielsen, M.A., Chuang, I.LL.: Quantum Computation and Quantum Information.

Cambridge University Press (2000)

Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: Proc. IEEE Symposium on Foundations of Computer Science. (1994)
124-134

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
28., Annual ACM Symposium on Theory of Computing. (1996) 212-219

Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.:
Teleporting an unknown quantum state via dual classical and EPR channels. Phys
Rev Lett (1993) 1895-1899

Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-
ators as arrows. Journal of Mathematical Structures in Computer Science: special
issue in quantum programming languages 16 (2006) 453-468

Hughes, J.: Generalising monads to arrows. Science of Computer Programming
37 (May 2000) 67-111

Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in computer science, IEEE Press (1989) 14-23
Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1) (2008) 1-13

Lindley, S., Wadler, P., Yallop, J.: The arrow calculus (functional pearl). In:
International Conference on Functional Programming. (2008)

Moggi, E.: Notions of computation and monads. Information and Computation
93(1) (1991) 55-92

Paterson, R.: A new notation for arrows. In: Proc. International Conference on
Functional Programming. (September 2001) 229-240

Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum
programming. Electron. Notes Theor. Comput. Sci. 170 (2007) 23-47

Tonder, A.v.: A lambda calculus for quantum computation. STAM J. Comput.
33(5) (2004) 1109-1135

: MonadPlus. http://www.haskell.org/hawiki/MonadPlus (2005)

Hinze, R.: Deriving backtracking monad transformers. In: ICFP ’00: Proceedings
of the 5th ACM SIGPLAN International Conference on Functional Programming,
ACM Press (2000) 186-197

Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In:
Proceedings of the thirtieth annual ACM symposium on Theory of computing,
New York: ACM Press (1998) 20-30

Selinger, P.: Towards a quantum programming language. Journal of Mathematical
Structures in Computer Science: special issue in quantum programming languages
16 (2006) 527-586

A Simply-Typed Lambda Calculus

The simply-typed lambda calculus with the type of booleans, and with let and
if is shown in Figure 6. Let A, B, C range over types, L, M, N range over terms,
and I, A range over environments. A type judgment I' - M : A indicates that
in environment I" term M has type A. As presented in the arrow calculus [9],
we are using a Curry formulation, eliding types from terms.

Fig. 6. Simply-typed Lambda Calculus

Syntax
Types A,B,C :=Bool| AxB|A— B
Terms L,M,N == x| True | False | (M,N) |fst L |snd L | \e. N | L M
let x = M in N | if L then M else N
Environments I, A =1 A, .., T Ap
Types
(z:A)el
? + False : Bool () + True : Bool m

'-M:A TI'EN:B I'FL:AxB T'FL:AxB

GF) if True then M else N = M
G¥) if False then M else N = N

I'-(M,N): Ax B I'fstL: A I'sndL:B
I'zx:AFN:B I'rL:A—B I'HEM:A
I'Xx.N:A— B I'LM:B

I'-M:A I''c:AFN:B I'L:Bool I'M,N:B
I'tletz=MinN:B 'k if Lthen M else N : B

Laws

(Br) fst (M,N) =M

(63) snd(MN) =N

(n®) (fst L,sndL) =1L

(87) Az.N)M = N[z := M]

(n™) Az.(L x) =1L

(let) letx=Min N = N[z := M]

(B

(B

B Monadic Calculus

The simply-typed lambda calculus presented in Appendix A is the foundation of
purely functional programming languages. In this section we show the monadic
calculus [7], which also models monadic effects. A monad is represented using
a type constructor for computations m and two functions: return :: a — m a
and >=: m a — (a — m b) — m b. The operation >= (pronounced “bind”)
specifies how to sequence computations and return specifies how to lift values
to computations. From a programming perspective, a monad is a construct to
structure computations, in a functional environment, in terms of values and
sequence of computations using those values.

The monadic calculus extends the simply-typed lambda calculus with the
constructs in Figure 7. Unit and bind satisfy left unit, right unit, and associa-
tivity laws, (left), (right), and (assoc).

Fig. 7. Monadic Calculus

Syntax
Types A,B,C =:=..|MA
Terms L, M,N == ... | [M]|letx = M in N | mzero | + | —
Monadic Types

reM:A I'-M:-MA Iz:AFN:MB
'-[M]:MA I'Fletz=MinN:MB

MonadPlus Types

I'-M,N:MA
I'Fmzero: M A T'FM+N:-MA

Laws
(left) letz=[L]in N = N[z := L]
(right) let = L in [z] =1L

(assoc) lety=(letx=Lin N)inT =letz=Lin (lety=NinT)
MonadPlus Laws

mzero + a =a

a + mzero =a

a+ (b+c) =(a+b)+c
let x = mzeroin T = mzero

lete=(M+N)inT=(letx=MinT)+ (letx=NinT)

Beyond the three monad laws discussed above, some monads obey the -
MonadPlus laws. The MonadPlus interface provides two primitives, mzero and
+ (called mplus), for expressing choices. The command + introduces a choice
junction, and mzero denotes failure.

The precise set of laws that a MonadPlus implementation should satisfy is
not agreed upon [14], but in [15] is presented a reasonable agreement on the
laws. We use in Figure 7 the laws introduced by [15].

The intuition behind these laws is that MonadPlus is a disjunction of goals
and >= is a conjunction of goals. The conjunction evaluates the goals from left-
to-right and is not symmetric.

C General Quantum Computations

Quantum computation, as its classical counterpart, can be seen as processing
of information using quantum systems. Its basic idea is to encode data using
quantum bits (qubits). In quantum theory, considering a closed quantum system,
the qubit is a unit vector living in a complex inner product vector space know as
Hilbert space [1]. We call such a vector a ket (from Dirac’s notation) and denote
it by |v) (where v stands for elements of an orthonormal basis), a column vector.
Differently from the classical bit, the qubit can be in a superposition of the two
basic states written as «|0) + 3|1), or

(5)

5

with |a|? + |3]> = 1. Intuitively, one can think that a qubit can exist as a
0, a 1, or simultaneously as both 0 and 1, with numerical coefficient (i.e., the
probability amplitudes « and) which determines the probability of each state.
The quantum superposition phenomena is responsible for the so called “quantum
parallelism.”

Operations acting on those isolated or pure quantum states are linear op-
erations, more specifically unitary matrices S. A matrix A is called unitary if
S*S = I, where S* is the adjoint of S, and [is the identity. Essentially, those uni-
tary transformations act on the quantum states by changing their probability
amplitudes, without loss of information (i.e., they are reversible). The appli-
cation of a unitary transformation to a state vector is given by usual matrix
multiplication.

Unfortunately in this model of quantum computing, it is difficult or impos-
sible to deal formally with another class of quantum effects, including measure-
ments, decoherence, or noise.

Measurements are critical to some quantum algorithms, as they are the only
way to extract classical information from quantum states.

A measurement operation projects a quantum state like «|0) 4+ (]1) onto
the basis |0),|1). The outcome of the measurement is not deterministic and it
is given by the probability amplitude, i.e., the probability that the state after
the measurement is |0) is |«|? and the probability that the state is |1) is |3]. If
the value of the qubit is initially unknown, than there is no way to determine «
and 3 with that single measurement, as the measurement may disturb the state.
But, after the measurement, the qubit is in a known state; either |0) or |1).
In fact, the situation is even more complicated: measuring part of a quantum
state collapses not only the measured part but any other part of the global state
with which it is entangled. In an entangled state, two or more qubits have to
be described with reference to each other, even though the individuals may be
spatially separated *.

There are several ways to deal with measurements in quantum computing,
as summarized in our previous work [5]. To deal formally and elegantly with
measurements, the state of the computation is represented using a density matriz
and the operations are represented using superoperators [16]. Using these notions,
the projections necessary to express measurements become expressible within the
model.

Intuitively, density matrices can be understood as a statistical perspective of
the state vector. In the density matrix formalism, a quantum state that used to
be modeled by a vector |v) is now modeled by its outer product |v){v|, where
(v| is the row vector representing the adjoint (or dual) of |v). For instance, the
state of a quantum bit |v) = \/L§|O> + % |1) is represented by the density matrix:

* For more detailed explanation about entangled, see [1].

1 _1
2 2
11

2 2

Note that the main diagonal shows the classical probability distribution of basic
quantum states, that is, these state has % of probability to be |0) and % of
probability to be |1).

However, the appeal of density matrices is that they can represent states
other than the pure ones above. In particular if we perform a measurement on
the state represented above, we should get |0) with probability 1/2 or |1) with
probability 1/2. This information, which cannot be expressed using vectors, can
be represented by the following density matrix:

(1(/)28> + (8 1?2) - (1(/)2 1(/)2)

Such a density matrix represents a mized state which corresponds to the
sum (and then normalization) of the density matrices for the two results of the
observation.

The two kinds of quantum operations, namely unitary transformation and
measurement, can both be expressed with respect to density matrices [17]. Those
operations now mapping density matrices to density matrices are called super-
operators. A unitary transformation S maps a pure quantum state |u) to S|u).
Thus, it maps a pure density matrix |u)(u| to S|u)(u|S*. Moreover, a unitary
transformation extends linearly to mixed states, and thus, it takes any mixed
density matrix A to SAS*.

As one can observe in the resulting matrix above, to execute a measurement
corresponds to setting a certain region of the input density matrix to zero.

D Definition of Measurement Operations

In this section we present the denotations of the programs for measurements, trl
and meas, added to the quantum arrow calculus.

trL :: Super (4, B) B
trL((a1,b1), (az,b2)) = if a1 == ag then return(by, by) else mzero

meas :: Super A (4, A)
meas(ay, az) = if a; == ag then return((ai,a1), (a1,a1)) else mzero

We consider projective measurements which are described by a set of projections
onto mutually orthogonal subspaces. This kind of measurement returns a classi-
cal value and a post-measurement state of the quantum system. The operation
meas is defined in such a way that it can encompass both results. Using the
fact that a classical value m can be represented by the density matrix |m)(m|
the superoperator meas returns the output of the measurement attached to the
post-measurement state.

