
The Arrow Calulus as a Quantum ProgrammingLanguageJuliana Kaizer Vizzotto1, André Rauber Du Bois2 and Amr Sabry3

1 Mestrado em Nanoiênias, Centro Universitário FranisanoSanta Maria, RS/ Brazil
2 PPGI, Universidade Católia de PelotasPelotas, RS/Brazil

3 Department of Computer Siene, Indiana UniversityBloomington, USAAbstrat. We express quantum omputations (with measurements) us-ing the arrow alulus extended with monadi onstrutions. This frame-work expresses quantum programming using well-understood and famil-iar lassial patterns for programming in the presene of omputationale�ets. In addition, the �ve laws of the arrow alulus provide a onve-nient framework for equational reasoning about quantum omputationsthat inlude measurements.1 IntrodutionQuantum omputation [1℄ an be understood as a transformation of informationenoded in the state of a quantum physial system. Its basi idea is to enode datausing quantum bits (qubits). Di�erently from the lassial bit, a qubit an bein a superposition of basi states leading to �quantum parallelism.� This form ofparallelism is due to the non-loal wave harater of quantum information and isqualitatively di�erent from the lassial notion of parallelism. This harateristiof quantum omputation an greatly inrease the proessing speed of algorithms.However, quantum data types are omputationally very powerful not only dueto superposition. There are other odd properties like measurement, in whih theobserved part of the quantum state and every other part that is entangled withit immediately lose their wave harater.These interesting properties have led to the development of very e�ientquantum algorithms, like Shor's quantum algorithm for fatorizing integers [2℄,and Grover's quantum searh on databases [3℄. Another important theme is thedevelopment of quantum ryptographi tehniques [4℄.Sine these disoveries, muh researh has been done on quantum omputa-tion. Summarizing the �eld of researh we an lassify it aording three mainareas: i) physial implementations of quantum omputers, ii) development ofnew quantum algorithms; and iii) design of quantum programming languages.This work is about the design of a quantum programming language, andonsequently about a high-level, strutured and well-de�ned way to develop newquantum algorithms and to reason about them.



We have been working on semanti models for quantum programming. Inprevious work [5℄ we established that general quantum omputations (inludingmeasurements) are an instane of the ategory-theoreti onept of arrows [6℄, ageneralization ofmonads [7℄ and idioms [8℄. Translating this insight to a pratialprogramming paradigm has been di�ult however. On one hand, diretly usingarrows is highly non-intuitive, requiring programming in the so-alled �point-free� style where intermediate omputations are manipulated without givingthem names. Furthermore reasoning about arrow programs uses nine, somewhatidiosynrati laws.In reent work, Lindley et. al. [9℄ present the arrow alulus, whih is amore friendly version of the original presentation of arrows. The arrow alulusaugment the simply typed lambda alulus with four onstruts satisfying �velaws. Two of these onstruts resemble funtion abstration and appliation, andsatisfy familiar beta and eta laws. The remaining two onstruts resemble theunit and bind of a monad, and satisfy left unit, right unit, and assoiativity laws.Basially, using the arrow alulus we an understand arrows through lassiwell-known patterns.In this work we propose to express quantum omputations using the arrowalulus axtended with monadi onstrutions. We show that quantum program-ming an be expressed using well-understood and familiar lassial patterns forprogramming in the presene of omputational e�ets. Interestingly, the �ve lawsof the arrow alulus provide a onvenient framework for equational reasoningabout quantum omputations (inluding measurements).This work is organized as follows. The next two setions review the bak-ground material on modeling quantum omputation using lassial arrows. Se-tion 4 presents the arrow alulus. We show the quantum arrow alulus in Se-tion 5. We express some traditional examples of quantum omputations usingthe quantum alulus. Additionally, we illustrate how we an use the alu-lus to reason about quantum programs. Setion 6 onludes with a disussion ofsome related works. Finally, Appendix A presents the onstruts of simply-typedlambda alulus, Appendix B gives an extension of the simply-typed lambdaalulus with monadi onstrutions, and Appendix C reviews general quantumomputations.2 Classi ArrowsThe simply-typed lambda alulus is an appropriate model of pure funtionalprogramming (see Appendix A). The standard way to model programming inthe presene of e�ets is to use monads [10℄ (see Appendix B). Arrows, likemonads, are used to elegantly program notions of omputations in a pure fun-tional setting. But unlike the situation with monads, whih wrap the results ofomputations, arrows wrap the omputations themselves.From a programming point of view, lassi arrows extend the simply-typedlambda alulus with one type and three onstants satisfying nine laws (seeFigure 1). The type A ; B denotes a omputation that aepts a value of type
A and returns a value of type B, possibly performing some side e�ets. The



three onstants are: arr , whih promotes a funtion to a pure arrow with no sidee�ets; >>>, whih omposes two arrows; and first , whih extends an arrow toat on the �rst omponent of a pair leaving the seond omponent unhanged.To understand the nine equations, we use some auxiliary funtions. The fun-tion second , is like first , but ats on the seond omponent of a pair, and f&&&g,applies arrow f and g to the same argument and then pairs the results.Fig. 1. Classi ArrowsTypes
arr :: (A → B) → (A ; B)
(>>>) :: (A ; B) → (B ; C) → (A ; C)
first :: (A ; B) → (A × C ; B × C)De�nitions
second : (A ; B) → (C × A ; C × B)
second = λf.arr swap >>> first f >>> arr swap

(&&&) : (C ; A) → (C ; B) → (C ; A × B)
(&&&) = λf.λg.arr sup >>> first f >>> second gEquations
(;1) arr id >>> f = f

(;2) f >>> arr id = f

(;3) (f >>> g) >>> h = f >>> (g >>> h)
(;4) arr(g.f) = arr f >>> arr g

(;5) first(arr f) = arr(f × id)
(;6) first(f >>> g) = first f >>> first g

(;7) first f >>> arr(id × g) = arr(id × g) >>> first f

(;8) first f >>> arr fst = arr fst >>> f

(;9) first(first f) >>> arr = arr assoc >>> first f3 Quantum ArrowsQuantum omputation is generally expressed in the framework of a Hilbert spae(see Appendix C for a short review of that model). As expressive and as on-venient is this framework for mathematial reasoning, it is not easily amenableto familiar programming tehniques and abstrations. In reent work [5℄ how-ever, we established that this general model of quantum omputations (inludingmeasurements) an be strutured using the ategory-theoreti onept of arrows.Figure 2 explains the main ideas whih we elaborate on in the remainder of thissetion.In the �gure, we have added type de�nitions (i.e, type synonyms) for onve-niene. Type Vec A means that a vetor is a funtion mapping elements froma vetor spae orthonormal basis to omplex numbers (i.e., to their probabil-ity amplitudes). Type Lin represents a linear operator (e.g, a unitary matrix)mapping a vetor of type A to a vetor of type B. Note that if we unurry thearguments A and B, it turns exatly into a square matrix (i.e, Vec (A, B)).



Type Dens A stands for density matries and it is straight to build from Vec.Type Super A B means a superoperator mapping a density matrix of type Ato a density matrix of type B. This type an be understood by interpreting it inthe same style as Lin. Fig. 2. Quantum ArrowsType De�nitions
type Vec A = A → C

type Lin A B = A → Vec B

type Dens A = Vec (A,A)
type Super A B = (A, A) → Dens BSyntaxTypes A, B, C ::= ... Vec A | Lin A | Dens A | Super A BTerms L, M, N ::= ... | return | >>= | arr | >>> | firstMonadi De�nitions
return : A → Vec A

return a b = if a == b then 1.0 else 0.0
(>>=) : Vec A → (A → Vec B) → Vec B

va >>= f = λb.
P

a (va a)(f a b)Auxiliary De�nitions
fun2lin : (A → B) → Lin A B

fun2lin f = λ a.return (f a)
(〈∗〉) : Vec A → Vec B → Vec (A, B)
v1〈∗〉v2 = λ (a, b).v1 a ∗ v2 bArrow Types and De�nitions
arr : (A → B) → Super A B

arr f = fun2lin (λ (b1, b2) → (f b1, f b2))
(>>>) :: (Super A B) → (Super B C) → (SuperA C)
f >>> g = λ b.(f b >>= g)
first :: (Super A B) → (Super (A × C) (B × C))
first f ((b1, d1), (b2, d2)) = permute ((f(b1, b2))〈∗〉 return (d1, d2))

where permute v ((b1, b2), (d1, d2)) = v ((b1, d1), (b2, d2))We have de�ned in our previous work [5℄ the arrow operations for quantumomputations into two levels. First we have proved that pure quantum states (i.e,vetor states) are an instane of the onept of monads [7℄. The de�nitions ofthe monadi funtions are shown in Figure 2. The funtion return spei�es howto onstrut vetors and >>= de�nes the behavior of an appliation of matrix toa vetor. Moreover we have used the auxiliary funtions fun2lin , whih onvertsa lassial (reversible) funtion to a linear operator, and 〈∗〉 whih is the usualtensor produt in vetor spaes.The funtion arr onstruts a quantum superoperator from a pure funtionby applying the funtion to both vetor and its dual. The omposition of arrowsjust omposes two superoperators using the monadi bind. The funtion firstapplies the superoperator f to the �rst omponent (and its dual) and leaves theseond omponent unhanged.



We have proved in our previous work that this superoperator instane ofarrows satisfy the required nine equations [5℄.4 The Arrow CalulusIn this setion we present the arrow alulus [9℄ and show the translation of thealulus to lassi arrows (desribed in Setion 2) and vie versa. The translationis important beause it essentially orresponds to the denotational semantifuntion for the quantum version of the arrow alulus. The material of thissetion losely follows the original presentation in [9℄.4.1 The CalulusThe arrow alulus as shown in Figure 3 extends the ore lambda alulus withfour onstruts satisfying �ve laws. Type A ; B denotes a omputation thatFig. 3. Arrow CalulusSyntaxTypes A, B, C ::= . . . | A ; BTerms L, M, N ::= . . . | λ•x.QCommands P, Q, R ::= L • P | [M ] | let x = P in QTypes
Γ ; x : A ⊢ Q!B

Γ ⊢ λ
•

x.Q : A ; B

Γ ⊢ L : A ; B Γ ;∆ ⊢ M : A

Γ ;∆ ⊢ L • M !B

Γ, ∆ ⊢ M : A

Γ ; ∆ ⊢ [M ]!A

Γ ; ∆ ⊢ P !A Γ ;∆, x : A ⊢ Q!B

Γ ;∆ ⊢ let x = P in Q!BLaws
(β;) (λ•x.Q) • M = Q[x := M ]
(η;) λ•x.(L • [x]) = L

(left) let x = [M ] in Q = Q[x := M ]
(right) let x = P in [x] = P

(asso) let y = (let x = P in Q) in R = let x = P in (let y = Q in R)aepts a value of type A and returns a value of type B, possibly performingsome side e�ets.There are two syntati ategories. Terms are ranged over by L, M, N , andommands are ranged over by P, Q, R. In addition to the terms of the orelambda alulus, there is one new term form: arrow abstration λ•x.Q. Thereare three ommand forms: arrow appliation L • M , arrow unit [M ] (whihresembles unit in a monad), and arrow bind let x = P in Q (whih resemblesbind in a monad).In addition to the term typing judgment Γ ⊢ M : A there is also a ommandtyping judgment Γ ; ∆ ⊢ P !A. An important feature of the arrow alulus is that



the ommand type judgment has two environments, Γ and ∆, where variablesin Γ ome from ordinary lambda abstrations λx.N , while variables in ∆ omefrom arrow abstration λ•x.Q.Arrow abstration onverts a ommand into a term. Arrow abstration loselyresembles funtion abstration, save that the body Q is a ommand (rather thana term) and the bound variable x goes into the seond environment (separatedfrom the �rst by a semiolon).Conversely, arrow appliation, L •M !B embeds a term into a ommand. Ar-row appliation losely resembles funtion appliation. The arrow to be appliedis denoted by a term, not a ommand; this is beause there is no way to applyan arrow that is itself yielded. This is why there are two di�erent environments,
Γ and ∆: variables in Γ may denote arrows that are applied to arguments, butvariables in ∆ may not.Arrow unit, [M ]!A, promotes a term to a ommand. Note that in the hy-pothesis there is a term judgment with one environment (i.e, there is a ommabetween Γ and ∆), while in the onlusion there is a ommand judgment withtwo environments (i.e, there is a semiolon between Γ and ∆).Lastly, using let, the value returned by a ommand may be bound.Arrow abstration and appliation satisfy beta and eta laws, (β;) and (η;),while arrow unit and bind satisfy left unit, right unit, and assoiativity laws,(left), (right), and (asso). The beta law equates the appliation of an abstrationto a bind; substitution is not part of beta, but instead appears in the left unitlaw. The (asso) law has the usual side ondition, that x is not free in R.4.2 TranslationThe translation from the arrow alulus to lassi arrows, shown below, gives adenotational semantis for the arrow alulus.

[[λ•x.Q]] = [[Q]]x
[[L • M ]]∆ = arr(λ∆.[[M ]]) >>> [[L]]
[[[M ]]]∆ = arr(λ∆.[[M ]])
[[let x = P in Q]]∆ = (arr id &&& [[P ]]∆) >>> [[Q]]∆,xAn arrow alulus term judgment Γ ⊢ M : A maps into a lassi arrow judgment

Γ ⊢ [[M ]] : A, while an arrow alulus ommand judgment Γ ; ∆ ⊢ P !A maps into alassi arrow judgment Γ ⊢ [[P ]]∆ : ∆ ; A. Hene, the denotation of a ommandis an arrow, with arguments orresponding to the environment ∆ and result oftype A.We omitted the translation of the onstruts of ore lambda alulus as theyare straightforward homomorphisms. The translation of the arrow abstration
λ•x.Q just undoes the abstration and all the interpretation of Q using x.Appliation L • P translates to >>>, [M ] translates to arr and let x = P in Qtranslates to pairing &&&(to extend the environment with P ) and omposition>>>(to then apply Q).The inverse translation, from lassi arrows to the arrow alulus is de�nedas:



[[arr]]−1 = λf.λ•x.[f x]
[[(>>>)]]−1 = λf.λg.λ•x.g • (f • x)
[[first]]−1 = λf.λ•z.let x = f • fst z in [(x, snd z)]Again we omitted the translation of the onstruts of ore lambda alulus asthey are straightforward homomorphisms. Eah of the three onstants from las-si arrows translates to an appropriate term in the arrow alulus.5 The Arrow Calulus as a Quantum ProgrammingLanguageIn this setion we disuss how the arrow alulus an be used as a quantumprogramming language.We start by showing quantum programs using the standard quantum iruitnotation. The lines arry quantum bits. The values �ow from left to right in stepsorresponding to the alignment of the boxes whih represent quantum gates.Gates onneted via bullets to another wire are alled ontrolled operations, thatis, the wire with the bullet onditionally ontrols the appliation of the gate. Theiruit in Figure 4 represents a quantum program for the To�oli gate. Using theFig. 4. Ciruit for the To�oli gate
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 Not Notlassi arrows approah for quantum programming presented in Setion 3 andusing the type of booleans, Bool, as the orthonormal basis for the qubit, thisprogram would be odded as follows:
toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)
toffoli = arr (λ(a0, b0, c0) → (c0, (a0, b0))) >>>

(first H >>> arr (λ(c1, (a0, b0)) → ((b0, c1), a0))) >>>
(first cV >>> arr (λ((b1, c2), a0) → ((a0, b1), c2))) >>>
(first cNot >>> arr (λ((a1, b2), c2) → ((b2, c2), a1))) >>> ...As already noted by Paterson [11℄ this notation is umbersome for programming.This is a �point-free� notation, rather di�erent from the usual way of writingfuntional programs, with λ and let. Paterson introdued syntati sugar forarrows, whih we have used in our previous work [5℄. However, the notationsimply abbreviates terms built from the three onstants, and there is no laimabout reasoning with arrows. Using the quantum arrow alulus presented inFigure 5, this program would be like:



toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)
toffoli = λ•.(x, y, z).let z′ = H • z in

let (y′, z′′) = cV • (y, z′) in

let (x′, y′′) = cNot • (x, y′)in . . .This style is more onvenient and elegant as it is very similar to the usualfamiliar lassial funtional programming and is amenable to formal reasoning ina onvenient way. Consider, for instane, the program whih applies the quantumnot gate twie. That is obviously equivalent to identity. To do suh a simple proofusing the lassi arrows we need to learn how to use the nine arrow laws andalso to reover the de�nitions of the funtions arr , >>> and first for quantumomputations presented in Figure 2.The ation of the quantum not gate, QNot, is to swap the amplitude proba-bilities of the qubit. For instane, QNot applied to |0〉 returns |1〉, and vie versa.But QNot applied to α|0〉 + β|1〉 returns α|1〉 + β|0〉.Given the lassial de�nition of not as follows:
not = λx.if x == True then False else True : Bool → BoolUsing the arrow alulus, the QNot would be written as:

QNot = λ•y.[not y] : Super Bool Bool.Then, the program whih applies the QNot twie, would be:
Γ ⊢ λ•x.let w = (λ•z.[not z]) • x in (λ•y.[not y]) • wAgain the syntax, with arrow abstration and appliation, resembles lambdaalulus. Now we an use the intuitive arrow alulus laws (from Figure 3) toprove the obvious equivalene of this program with identity. The proof followsthe same style of the proofs in lassial funtional programming.

λ•x.let w = (λ•z.[not z]) • x in (λ•y.[not y]) • w =(β;)

λ•x.let w = [not x] in (λ•y.[not y]) • w =(left)
λ•x.(λ•y.[not y]) • (not x) =(β;)

λ•x.[not(not x)] =def.not

λ•x.[x]It is interesting to note that we have two ways for de�ning superoperators.The �rst way is going diretly from lassial funtions to superoperators as wedid above for not, using the default de�nition of arr . The other way is goingfrom the monadi pure quantum funtions to superoperators. As monads are aspeial ase of arrows [6℄ there is always a translation from monadi funtionsto arrows. Hene, any Lin A B is a speial ase of Super A B.Hene, we onstrut the quantum arrow alulus in Figure 5 in three levels.First we inherit all the onstrutions from simply-typed lambda alulus withthe type of booleans and with lassial let and if (see Appendix A). Then we



Fig. 5. Quantum Arrow CalulusSyntaxTypes A, B, C ::= . . . | Bool | Dens A | Vec A | Super A BTerms L, M, N ::= [T ] | let x = M in N | λ•x.Q | + | −Commands P, Q,R ::= L • P | [M ] | let x = P in Q | meas | trLMonad Types
Γ ⊢ M : A

Γ ⊢ [M ] : Vec A

Γ ⊢ M : Vec A Γ, x : A ⊢ N : Vec B

Γ ⊢ let x = M in N : Vec B

Γ ⊢ M, N : Vec A

Γ ⊢ M+N : Vec A

Γ ⊢ M, N : Vec A

Γ ⊢ M−N : Vec AArrow Types
Γ ; x : A ⊢ Q! Dens B

Γ ⊢ λ
•

x.Q : Super A B

Γ ⊢ L : Super A B Γ ; ∆ ⊢ M : A

Γ ;∆ ⊢ L • M ! Dens B

Γ, ∆ ⊢ M : A

Γ ; ∆ ⊢ [M ]! Dens A

Γ ; ∆ ⊢ P ! Dens A Γ ; ∆, x : A ⊢ Q! Dens B

Γ ; ∆ ⊢ let x = P in Q! Dens B

Γ ; x : A ⊢ meas ! Dens (A, A) Γ ;x : (A,B) ⊢ trL ! Dens Badd the monadi unit, [ ], to build pure vetors (over booleans), let to sequeneomputations with vetors, and plus and minus to add and subtrat vetors (themonadi alulus [7℄ with its laws is presented in Appendix B). Finally, we addthe onstrutions of the arrow alulus. The appeal of using the arrows approahis beause we an express measurement operations (i.e, extrat lassial infor-mation from the quantum system) inside the formalism. Therefore, we have twoomputations for measurements on mixed states, meas and trL. The omputa-tion meas returns a lassial value and a post-measurement state of the quantumsystem. The omputation trL traes out or projets part of the quantum state(the denotation of these operations is provided in Appendix D).To exemplify the use of the monadi onstrutions, onsider, for example,the hadamard quantum gate, whih is the soure of superpositions. For instane,hadamard applied to |0〉 returns |0〉 + |1〉, and applied to |1〉 returns |0〉 − |1〉.But, hadamard applied to |0〉+ |1〉 returns |0〉, as it is a reversible gate. To de�nethis program in the quantum arrow alulus, we just need to de�ne its work forthe basi values, |0〉 and |1〉, as follows:
hadamard = λx.if x == True then [False]− [True]

else [False] + [True] : Lin Bool Bool



Then, the superoperator would be:
Had = λ•y.[hadamard y] : Super Bool BoolAnother interesting lass of operations are the so-alled quantum ontrolledoperations. For instane, the ontrolled not, Cnot, reeives two qubits and appliesa not operation on the seond qubit depending on the value of the �rst qubit.Again, we just need to de�ne it for the basi quantum values:

cnot = λ(x, y).if x then [(x, not y)]
else [(x, y)] : Lin (Bool,Bool) (Bool,Bool)Again, the superoperator of type Super (Bool,Bool) (Bool,Bool) would be

Cnot = λ•(x, y).[cnot (x, y)].The motivation of using superoperators is that we an express measurementoperations inside of the formalism. One lassial example of quantum algorithmwhih requires a measurement operation is the quantum teleportation [4℄. Itallows the transmission of a qubit to a partner with whom is shared an entangledpair. Below we de�ne the two partners of a teleportation algorithm.
Alice : Super (Bool,Bool) (Bool,Bool)
Alice = λ•(x, y). let (x′, y′) = Cnot • (x, y) in

let q = (Had • x′, y′) in

let (q′, v) = meas • q in trL • (q, v)

Bob : Super (Bool,Bool,Bool) Bool

Bob = λ•(x, y, z). let (z′, x′) = Cnot • (z, x) in

let (y′, x′′) = (Cz • (y, x′)) in trL • ((y′, z′), x′′)6 ConlusionWe have presented a lambda alulus for general quantum programming thatbuilds on well-understood and familiar programming patterns and reasoningtehniques. Besides supporting an elegant funtional programming style for quan-tum omputations, the quantum arrow alulus allows reasoning about generalor mixed quantum omputations. This is the �rst work proposing reasoningabout mixed quantum omputations. The equations of the arrow alulus plusthe equations of the monadi alulus provide indeed a powerful mehanism tomake proofs about quantum programs. In [12℄ we have proposed very similarreasoning tehniques, however for pure quantum programs. Also, in [13℄ the au-thor presents a quantum lambda alulus based on linear logi, but just for purequantum omputations.AknowledgementsWe thank Jeremy Yallop for very helpful omments.
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Fig. 6. Simply-typed Lambda CalulusSyntaxTypes A, B, C ::= Bool | A × B | A → BTerms L, M, N ::= x | True | False | (M, N) | fst L | snd L | λx.N | L M

let x = M in N | if L then M else NEnvironments Γ, ∆ ::= x1 : A1, . . . , xn : AnTypes
∅ ⊢ False : Bool ∅ ⊢ True : Bool

(x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ (M, N) : A × B

Γ ⊢ L : A × B

Γ ⊢ fst L : A

Γ ⊢ L : A × B

Γ ⊢ snd L : B

Γ, x : A ⊢ N : B

Γ ⊢ λx.N : A → B

Γ ⊢ L : A → B Γ ⊢ M : A

Γ ⊢ L M : B

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ let x = M in N : B

Γ ⊢ L : Bool Γ ⊢ M, N : B

Γ ⊢ if L then M else N : BLaws
(βx

1 ) fst (M, N) = M

(βx

2 ) snd (M, N) = N

(ηx) (fst L, sndL) = L

(β→) (λx.N)M = N [x := M ]
(η→) λx.(L x) = L

(let) let x = M in N = N [x := M ]

(βif

1 ) if True then M else N = M

(βif

2 ) if False then M else N = NB Monadi CalulusThe simply-typed lambda alulus presented in Appendix A is the foundation ofpurely funtional programming languages. In this setion we show the monadialulus [7℄, whih also models monadi e�ets. A monad is represented usinga type onstrutor for omputations m and two funtions: return :: a → m aand >>=:: m a → (a → m b) → m b. The operation >>= (pronouned �bind�)spei�es how to sequene omputations and return spei�es how to lift valuesto omputations. From a programming perspetive, a monad is a onstrut tostruture omputations, in a funtional environment, in terms of values andsequene of omputations using those values.The monadi alulus extends the simply-typed lambda alulus with theonstruts in Figure 7. Unit and bind satisfy left unit, right unit, and assoia-tivity laws, (left), (right), and (asso).



Fig. 7. Monadi CalulusSyntaxTypes A, B, C ::= ... | M ATerms L, M, N ::= ... | [M ] | let x = M in N | mzero | + | −Monadi Types
Γ ⊢ M : A

Γ ⊢ [M ] : M A

Γ ⊢ M : M A Γ, x : A ⊢ N : M B

Γ ⊢ let x = M in N : M BMonadPlus Types
Γ ⊢ mzero : M A

Γ ⊢ M, N : M A

Γ ⊢ M + N : M ALaws
(left) let x = [L] in N = N [x := L]
(right) let x = L in [x] = L

(asso) let y = (let x = L in N) in T = let x = L in (let y = N in T )MonadPlus Laws
mzero + a = a

a + mzero = a

a + (b + c) = (a + b) + c

let x = mzero in T = mzero

let x = (M + N) in T = (let x = M in T ) + (let x = N in T )Beyond the three monad laws disussed above, some monads obey the -MonadPlus laws. The MonadPlus interfae provides two primitives, mzero and
+ (alled mplus), for expressing hoies. The ommand + introdues a hoiejuntion, and mzero denotes failure.The preise set of laws that a MonadPlus implementation should satisfy isnot agreed upon [14℄, but in [15℄ is presented a reasonable agreement on thelaws. We use in Figure 7 the laws introdued by [15℄.The intuition behind these laws is that MonadPlus is a disjuntion of goalsand >>= is a onjuntion of goals. The onjuntion evaluates the goals from left-to-right and is not symmetri.C General Quantum ComputationsQuantum omputation, as its lassial ounterpart, an be seen as proessingof information using quantum systems. Its basi idea is to enode data usingquantum bits (qubits). In quantum theory, onsidering a losed quantum system,the qubit is a unit vetor living in a omplex inner produt vetor spae know asHilbert spae [1℄. We all suh a vetor a ket (from Dira's notation) and denoteit by |v〉 ( where v stands for elements of an orthonormal basis), a olumn vetor.Di�erently from the lassial bit, the qubit an be in a superposition of the twobasi states written as α|0〉 + β|1〉, or



(

α
β

)with |α|2 + |β|2 = 1. Intuitively, one an think that a qubit an exist as a
0, a 1, or simultaneously as both 0 and 1, with numerial oe�ient (i.e., theprobability amplitudes α and β) whih determines the probability of eah state.The quantum superposition phenomena is responsible for the so alled �quantumparallelism.�Operations ating on those isolated or pure quantum states are linear op-erations, more spei�ally unitary matries S. A matrix A is alled unitary if
S∗S = I, where S∗ is the adjoint of S, and I is the identity. Essentially, those uni-tary transformations at on the quantum states by hanging their probabilityamplitudes, without loss of information (i.e., they are reversible). The appli-ation of a unitary transformation to a state vetor is given by usual matrixmultipliation.Unfortunately in this model of quantum omputing, it is di�ult or impos-sible to deal formally with another lass of quantum e�ets, inluding measure-ments, deoherene, or noise.Measurements are ritial to some quantum algorithms, as they are the onlyway to extrat lassial information from quantum states.A measurement operation projets a quantum state like α|0〉 + β|1〉 ontothe basis |0〉,|1〉. The outome of the measurement is not deterministi and itis given by the probability amplitude, i.e., the probability that the state afterthe measurement is |0〉 is |α|2 and the probability that the state is |1〉 is |β|2. Ifthe value of the qubit is initially unknown, than there is no way to determine αand β with that single measurement, as the measurement may disturb the state.But, after the measurement, the qubit is in a known state; either |0〉 or |1〉.In fat, the situation is even more ompliated: measuring part of a quantumstate ollapses not only the measured part but any other part of the global statewith whih it is entangled. In an entangled state, two or more qubits have tobe desribed with referene to eah other, even though the individuals may bespatially separated 4.There are several ways to deal with measurements in quantum omputing,as summarized in our previous work [5℄. To deal formally and elegantly withmeasurements, the state of the omputation is represented using a density matrixand the operations are represented using superoperators [16℄. Using these notions,the projetions neessary to express measurements beome expressible within themodel.Intuitively, density matries an be understood as a statistial perspetive ofthe state vetor. In the density matrix formalism, a quantum state that used tobe modeled by a vetor |v〉 is now modeled by its outer produt |v〉〈v|, where
〈v| is the row vetor representing the adjoint (or dual) of |v〉. For instane, thestate of a quantum bit |v〉 = 1√

2
|0〉+ 1√

2
|1〉 is represented by the density matrix:4 For more detailed explanation about entangled, see [1℄.



(

1
2 − 1

2
− 1

2
1
2

)Note that the main diagonal shows the lassial probability distribution of basiquantum states, that is, these state has 1
2 of probability to be |0〉 and 1

2 ofprobability to be |1〉.However, the appeal of density matries is that they an represent statesother than the pure ones above. In partiular if we perform a measurement onthe state represented above, we should get |0〉 with probability 1/2 or |1〉 withprobability 1/2. This information, whih annot be expressed using vetors, anbe represented by the following density matrix:
(

1/2 0
0 0

)

+

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)Suh a density matrix represents a mixed state whih orresponds to thesum (and then normalization) of the density matries for the two results of theobservation.The two kinds of quantum operations, namely unitary transformation andmeasurement, an both be expressed with respet to density matries [17℄. Thoseoperations now mapping density matries to density matries are alled super-operators. A unitary transformation S maps a pure quantum state |u〉 to S|u〉.Thus, it maps a pure density matrix |u〉〈u| to S|u〉〈u|S∗. Moreover, a unitarytransformation extends linearly to mixed states, and thus, it takes any mixeddensity matrix A to SAS∗.As one an observe in the resulting matrix above, to exeute a measurementorresponds to setting a ertain region of the input density matrix to zero.D De�nition of Measurement OperationsIn this setion we present the denotations of the programs for measurements, trland meas, added to the quantum arrow alulus.
trL :: Super (A, B) B
trL((a1, b1), (a2, b2)) = if a1 == a2 then return(b1, b2) else mzero

meas :: Super A (A, A)
meas(a1, a2) = if a1 == a2 then return((a1, a1), (a1, a1)) else mzeroWe onsider projetive measurements whih are desribed by a set of projetionsonto mutually orthogonal subspaes. This kind of measurement returns a lassi-al value and a post-measurement state of the quantum system. The operation

meas is de�ned in suh a way that it an enompass both results. Using thefat that a lassial value m an be represented by the density matrix |m〉〈m|the superoperator meas returns the output of the measurement attahed to thepost-measurement state.


