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Abstract

The past decade has seen a remarkable resurgence of the old programme of finding more or less a priori axioms for
the mathematical framework of quantum mechanics. The new impetus comes largely from quantum information
theory; in contrast to work in the older tradition, which tended to concentrate on structural features of individual
quantum systems, the newer work is marked by an emphasis on systems in interaction. Within this newer work,
one can discerne two distinct approaches: one is “top-down”, and attempts to capture in category-theoretic terms
what is distinctive about quantum information processing. The other is “bottom up”, attempting to construct
non-classical models and theories by hand, as it were, and then characterizing those features that mark out
quantum-like behavior. This paper blends these approaches. We present a constructive, bottom-up recipe for
building probabilistic theories having strong symmetry properties, using as data any uniform enlargement of the
symmetric group S(E) of any set, to a larger group G(E). Subject to some natural conditions, our construction
leads to a monoidal category of fully symmetric test spaces, in which the monoidal product is “non-signaling”.

Keywords: Symmetry; General probabilistic theories; symmetric monoidal categories.

1 Introduction

After a long hiatus, there has been a recent resurgence of interest in axiomatic recon-
structions or characterizations of quantum mechanics in probabilistic, or more broadly,
informatic, terms. The new impetus comes largely from quantum information theory, and
is marked by an emphasis, not on isolated physical systems and their properties, but on
systems in interaction. Accordingly, the current focus is on characterizing (mainly, finite-
dimensional) QM within a more general framework of abstract physical or probabilistic
theories equipped with some device or devices for defining composite systems. At present,
one can discerne two approaches to this. The first (e.g., [AC04,Baez06,BS09,Sel08]) is
“top-down”: one begins with a category of abstract physical systems, with arrows repre-
senting physical processes. This is generally assumed to be at least a symmetric monoidal
category (and more usually, compact or dagger compact closed). In other words, it is
assumed that there is a single, preferred method for composing systems “in parallel”.
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The second approach (e.g., [BBLW07, BBLW08, BW08, Bar05, D’Ar09, FR80, Har01]),
more explicitly probabilistic, is “bottom-up”: one first defines rather concretely what one
means by an individual probabilistic model, and then introduces devices for combining
and manipulating these. In place of a single, canonical tensor product, this approach
provides a spectrum of possible “non-signaling” tensor products, bounded by a minimal
product, allowing no entanglement between states, but arbitrary entanglement between
effects, and a maximal product, allowing arbitrarily entangled states but no entangled
effects. While this is adequate for discussing certain information-processing protocols
(e.g., teleportation [BBLW08, BW08]), if we are aiming at an axiomatic reconstruction
or characterization of the usual apparatus of quantum mechanics, we need a unique
tensor product, and one, moreover, that affords entanglement both between states and
between effects. On the other hand, as the existence and uniqueness of such a prod-
uct is presumably part of what one wants to explain, simply postulating it is ultimately
unsatisfactory: one should much prefer to construct the tensor product in some natural
way.

This paper makes takes a step in this direction. A conspicuous feature of both quantum
and classical systems that has not been stressed in either approach is symmetry. Both
classical and quantum systems are homogeneous in a strong sense: all pure states are
alike, all (maximally informative) measurements are alike, and all outcomes of such a
measurement are alike. There is a standard construction [Wilce2005] whereby abstract
probabilistic models having this same high degree of symmetry can by generated from a
suitable extension of the symmetric group of a finite set E (representing the outcome-set
of a basic experiment) to a larger group. Where this construction can be made uni-
formly (that is, functorially), it leads to a probabilistic theory having a natural product
sructure. Both classical and quantum theory can be recovered in this way. However, as
illustrated by a pair of simple examples, the tensor product arising from this construc-
tion need not satisfy all of the desiderata for a product in the sense of [BBLW08, BW08,
Bar05]. In particular, there is a tension between requiring them to support arbitrary
product states and arbitrary product measurements. Subject to a further condition (here
unimaginatively termed “reasonableness”), we are led to a symmetric monoidal category
in which composite systems admit product measurements, and in which bipartite states
are non-signaling.

2 Probabilistic Models and Theories

There is a more or less standard mathematical framework for generalized probability the-
ory, first sketched by Mackey [ref] and later elaborated, modified, and in some instances,
rediscovered, by many authors, including Ludwig, Davies and Lewis, Araki, Gudder,
Foulis and Randall, Hardy, and D’Ariano among many others. The range of stylistic
variation among these various formulations is just wide enough to make it prudent to
spell out in a little detail the particular variant (one might say, dialect) in wich I’ll
proceed. In the interest of brevity, I consider here only the discrete, finite-dimensional
version of this framework.

In the language of [BBLW08, BW08], a finite-dimensional abstract state space is a
pair (A, u) where A is a finite-dimensional ordered real vector space with postive cone
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A+, and u ∈ A∗ is a distinguished order unit, i.e., a functional on A that is strictly
positive on A. The set ΩA := {α ∈ A|u(α) = 1} is the normalized state space. An effect
on A is a positive functional a ∈ A∗ with 0 ≤ a ≤ u pointwise on Ω; we regard a(α) as
the probability of a occuring when the state is α. Accordingly, we may define a discrete
observable on A to be a set E ⊆ V ∗ of effects with

∑
a∈E a = u. If A is the self-adjoint

part of a finite-dimensional complex C∗-algebra, i.e., a ∗-subalgebra of the algebra Md

of d × d complex matrices, ordered as usual, and with u(α) = (α)/d, then we may call
A a (finite-dimensional) quantum state space.

For purposes of constructing such abstract models, it is often helpful (and clarifying) to
introduce the following more operational apparatus, developed originally by Foulis and
Randall in the service of quantum logic (see, e.g., [FR80]).

Definition: A test space is a collection A of non-empty sets, called tests, understood
as the outcome-sets of various “measurements”. The set X =

⋃
A of all outcomes of

all tests is the outcome space for A. A probability weight on A is a mapping
α : X → [0, 1] with

∑
x∈E α(x) = 1 for all E ∈ A. We write Ω(A) for the convex set of

all probability weights on A.

Definition: A probabilistic model is a pair (A,Γ), where A is a test space and
Γ ⊆ Ω(A) is a closed, compact, outcome-separating convex set of probability weights on
A.

As a default, we can always take Γ = Ω(A). When we speak of a test space as a model,
this is what we have in mind. Given a model (A,Γ), Let V = V (A,Γ) be the linear
span of Γ in RX , ordered by the cone generated by Γ. Letting u ∈ V ∗ be the order unit
corresponding to Ω (that is, the unique functional with u(α) = 1 for all α ∈ Γ), the pair
(V, u) is then an abstract state space in the sense of [5,6]. Note that every outcome x ∈ X
yields an evaluation functional. Note that every outcome x ∈ X induces a positive linear
functional fx ∈ V ∗, given by fx(ω) = α(x) for all α ∈ Γ. We have

∑
x∈E fx = u for all

E ∈ A, so x 7→ fx is a discrete observable on V , in the sense of [BBLW07]. (Thus, one
can for many purposes regard a probabilistic model as an abstract state space equipped
with a distinguished family of observables.)

From this point forward, I make the standing assumptions that (i) every test space A is
localy finite – that is, every test E ∈ A is a finite set, and (ii) for every model (A,Γ), the
space V (A,Γ) is finite-dimensional.

Examples: classical and quantum models (i) Let A = {E} where E is a finite set:
then Ω(A) is the simplex ∆(E) of probability weights on E. If H is a Hilbert space,
the associated quantum test space is the set F(H) of orthonormal bases of H. Gleason’s
Theorem identifies Ω(F(H)) as the space ΩH of density operator on H.

Examples: Grids and Graphs Here are two further examples that will figure impor-
tantly in the sequel. Fixing a set E, let Gri(E), the grid test space on E, be the set of
rows and columns of E × E, i.e.,

Gr(E) = {{x} × E|x ∈ E} ∪ {E × {y}|y ∈ E}.

Notice that a state on Gr(E) is essentially a |E|-by-|E| doubly stochastic matrix. A
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related test space is the space

Gr(E)∗ := {Γf : f ∈ S(E)}

of graphs Γf of bijections f : E → E. Equivalently, Gr(E)∗ is the set of transversals of
Gr(E), i.e., subsets of E×E meeting each rown and each column exactly once (or, if we
prefer, the space of supports of permutation matrices). Note that every test Γf ∈ Gr(E)∗

induces a dispersion-free (that is, binary-valued) state on Gr(E), and that every state
on Gr(E) is a convex combination of these. Similarly, each row and each column of
A induces a dispersion-free on Gr(E)∗. One can show that every state on Gr(E)∗ is a
convex combination of such row and column states.

2.1 Products of Test Spaces

If A and B are test spaces, let A×B = {E×F |E ∈ A, F ∈ B} be the space of product
tests. A state ω on A×B is non-signaling if its marginal states

ω1(x) :=
∑
y∈F

ω(x, y) and ω2(y) :=
∑
x∈E

ω(x, y)

are independent of E ∈ A and F ∈ B, respectively. If α ∈ Ω(A) and β ∈ Ω(B), the
product state

(α⊗ β)(x, y) := α(x)β(y)

is obviously non-signaling, as is any mixture of product states. In general, however,
there will exist entangled non-signaling states that are not mixtures of product states
[KRF87, BBLW07].

Definition: A tensor product of two test spaces A and B is a test space C plus an
embedding

A×B → C

such that

(i) the restrictions of states on C to A×B are non-signaling, and

(ii) every product state belongs to Ω(C).

Note that, by allowing C to be larger than A×B, we allow for the possibility of “entan-
gled” measurements, as well as entangled states. By way of illustration, if H1 and H2

are complex Hilbert spaces, the test space F(H1 ⊗ H2) is a product of the test spaces
F(H1) and F(H2), under the embedding (x, y) 7→ x⊗ y.

A minimal product of test spaces, introduced by Foulis and Randall [FR80], is defined
as follows. Given a test E ∈ A and an E-indexed family of tests Fx ∈ B, the set⋃

x∈E{x}×Fx represents the outcome-set of a two-stage test, in which one first performs
the test E and then, upon securing x ∈ E, performs the test Fx. Let −→AB denote the

collection of all such two-stage tests, noting that A ×B ⊆
−→
AB, and also that these two

test spaces have the same outcome-space, namely, X(A) × X(B). Now let
←−
AB denote

the set of two-stage tests of the form
⋃

y∈F Ey × {y} with F ∈ B and Ey ∈ A for every
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y ∈ F . The Foulis-Randall product is AB :=
−→
AB ∪

←−
AB. One can show that the state

space Ω(AB) is exactly the set of non-signaling states on A×B. This product affords us
no “entangled outcomes”, as outcomes of AB are simply ordered pairs (x, y) of outcomes
x ∈ X(A) and y ∈ X(B). On the other hand, the easiest way to show that states on a
test space C ⊇ A × B are non-signaling is to show that C contains all two-stage tests,
i.e., that AB ⊆ C. I make use of this observation in the proof of Theorem 2 in section 6.

Remark: It is tempting to require, as a matter of definition, that states on a tensor
product C of test spaces A and B be determined by their restricions to A×B (a condition
Barrett [Bar05] calls the global state assumption). When this condition is satisfied,
conditions (i) and (ii) above guarantee that Ω(C) will be a tensor product, in the sense
of [BBLW07, BBLW08], of the state spaces of A and B, and, in particular, that V (C)
will be linearly isomorphic to V (A) ⊗ V (B). However, as noted by Barrett (see also
[KRF87]), this assumption is quite strong, being violated in real and quaternionic QM.
For purposes of this paper, I prefer to keep to the more permissive definition above.

2.2 Maps between test spaces

One can organize test spaces into a category in several different ways (for a more complete
discussion, see [Wilce 09]). An event of a test space A is a subset of a test. That is,
AX :=

⋃
A is an event iff there exits some E ∈ A with A ⊆ E. We write E(A) for the

set of all events of A. Note that the empty set is an event, as is each test. (Indeed, if
A is irredundant, the tests are exactly the maximal events). Naturally, we define the
probability of a state A in state α ∈ Ω(A) by α(A) =

∑
x∈A ω(x).

Definition: Events A,B ∈ E(A are orthogonal, written A ⊥ B, if they are disjoint and
their union is an event. A and B are complementary iff they partition a test, i.e., A ⊥ B

and A∪B ∈ A. If A and B are both complementary to some event C, we say that A and
B are perspective, with axis C, writing A ∼ B or A ∼C B. Note that perspective events
have the same probability in every state. Note, too, that any two tests are perspective,
with axis the empty event.

Definition: A test space morphism from a test space A to a test space B is a set-vaued
mapping φ : X(A) → E(B) that preserves event-hood, orthogonality and perspectivity,
as follows: for all events A,B ∈ E(A),

(i) φ(A) :=
⋃

a∈A φ(a) is an event of B,

(ii) A ⊥ B implies φ(A) ⊥ φ(B), and

(iii) A ∼ B implies φ(A) ∼ φ(B).

It is straightforward that the composition of two morphisms (defined in the obvious way)
is again a morphism, so we may speak of the category of test spaces and morphisms.
Denote this cagegory by Tesp.

Where a morphism φ : A → B has the form φ({x}) = f(x) for a function f : X(A) →
X(B), we routinely conflate φ and f , speaking of the latter also as an morphism.

5



Wilce

2.3 Connections with Quantum Logic

In the quantum-logical approach to generalized probability theory, one began with an
orthocomplemented poset – usually, but not always, an orthmodular lattice or poset –
of “propositions”, treating states as probability measures on this structure. Test spaces
provide (indeed, were invented in order to provide) a natural semantics for this approach
[FR80]. Perspectivity is obviously a symmetric and reflexive, but in general not a transi-
tive, relation on events. On the other hand, in a quantum test space F(H), events (that
is, orthonormal subsets of H) are complementary iff they span orthogonal subspaces;
hence, events are persepective iff they span the same subspace. In this case, then, per-
sectivity is an equivalence relation, and the quotient set E/ ∼ can be identified with the
lattice L(H) of projection operators on H.

Definition: A test space A is algebraic iff perspective events in E(A) have exactly the
same set of complementary events – that is, if A ∼ B, then an event C is complementary
to A iff it is complementary to B.

It follows that if A is algebraic, ∼ is an equivalence relation on E . We denote the
equivalence class of A ∈ E(A) under perspectivity by p(A); this is called the proposition
associated with A. One can show that the quotient set E/ ∼ hosts a well-defined,
associative partial binary operation defined by

p(A)⊕ p(B) = p(A ∪B)

where A and B are complementary events. Equipped with this partial sum, E(A)/ ∼
is an orthoalgebra, called the logic of A, and denoted Π(A). This carries a natural
partial order, given by p(A) ≤ p(B) iff ∃C with p(B) = p(A) ⊕ p(C); this order is
orthocomplementated by p(A)′ := p(C) where C is any event complementary to C.
Every orthoalgebra can be represented (canonically, though not uniquely) as the logic
of a suitable test space. A morphism φ : A → B between algebraic test spaces induces,
in an obvious way (and in an obvious sense) an orthoalgebra homomorphism Π(φ) :
Π(A) → Π(B), one can regard Π as a functor from to the category of orthoalgebras and
OA-homomorphisms.

Subject to various more-or-less reasonable (or at any rate, intelligible) constraints on the
combinatorial structure of A, one can show that Π(A) is variously an orthomodular poset,
an orthomodular lattice, or a complete OML. Unfortunately, it seems to be difficult to
motivate algebraicity on operational grounds. Therefore, it is of interest to find other,
more transparent conditions that imply algebraicity. One such condition is discussed in
Section 5 below.

3 Models with Symmetry

Let G be a group. A G-test space is a test space A such that X =
⋃

A carries a
G action, with gE ∈ A for all (g,E) ∈ G × A (so G acts by symmetries of A). A is
fully G-symmetric [Wilce2000] iff (i) all tests have the same cardinality, and (ii) any
bijection f : E → F between tests E,F ∈ A is implemented by an element of G, in the
sense that f(x) = gx for all x ∈ E. Where this group element g is uniquely determined,
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we say that A is strongly G-symmetric.

Examples: Trivially, a classical test space is strongly symmetric under S(E). The test
space of frames of H is strongly, symmetric under the unitary group U(H) of H. The
space FP (H) of projective frames, i.e, maximal families of rank-one projections on H,
is fully but not strongly U(H)-symmetric, as a bijection f : E → F between projective
frames determines a unitary only up to a choice of a phase for each x ∈ E. Both Gr(E)
and Gr(E)∗ are fully symmetric: the former under the subgroup of S(E ×E) generated
by row shifts, column shifts and transpose; the latter under row and column shifts alone
(i.e., S(E)× S(E) acting by (σ, τ)(x, y) = (σx, τy).)

As a rule, highly symmetric mathematical objects can be reconstructed from knowledge
of their symmetries. Fully symmetric test spaces are no exception:

Basic Construction Let H be a group, and let E be an H-set, that is, a set upon which
H acts. One might think of E as representing a prototypical experiment, singled out for
reference, and H as a preferred group of symmetries of E. Say that H acts fully on E

iff the action H → S(E) is surjective, so that every permutation of E is implemented
by some h ∈ H. Note that, in particular, E is a transitive H-set, so E ' H/Hxo , where
Hxo is the stabilizer of any chosen base-poin xo ∈ E. Now, fixing xo, let G be a group
extending H, in the sense that H ≤ G, and let K ≤ G with

K ∩H = Hxo .(1)

Let X := X(G,H,K) = G/K, understood as a G-set; let φ : E → X be given by
φ(x) = hK where x = hxo ∈ E. Condition (1) guarantees that φ is a well-defined, H-
equiariant injection. Henceforth, we identify E with its image under φ, understanding
E as an H-invariant subset of X. Finally, let A = A(G,H,K) be the orbit of the set
E ⊆ X under the action of G, i.e.,

A(G,H,K) = {gE|g ∈ G}.

Note that
⋃

A = X. To see that A is fully G-symmetric, let f : gE → g′E be any
bijection between two tests in A. Then (g′)−1 ◦ f ◦ g : E → E defines a permutation
of E; hence, there is some h ∈ H with (g′)−1(f(gx)) = hx for every x ∈ E, whence,
f(y) = g′hg−1y for every y ∈ gE.

Remarks:
(1) Given G,H and K as above, we can define E = H/(H ∩ K). Thus, in principle
the construction depends only on purely group-theoretic data: a group G and a pair of
subgroups H,K ≤ G.

(2) Note that, in the foregoing construction, we made no real use of the fact that H acts
fully on E: any transitive action would have done as well. We will make no use here of
this extra generality, but it’s worth bearing in mind its availability.

(3) Given a fully symmetric test space A, constructed as above from G,H and K, let
E ∈ A and let F (E) be the subgroup of G fixing E pointwise. It’s easy to see that H ⊆
N(F (A)), the normalizer of F (E) in G. Setting G′ = N(F (E))/F (E), H ′ = H/F (E)
and K ′ = (N(F (E)) ∩ K)/F (E), we obtain a new test space A′, not only fully but
strongly symmetric under G′.
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We call a model (A,Γ) fully symmetric (under G) iff A is fully symmetric, Γ is invariant
under G’s natural action on RX , and G acts transitively on the extreme points of Γ.
Note that if A is a fully symmetric G-test space and αo is a chosen state in Ω(A), we
obtain a fully symmetric model by taking Γ to be the convex hull of the orbit of αo under
G. In all four cases considered above, the full state space is invariant, and extreme states
are permuted transitively, so these models are already fully symmetric.

3.1 Linear Representations

That it be fully symmetric does not, by itself, guarantee that a model will be very
interesting. In particular, a fully symmetric test space need not have very many states.
As an example, consider the test space {{a, b}, {b, c}, {c, a}}: this is obviously fully
symmetric under the group S3, but has (accordingly!) only one state, namely, α(a) =
α(b) = α(c) = 1/2. On the other hand, if a fully symmetric test space is endowed with
a rich state space, good things follow. Let A be a fully G-symmetric test space, G a
compact group. Fixing an outcome xo ∈ X, we have a surjection G 7→ X =

⋃
A given

by g 7→ gxo, and hence an embedding

Ω(A) → C(G)

of the state space of A in the algebra of continuous real-valued functions on G, given
by ω 7→ ω̂(g) := ω(gxo). One easily verifies that the cone V+, thus embedded, is closed
under convolution; hence, we may regard V as a sub-algebra of C[G]. This gives us
an invariant inner product on V , which is positive in the sense that 〈α, β〉 ≥ 0 for all
α, β ∈ V+. Using this, one can show [QW08] that if a fully-G-symmetric test space
A has a separating, finite-dimensional state space, then V ∗ can be endowed with a G-
invariant inner product, positive on the positive cone of V , and A can be represented as
an invariant familiy of orthonormal subsets of V ∗.

4 Fully Symmetric Theories

If our goal is to construct and study, not individual probabilistic models, but proba-
bilistic theories – classes, or better, categories, of such models – then we might consider
uniformizing the construction H,K ≤ G⇒ A(G,H,K) described above. In this section,
I consider one way of doing this. In the interest of simplicity, I consider only the case in
which H is the symmetric group of a typical test.

In order to make the standard construction of Section 2 in a uniform way, we should like
to associate to every finite set A a group G(A) and a fixed embedding jA : S(A) → G(A),
in such a way that

A ⊆ B ⇒ G(A) ≤ G(B) and G(A) ∩ S(B) = S(A).

This suggests treating S and G as functors from an appropriate category of sets into
the category of groups, and j : A 7→ jA as a natural transformation from S to G. Now,
the assignment A 7→ S(A) of a set to its symmetric group is not the object part of any
sensible functor from the category Set0 of sets and arbitrary mappings to the category
Grp of groups and homomorphisms, but it is functorial in the category Sinj0 of sets
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and injective mappings: if f : A→ B is an injection, we have a natural homomorphism
S(f) : S(A) → S(B) given by

S(f)(σ)(b) =

 f(σ(a)) b = f(a)

b b 6∈ ran(f)

Note that where i : A ⊆ B is an inclusion, we have S(i)(σ)(a) = σa for all a ∈ A and
S(i)(σ)b = b for every b ∈ B \ A, i.e., S(i) is the standard embedding of S(A) as a
subgroup of S(B). I’ll routintely identify S(A) with its image under this embedding,
writing S(A) ≤ S(B).

Suppose, now, that j : S → G is a natural transformation from S to a functor G :
Sinj0 → Grp, so that we have for every object A ∈ Sinj0, a homomorphism jA :
S(A) → G(A), such that for every injection f : A→ B, the square

S(A)

S(f)

��

jA //G(A)

G(f)

��
S(B)

jB

//G(B)

(2)

commutes - i.e., we have

G(f) ◦ jA = jB ◦ S(f).

In order to guarantee that condition (1) is satisfied, we make the following

Definition: An extension of the functor S : Sinj0 → Grp is a pair (G, j) where G is
a functor from Sinj0 to Grp, j : S → G is a natural transformation from S to G, and,
for every injective mapping f : A→ B,

(i) G(f) : G(A) → G(B) is injective, and

(ii) the square (2) is a pull-back.

Where i : A ⊆ B is an inclusion mapping, we have a canonical embedding G(i) : G(A) →
G(B); identifying G(A) with its image under G(i), I’ll regard G(A) as a subgroup of
G(B). I’ll also identify S(A) with its image under jA, writing S(A) ≤ G(A). With these
conventions, we have

Lemma 1: Let A ⊆ B. Then G(A) ∩ S(B) = S(A).

Proof: Let i : A ⊆ B be the inclusion mapping. The left hand side above is more
exactly G(A) ∩ S(B) = G(i)(G(A)) ∩ jB(S(B)); the right hand side is G(i)jA(S(A)).
Since G(i) ◦ jA = jB ◦ S(i), the right hand side is contained in the left. Let’s verify this
explicitly. If σ ∈ S(A), we have

S(A) = G(i)jA(S(A)) = jBS(i)(S(A)) ⊆ jB(S(B)).

We also have

G(i)jA(σ) ∈ G(i)jA(S(A)) = G(i)G(A) = G(A) ≤ G(B).

So S(A) ⊆ S(B) ∩ G(A). Conversely, let g ∈ S(B) ∩ G(A). Then g = jB(σ) for some
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σ ∈ S(B). Now g ∈ G(A), so g = G(i)(g′) for g′ ∈ G(A). Since the square is a
pullback, thre exists σ′ ∈ S(A) with σ = G(i)(σ′) – i.e., σ′ = σ – and jA(σ) = g′. So, by
commutativity of the square, g = G(i)jA(σ) ∈ S(A) ≤ G(B). 2

Now fix a base point a ∈ A, and set K(A, a) = G(A \ ao). The Basic Construction of
section 3 yields a fully G(A)-symmetric test space

G(A) := A(G(A), S(A),K(A, a))

with outcome-space X(A, a) := G(A)/K(A, a), and a canonical, S(A)-equivariant em-
bedding A → X(A), with G(A) the orbit of A in X(A), so that each test has the form
gA for some g ∈ G(A). It is not difficult to show that every injection f : A→ B induces
an injective map X(f) : X(A) → X(B) given by

X(f)(ga) = G(f)(g)f(a)

with the choice of base-point a irrelevant. Thus, we can regard X as a functor from
Sinj0 to Sinj0. It should be noted that, at this level of generality, X(f) need not be a
test-space morphism from G(A) to G(B) (though this will be the case if (G, j) satisfies
an additional condition, discussed below in Section 6). We can nonetheless define a
category, which I’ll call G − Tesp, having as its objects test spaces of the form G(A),
and as its morphisms, composites of maps of the form X(f) and symmetries g ∈ G(A)
– so that, for instance, given injections f1 : A → B, f2 : B → C, and group elements
g ∈ G(A), h ∈ G(B) and k ∈ G(C), k◦X(f2)◦h◦X(f1)◦g : X(A) → X(C) is a G−Tesp
morphism. By the theory associated with an extension (G, j), I’ll mean this category.

Note that we already have a candidate for a canonical “tensor product” in G − Tesp,
namely,

G(A)⊗G(B) := G(A×B).

However, as we’ll now see, without some further restrictions on the extension (G, j), this
may exhibit some rather pathological (or, depending on one’s taste, rather interesting)
behavior.

4.1 Three Examples

We can regard the passage from S to G, and the associated passage from Sinj0 to
G − Tesp, as a kind of abstract quantization rule. Indeed, there is a natural func-
tor U : Sinj0 → Grp assigning to each (finite) set A the unitary group U(A) of the
finite-dimensional Hilbert space H(A) := EA, and to each injection f : E → F the
obvious unitary embedding uf : H(A) → H(B) arising from the direct-sum decom-
position H(B) = H(ran(f)) ⊕ H(B \ ran(f)). Now define U(f) : U(A) → U(B) by
U(f)(g) = ufgu

∗
f ⊕ 1B−ranf , where 1B−ranf is the identity operator on H(B \ ran(f)).

It is easy to check that U extends S in the desired way (noting that a permutation
matrix is a special kind of unitary). Applying the recipe above, we find that X(A) is the
unit sphere and U(A) = F(H(A)), the quantum test space of frames, of H(A). Suppose
now that u : H(A) → H(B) is a unitary embedding. Let B′ = u(A) ⊆ X(B), and let
g ∈ U(B) be any unitary with gB′ = B; then we have a map g ◦u|A : A→ B, and hence,
a unitary embedding X(gu|A); since this agrees with g ◦ u on A, an orthonormal basis
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for H(A), these two unitary maps are the same; hence, u = g−1X(guA). Thus, the cat-
egory U −Tesp is just the category of finite-dimensional complex Hilbert spaces (more
exactly, but irrelevantly: such spaces with preferred orthonormal bases), and unitary
embeddings. Note that the product UE)⊗ U(F ) := U(E × F ) is canonically isomorphic
to the test space of frames of H(E)⊗H(F ).

We now consider the “grid” and “geaph” test test spaces of Section 2 in this light.

Example: Grids Let G(A) be the subgroup of S(A × A) generated by S(A) × S(A),
plus transpose; and let jA(σ) = (σ,A ). For f : A → B, let G(f) : G(A) → G(B) be
the homomorphism determined by G(f)(σ1, σ2) = (S(f)(σ1), σ2) and G(τ) = τ , where
τ ∈ S(A×A) is transposition. One can work out that, for this extension, X(A) = A×A
(up to choice of base-point), and G(A) = Gr(A), the grid test space considered above.
Thus, we have

Gr(A)⊗Gr(A) = Gr(A×B).

Observe that Gr(A×B) has arbitrary product states (essentially, because the cartesian
product of two permutations is a permutation), but lacks arbitrary product tests: row-
times-row and column-times-column tests are well-defined members of Gr(A × B), but
if A is a row of Gr(A) and B, a column, then the row-times-column set E ×F is neither
a row nor a column of E × F (it is, rather, a block sub-grid of the latter). Moreover,
states on Gr(A × B) are typically signaling (essentially, because there is a correlation
between which measurements on the second factor are available, depending upon which
measurement is made on the first factor.) So this is not a product, in the sense of Section
2, at all!

Example: Graphs Let G(A) = S(A)×S(A), and embed S(A) in G(A) by jA(σ)(σ, σ).
If f : A→ B is an injection, let G(f) = S(f)× S(f) Then G(E) = Gr(E)∗, and

Gr(E)∗ ⊗Gr(F )∗ = Gr(E × F )∗.

Let λ : (E × F )2 → E2 × F 2 be the map λ : ((x, y), (u, v)) → ((x, u), (y, v)): one
can check that λ(Γf × Γg) = Γf×g for f, g ∈ Gr(E)∗, so we have a natural mapping
λ : Gr(E)∗ × Gr(F )∗ → Gr(E × F )∗. States on Gr(E × F )∗ pull back along λ to non-
signaling states on Gr(E)∗ × Gr(F )∗. So this is closer to being a product according to
our previous definition. However, there is still a problem: arbitrary products of states
on Gr(E)∗ need not be states on Gr(E × F )∗: the product of a row state and a column
state on Gr(E)∗, for instance, will not be a convex combination of row or column states
on Gr(E × F )∗, and hence, will not be a state on the latter.

The moral seems to be that, for fully symmetric theories, there is a certain tension
between the demand for arbitrary product states, and the demand for arbitrary product
measurements.

4.2 Regular Extensions

It is easily checked that, if σ ∈ S(A), then S(σ)(τ) = σ−1τσ for all τ ∈ S(A). Regarding
S(A) ≤ G(A), taken as acting on X(A), and applying the functor X to σ|A : A→ A, we

11



Wilce

have a test space morphism X(σ|A) : X(A) → X(A): if k ∈ G(A) and a ∈ A, we have

X(σ|A)(ka) = G(σ|A)(k)σa.

Applying this to k = τ ∈ S(A), we have

X(σ|A)(τa) = G(σA)(τ)σa = S(σ|A)(τ)σa = στσ−1σa = στa.

Thus, X(σ|A)x = σx for all x = τa ∈ A. One would surely like to conclude that
X(σ|A) = σ. In order to guarantee this, we advance the following, not unreasonable,
condition on (G, j):

Definition: An extension (G, j) is regular iff for all finite sets A, and for all σ ∈ G(A)
with σA = A – that is, for all σ in the stabilizer, G(A)A, of A in G(A) – we have
G(σ)(g) = σgσ−1 for all g ∈ G.

It is easy to check that the unitary extension (U, j) and the “graph” extension G(A) =
§(A) × S(A), jA(σ) = (σ, σ) are regular. The “grid” extension, in which G(A) is the
subgroup of S(A×A) generated by G(A)×G(A) and transposition, with jA(σ) = (σ,A ),
is not regular.

Lemma 2: Let (G, j) be a regular extension. Then, for every finite set A, X(σ|A)x = σx

for every σ ∈ G(A)A and every x ∈ X(A).

Proof: For part (a), we have

X(σ|A)(ka) = G(σA)(k)σa = σkσ−1σa = ka

for all k ∈ G and any a ∈ A – hence, X(σ|A)x = σx for all σ ∈ G(A)A and all x ∈ X(A).
2

This allows us to define, for any tests A′ ∈ G(A), B ∈ G(B), and any bijection f : A′ →
B′, a test-space morphism XA

B (f) : X(A) → X(B) by

XA
B (f) = hX(h−1 ◦ f ◦ g)g−1

where g ∈ G(A) with gA = A′ and h ∈ G(B) with hB = B′ (and where, of course,
inside the scope of X, h−1 and g represent, respectively, g|A and h−1|B′ , respectively).
The claim is that this is well-defined, i.e., indpendent of the particular choice of g and h.
Indeed, suppose f : A→ B′ ∈ G(B). If h1, h2 are elements of G(B) with h1B = h2B =
B′, then h−1

2 h1|B = σ ∈ S(B), whence, h1 = h2σ, and we have

h1X(h−1
1 f) = h2σX(σ−1 ◦ h−1

2 ◦ f) = h2σX(σ−1) ◦X(h2 ◦ f)

= h2σ
−1σX(h2 ◦ f) = h2X(h2 ◦ f).

A similar computation shows that XA
B is independent of g : A→ A′.

Once we have XA
B well-defined, it follows that it behaves properly with respect to com-

position:

Lemma 3: If (G, j) is regular, then for all f1 : A′ → B′ ∈ G(B), f2 : B → C ′ ∈ G(C),

XB
C (f2) ◦XA

B (f1) = XA
B (f2 ◦ f1).

Proof: Let g ∈ G(A), h ∈ G(B), k ∈ G(C) with gA = A′, hB = B′ and kC = C ′,
respectively; then we have
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XB
C (f2) ◦XA

B (f1) = kX(k−1 ◦ f2 ◦ h)h−1hX(h−1 ◦ f ◦ g)
= kX(k−1 ◦ f2 ◦ h) ◦X(h−1 ◦ f ◦ g)g′

= kX(k−1 ◦ f2 ◦ f1 ◦ g)g−1 = XA
B (f2 ◦ f1). 2

Notation: Where f : A′ → A′′ with A′, A′′ ∈ G(A), I’ll write XA(f) for XA
A (f).

Lemma 4: Let (G, j) be regular. Then, for all g ∈ G(A), A′ ∈ G(A) and all x ∈ X(A),

XA(g|A′)x = gx.

Proof: Let g|A′ : A′ → A′′ ∈ G(A). Let h, k ∈ G(A) with kA = A′ and hA = A′′. Then
h−1gh|A ∈ S(A), whence, for every x ∈ X(A),

XA(g|A′)x= hX(h−1 ◦ g|A′ ◦ h)h−1x

= hX((h−1 ◦ g ◦ h)|A)h−1x

= h(h−1 ◦ g ◦ h)h−1x = gx.2

Combining Lemmas 3 and 4, we see that, for a regular extension (G, j), every G−Tesp
morphisms G(A) → G(B) has the form XA

B (f) for some f : A′ → B′, A′ ∈ G(A),
B′ ∈ G(B).

5 Reasonable Extensions

The functor S : Sinj0 → Grp has the very nice, and very reasonable, feature that if A
and B are disjoint sets, then S(A) and S(B), as embedded in S(A ∪ B), are pairwise-
commuting, in the sense that if σ ∈ S(A) and τ ∈ S(B), then στ = τσ in G(A ∪B).

Definition: An extension (G, j) of S is reasonable iff, for all disjoint sets A and B, G(A)
and G(B) commute pairwise in G(A ∪B).

Equivalently, (G, j) is reasonable iff there exists a natural homomorphism φ : G(A) ×
G(B) → G(A ∪B) such that the diagram

G(A)×G(B)

φ

��

G(A)

66mmmmmmm

((QQQQQQQ G(B)

hhQQQQQQQ

vvmmmmmmm

G(A ∪B)

commutes (where the maps G(A), G(B) → G(A) × G(B) are the canonical injections
a 7→ (a, e) and b(e, b)).

The theories arising from reasonable extensions are particularly well-behaved, owing to
the following

Lemma 5: If (G, j) is a reasonable extension of S, then for any finite sets A ⊆ B, G(A)
fixes every point of X(B \A).

Proof: Choosing a base-point b ∈ B \ A, we can model X(B) as G(B)/G(B \ b). As
G(A) ≤ G(B \ b), we have gb = b for every g ∈ G(A). We also have X(B \ A) =
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G(B \ A)/G(B \ b) (as G(B \ A \ b) = G(B \ b)), so that X(B \ A) is the orbit of
b ∈ B ⊆ X(B) under G(B \ A). But then, for any y ∈ X(B \ A), we have y = hb for
some h ∈ G(B \A). As G(A) and G(B \A) commute (by reasonability of the extension),
we have gy = ghb = hgb = hb = y. 2

Given two test spaces A and B, with outcome-setsX and Y , respectively, their direct sum
is the test space A⊕B with total outcome-set X⊕Y , and with tests given by E⊕F where
E ∈ A and F ∈ B. Recall from Section 1 that a test space A is algebraic iff perspective
events – events having one common complementary event – are complementary to exactly
the same set of events. Denote the class of all events perspective to a given event A by
AA, and observe that A is algebraic iff, whenever A and B are complementary events in
A, we have AA ⊕ AB ⊆ A. Note, too, that AA is itself an algebraic test space, and that
B,C ∈ E(AA) are perspective in AA iff they are perspective as events in A. In particular,
the inclusion mapping

⋃
AA →

⋃
A is a morphism of test spaces.

Lemma 6: Let (G, j) be a reasonable extension. If A and B are finite sets with A∩B = ∅,
then G(A)⊕G(B) ⊆ G(A⊕B). In particular, all elements of G(A) are complementary
to all elements of G(B) in G(A ∪ B), and, conversely, if C is an event of G(A ∪ B)
complementary to A, then C ∈ G(B).

Proof: Let gA ∈ G(A) for some g ∈ G(A), and h(B) ∈ G(B). By Lemma 5, hx = x

for every x ∈ X(A) and gy = y for every y ∈ Y . Hence, gA = ghA = hgA and
hB = hgB = ghB. Thus,

gA ∪ hB = ghA ∪ ghB = gh(A ∪B) ∈ G(A⊕B).

It follows that gA and hB are complementary as events in G(A ⊕ B), and, therefore,
that G(A)⊕G(B) ≤ G(A ∪B). 2

Corollary: If (G, j) is a reasonable extension, then

(a) G(A) is algebraic for every A;

(b) If A ∩ B = ∅, then G(A) = G(A ∪ B)A where A is regarded as an event in
G(A ∪B).

(c) If f : A → B is an injective mapping, then X(f) : X(A)X(B) is a morphism
of test spaces.

Lemma 7: If (G, j) is reasonable, G(A)×G(B) ⊆ G(A×B).

Proof: Let A′ ∈ G(A) and B′ ∈ G(B). Decompose A′×B′ as
⋃

x∈A′{x}×B′, and apply
Lemma 6 iteratively. 2

Theorem 1: If (G, j) is reasonble, then G(A × B) contains the Foulis-Randall tensor
producut G(A)G(B).

Proof: Express A× B as the disjoint union
⋃

a∈A{a} × B. Let ha ∈ G(aB) ' G(B) for
every a ∈ A; then G(aB) fixes a′A for all a′ 6= a; we have (Πaha)(a′A) = ha′(a′A) ∈
G(a′A). We also have

⊕
a∈A G(aB) ≤ G(A×B); but the former is the set of two-stage

tests beginning with A. In the same way, two-stage tests beginning with B are also
contained in G(A × B). Applying elements of G(A) or G(B) as needed, we can obtain
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arbirary two-stage tests from these; thus, G(A × B) contains the Foulis-Randall tensor
product G(A)G(B), as advertised. 2

It follows that G(A×B) contains G(A)×G(B), and that the restriction of of a state on
G(A×B) to X(A)×X(B) is a non-signaling state on G(A)×G(B), as required.

When the extension (G, j) is both reasonable and regular, we can combine the fact that
G(A×B) contains arbitrary product tests with the representation ofG−Tesp morphisms
given in subsection 4.1 to obtain the following

Theorem 2: If (G, j) is a reasonable, regular extension of S, then the category G−Tesp
that it induces is symmetric monoidal under

G(A),G(B) 7→ G(A)⊗G(B) := G(A×B).

Proof: It suffices to show that G(A×B) is bi-functorial inG−Tesp, since the associativity
and symmetry of ⊗ are clear. By Lemma , G(A× B) contains all product tests. Thus,
if φ1 := XA

C (f1) : G(A) → G(C) and φ2 = XB
D(f1) : G(B)G(D), where f : A → C ′,

f2 : B → D′, and C ′ ∈ G(C) and D′ ∈ G(D), we have C ′ ×D′ ∈ G(C ×D) and hence,
a well-defined morphism

φ1 ⊗ φ2 := XA×B
C×D(f1 × f2) : G(A×B) → G(C ×D).

Using Lemma 4 (the fact that morphisms of the form XA
B compose properly), we have,

too, that (φ1 ⊗ φ2) ◦ (ψ1 ◦ ψ2) = (φ1 ◦ ψ1)⊗ (φ2 ◦ ψ2). 2

Note first that, by reasonability, G(A) × G(B) is canonically embedded in G(A × B),
and hence, acts on X(A × B) = G(A × B)/K(A × B); so if g ∈ G(A) and h ∈ G(B),
we have a natural G−Tesp morphism g ⊗ h on G(A)×G(B). Now, if f : A→ A′, we
have (f × IdB) : A × B → A × B, whence, a nautral map X(f × IdB) =: X(f) ⊗ Id :
X(A)⊗X(B) → X(A′)⊗X(B). 2

Theorem 2: If (G, j) is reasaonble, states on G(A×B) are non-signalling.

Proof (sketch): Let A × B =
⋃

a∈A aB. Let ha ∈ G(aB) ' G(B) for every a ∈ A; then
G(aB) fixes a′A for all a′ 6= a; we have (Πaha)(a′A) = ha′(a′A) ∈ G(a′A). We also
have

⊕
a∈A G(aB) ≤ G(A × B); but the former is the set of two-stage tests beginning

with A. In the same way, two-stage tests beginning with B are also contained in G(A×
B). Applying elements of G(A) or G(B) as needed, we can obtain arbirary two-stage
tests from these; thus, G(A×B) contains the Foulis-Randall tensor product G(A)G(B),
whence, the restriction of a state on G(A×B) to X(A)×X(B) is a non-signaling state
on G(A)×G(B), as required. 2

6 Conclusions and Directions for Further Work

The foregoing considerations suggest many interesting problems for further study, of
which I will mention two.

(1) First, one would like to find categorical conditions on an extension (G, j) extending
S, that are sufficient to make G(E×F ) a genuine composite in the sense of Section 2. In
view of Theorem 3, if (G, j) is both regular and reasonable, G(E)×G(F ) is canonically
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embedded in G(E × F ), and states on the latter restrict to non-signaling states on the
former. What is required, then, is that (i) states be determined by this restriction, and
(ii) every product state on G(E)×G(F ) extend to a product state on G(E × F ).

There is, of course, the danger that all of these conditions could be satisfied trivially, i.e.,
that Ω(G(A)) be empty for all A. In order for the theory associated with (G, j) to be of
real interest, it is important that G(A) host a rich state space. A test space A is sharp
iff, for every outcome x ∈ X(A), there is a unique state εx ∈ Ω(A) with α(x) = 1. Call
an extension (G, j) sharp iff, for every finite set A, the test space G(A) is sharp. If we
assume both that (G, j) is sharp and that G(A×B) is a product for all A and B, and,
finally, that the state spaces of the factors are finite-dimensional, then it follows that the
space V (G(A) ⊗ G(B)) of signed weights on V (G(A × B)) is, algebraically, the tensor
proudct of V (G(A)) ⊗ V (G(B)). Using this observation, one can show (as outlined in
[Wilce09b]) that, for such an extension, the category G−Tesp satisfies most of Hardy’s
axioms [Hardy01] for finite-dimensional quantum mechanics.

(2) In a different direction, in the discussion of section 4 one would like to replace
the rather impoverished category Sinj0 of finite sets an injective mappings by a richer
category, such as the category Set0 of finite sets and mappings or the category FRel of
finite sets and relations. One can do this by replacing the category Grp of groups and
homomorphisms, by the category Grel of groups and polymorphisms (that is, subgroups
of product groups, regarded as relations). If if f : E → F is any mapping between sets
E and F , define

S(f) = {(σ, τ) ∈ S(E)× S(F )|fσ = τf} ≤ S(E)× S(F ) :

then S(g ◦ f) ⊆ S(g)S(f) (here reversing the usual order of relational multiplication), so
we can regard S as a lax functor from to Grel. One can similarly regard S as a functor
FRel → Grel. Further work along these lines will be discussed elsewhere.
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