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Questions

• What is the relationship between all the different no-go theorems?

• Can the no-go theorems be stated in one single formalism?

• What type of hidden variables are possible?

• Does one need to know a lot of physics to understand these no-go

theorems?
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Goal

Hidden variables are extra components added to try to banish coun-

terintuitive features of quantum mechanics. We start with a quantum-

mechanical model and describe various properties that can be asked of

a hidden-variable model. We present six such properties and a Venn di-

agram of how they are related. With two existence theorems and three

no-go theorems (EPR, Bell, and Kochen-Specker), we show which prop-

erties of empirically equivalent hidden-variable models are possible and

which are not. Formally, our treatment relies only on classical proba-

bility models, and physical phenomena are used only to motivate which

models to choose.
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The Big Picture
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Introduction

Hidden-variable theories aim to remove strange aspects of QM by

building more “complete” models (in the terminology of Einstein-Podolsky-

Rosen). The completed models should agree with the predictions of

QM, but exhibit one or more of the desired properties of: (i) determin-

ism, (ii) locality, and (iii) independence.

Can such models actually be built? The famous “no-go” theorems

of QM show that there are severe limitations to what can be done. But

it is also true that certain combinations of properties are possible.

Our modest goal is to provide a formal framework in which vari-

ous properties one might ask of hidden-variable models can be stated

and in which various non-existence and existence results can be orga-

nized. Almost all–if not all–of the ingredients of what we do are well

known to researchers in the area. Our contribution is in putting all

the ingredients into one simple setting.

The setting is classical probability spaces. The question is, given a

classical probability model, whether there exists an associated hidden-

variable model that is empirically equivalent to the first model and that

satisfies certain properties. These properties are motivated by the liter-

ature on hidden variables in QM. The specific properties we consider–

and the relationships among them–can be depicted in the Venn dia-

gram. The diagram contains 21 regions.
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Introduction

The main result of the paper is that we can give a complete account

of these 21 regions. For 10 of these regions (indicated with checks),

it is always possible to find an equivalent hidden-variable model with

the properties in question. For the remaining 11 regions (indicated

with crosses), this may not be possible. We fill in the regions via

two existence results and three non-existence results. The latter three

are the famous theorems of Einstein-Podolsky-Rosen (EPR), Bell, and

Kochen-Specker.

It is important to understand that, formally, we make no use of phys-

ical phenomena. It is an exercise in classical probability theory alone.

Of course, the probability spaces we select for the non-existence results

are inspired by the physical experiments described in EPR, Bell, and

Kocher-Specker. But we hope it is conceptually clarifying to present

the hidden-variable question in a purely abstract setting–that is, to

show how much follows from the rules of probability theory alone.
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Introduction
Some Comments

1. We only look at six properties. There are more.

2. We work with a single probability measure on a single space, where

points in the space describe measurements on particles and out-

comes of those measurements. An alternative–more conventional–

approach would be to use a family of probability measures on a

space describing outcomes only, with different probability mea-

sures corresponding to different measurements. In fact, all our

requirements are stated in terms of conditional probabilities: If

such-and-such a measurement is made, then what is the proba-

bility of a certain outcome? So, formally, our approach is more

parsimonious. Yet, it does add an ingredient at the conceptual

level–viz., the existence of a probability measure prior to condi-

tioning on measurements. This measure may be thought of as

representing the perspective of a super-observer who observes the

experimenters as well as the outcomes of the experiments.

3. We treat only finite probability spaces. This involves a tradeoff.

On the one hand, finiteness allows us to avoid all measure-theoretic

issues. On the other hand, as an assumption on the space in which

a hidden variable lives, finiteness is undoubtedly restrictive.
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Introduction
Some Conclusion

Let us offer a comment on its conceptual meaning in QM. The main

message of the no-go theorems is that in building a hidden-variable

theory, some properties that might be viewed as desirable–at least, a

priori–have to be given up. But there is a choice of what to give up.

Arguably, it is more a matter of metaphysics than physics as to what

choice to make. The point of a formal treatment is to give a precise

statement of what the options are. There is a basic three-way tradeoff.

(i) Determinism (This comes in a strong or a weak form.) This says

that randomness reflects only observer ignorance. Once hidden

variables are introduced, there is no residual randomness in the

universe.

(ii) Parameter Independence This says that when conducting an

experiment on a system of particles, the outcome of a measurement

on one of the particles does not depend on what measurements

are performed on other particles. (The intuitive appeal of this

property is that often the particles are widely separated.) This is

a way of saying that the universe is local.

(iii) λ-Independence This says that the nature of the particles–as

determined by the value of a hidden variable–does not depend on

the experiment conducted. There is, in this sense, no dependence

between the observer and the observed.
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The Set-Up
The Models

Formally, we consider a space

Ψ = {a, a′, . . .}×{b, b′, . . .}×{c, c′, . . .} · · ·×{A, A′, . . .}×{B, B′, . . .}×· · · .

The variables A, B, C, . . . are measurements, and the variables a, b, c,

. . . are associated outcomes of measurements. There might be several

particles: Ann performs a measurement on her particle, Bob performs a

measurements on his particle, . . . . Or, Ψ might describe a case where

several measurements are performed on one particle. The definitions

to come apply in either case. We take each of the spaces in Ψ to be

finite, and suppose that Ψ is a finite product.

Let Λ be a finite space in which a hidden variable λ lives. The overall

space is then

Ω = Ψ × Λ.

Definition 1 An empirical model is a pair (Ψ, q), where q is a prob-

ability measure on Ψ. A hidden-variable model is a pair (Ω, p),

where p is a probability measure on Ω.

10



The Set-Up
The Models

Definition 2 An empirical model (Ψ, q) and a hidden-variable model

(Ω, p) are (empirically) equivalent if for all a, b, c, . . . , A, B, C, . . . ,

q(A, B, C, . . .) > 0 if and only if p(A, B, C, . . .) > 0,

and when both are non-zero,

q(a, b, c, . . . |A, B, C, . . .) = p(a, b, c, . . . |A, B, C, . . .).

Here, we write “a, b, c, . . .” as a shorthand for the event

{(a, b, c, . . .)} × {A, A′, . . .} × {B, B′, . . .} × {C, C ′, . . .} × · · ·

in Ψ, or the event

{(a, b, c, . . .)} × {A, A′, . . .} × {B, B′, . . .} × {C, C ′, . . .} × · · · × Λ

in Ω, and similarly for other expressions. We will adopt this shorthand

throughout.
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The Set-Up
The Venn Diagram of the Properties
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The Set-Up
The Properties

Definition 3 A hidden-variable model (Ω, p) satisfies Single-Valuedness

if Λ is a singleton.

This condition says that the hidden variable can take on only one

value. In effect, this condition doesn’t allow hidden variables. We

include it because EPR will be usefully formulated this way.

Definition 4 A hidden-variable model (Ω, p) satisfies λ-Independence

if for all A, A′, B, B′, C, C ′, . . ., λ,

p(λ|A, B, C, . . .) = p(λ|A′, B′, C ′, . . .).

The condition says that the process determining the value of the

hidden variable is independent of which measurements are chosen.

Remark 1 If a hidden-variable model satisfies Single-Valuedness, then

it satisfies λ-Independence.
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The Set-Up
The Properties

Definition 5 A hidden-variable model (Ω, p) satisfies Strong Deter-

minism if, for every A, λ, whenever p(A, λ) > 0, there is an a such

that p(a|A, λ) = 1, and similarly for B, λ, b, etc.

Definition 6 A hidden-variable model (Ω, p) satisfies Weak Deter-

minism if, for every A, B, C, . . . , λ, whenever p(A, B, C, . . . , λ) > 0,

there is a tuple a, b, c, . . . such that p(a, b, c, . . . |A, B, C, . . . , λ) = 1.

Determinism is a basic condition in the literature. But we are

careful to make a distinction between a strong and weak form. We

will see that various results are true for one form but false for an-

other. Broadly, the condition is that the hidden variable determines

(almost surely) the outcomes of measurements. But, Strong Determin-

ism says this holds measurement-by-measurement, while Weak Deter-

minism says this holds only once all measurements are specified. There

is a one-way implication:

Lemma 1 If a hidden-variable model satisfies Strong Determinism,

then it satisfies Weak Determinism.
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The Set-Up
The Properties

Definition 7 A hidden-variable model (Ω, p) satisfies Outcome In-

dependence if for all a, b, c, . . . , A, B, C,. . . , λ,

p(a|A, B, C, . . . , b, c, . . . , λ) = p(a|A, B, C, . . . , λ), (2.1)

and similarly with a and b interchanged, etc.

Outcome Independence says that conditional on the value of the

hidden variable and the measurements undertaken, the outcome of any

one measurement is (probabilistically) unaffected by the outcomes of

the other measurements.

Lemma 2 A hidden-variable model (Ω, p) satisfies Outcome Indepen-

dence if and only if for all a, b, c, . . . , A, B, C,. . . , λ,

p(a, b, c, . . . |A, B, C, . . . , λ) = p(a|A, B, C, . . . , λ)×p(b|A, B, C, . . . , λ)×p(c|A, B, C, . . . , λ)×· · · .

Lemma 3 If a hidden-variable model satisfies Weak Determinism, then

it satisfies Outcome Independence.
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The Set-Up
The Properties

Definition 8 A hidden-variable model (Ω, p) satisfies Parameter In-

dependence if for all a, A,B, C, . . . , λ, whenever p(A, B, C, . . . , λ) >

0,

p(a|A, B, C, . . . , λ) = p(a|A, λ), (2.3)

and similarly for b, A, B, C, . . . , λ, etc.

Parameter Independence says that, conditional on the value of the

hidden variable, the outcome of any one measurement depends (prob-

abilistically) only on that measurement and not on the other measure-

ments.

Lemma 4 If a hidden-variable model satisfies Strong Determinism,

then it satisfies Parameter Independence.
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The Set-Up
Derived Properties

Definition 9 A hidden-variable model (Ω, p) satisfies Locality if for

all a, b, c, . . . , A, B, C, ,. . . , λ, whenever p(A, B, C, . . . , λ) > 0,

p(a, b, c, . . . |A, B, C, . . . , λ) = p(a|A, λ) × p(b|B, λ) × p(c|C, λ) × · · · .

(2.4)

Proposition 1 A hidden-variable model satisfies Locality if and only

if it satisfies Outcome Independence and Parameter Independence.

Non-Contextuality, due to Kochen-Specker, is a property of an em-

pirical model. It says that the probability of obtaining a particular

outcome of a measurement does not depend on the other measurements

performed.

Definition 10 An empirical model (Ψ, q) satisfies Non-Contextuality

if for all a, A,B,B′, C, C ′, . . . , whenever q(A, B, C, . . .) > 0 and q(A, B′, C ′, . . .) >

0,

q(a|A, B, C, . . .) = q(a|A, B′, C ′, . . .).

Also, the corresponding conditions must hold for b, A, A′, B, C,C ′, . . .,

etc.

Proposition 2 If a hidden-variable model (Ω, p) satisfies λ-Independence

and Parameter Independence, then any equivalent empirical model (Ψ, q)

satisfies Non-Contextuality.
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Two Existence Theorems

Theorem 1 Given an empirical model (Ψ, q), there is an equivalent

hidden-variable model (Ω, p) which satisfies Strong Determinism.

Theorem 2 Given an empirical model (Ψ, q) with rational probabili-

ties, there is an equivalent hidden-variable model (Ω, p) which satisfies

Weak Determinism and λ-Independence.

(The region for Single-Valuedness alone also has a check. The exis-

tence of an equivalent hidden-variable model satisfying Single-Valuedness

alone is immediate–it is essentially just the given empirical model.)
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Two Existence Theorems
First Proof

The proof is basically a mathematical trick. We simply take the

hidden variable to be all the information possible. This means, in

particular, that the hidden variable would have to ‘know’ the probabil-

ities for different measurements and outcomes. With this huge hidden

variable, we can build up the probability measure p from the given

measure q. This construction is physically unsatisfying, of course–but

not ruled out by the general concept of a hidden variable. It is also

rather obvious.

Proof. We give the proof for the case that Ψ is a 4-way product, but

the extension to a general (finite) product will be clear. Set

Λ = {a, a′, . . .} × {b, b′, . . .} × {A, A′, . . .} × {B, B′, . . .},

and define p in stages, as follows. For any pair A, B, set

p(A, B) = q(A, B). (3.1)

For any pair A, B, and λ = (ã, b̃, Ã, B̃), set

p(λ|A, B) =

{
q(ã, b̃|A, B) if Ã = A and B̃ = B,

0 otherwise.
(3.2)
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Two Existence Theorems
First Proof

For pairs a, b and A, B, and λ = (ã, b̃, Ã, B̃), set

p(a, b|A, B, λ) =

{
1 if ã = a, b̃ = b, Ã = A, B̃ = B,

0 otherwise.
(3.3)

This defines a measure p on Ω using

p(a, b, A,B, λ) = p(a, b|A, B, λ) × p(λ|A, B) × p(A, B).

(Note that p(·, ·|A, B, λ) is not a measure if A 6= Ã or B 6= B̃. But

then p(λ|A, B) = 0, so there is no difficulty.)

From (3.1), p(A, B) > 0 if and only if q(A, B) > 0. If both are

positive, then from Figure 3.2,

p(a, b|A, B) = 1 × q(a, b|A, B),

so that equivalence is satisfied.
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Two Existence Theorems
First Proof

It remains to verify that (Ω, p) satisfies Strong Determinism. So,

suppose p(A, λ) > 0. Writing λ = (ã, b̃, Ã, B̃), we therefore assume

A = Ã. Using (3.1)-(3.3),

p(a, A, λ) = p(a, Ã, λ) =
∑
b′,B′

p(a, b′, Ã, B′, λ) = p(a, b̃, Ã, B̃, λ) = q(a, b̃, Ã, B̃) × χ{a=ã},

p(A, λ) = p(Ã, λ) =
∑

a′,b′,B′

p(a′, b′, Ã, B′, λ) = p(ã, b̃, Ã, B̃, λ) = q(ã, b̃, Ã, B̃),

so that

p(a|A, λ) = χ{a=ã},

which is Strong Determinism.
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EPR
The Statement

Theorem 3 There is an empirical model (Ψ, q) for which there is no

equivalent hidden-variable model (Ω, p) which satisfies Single-Valuedness

and Outcome Independence.
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EPR
The Proof

Proof. We let Ψ = {+a,−a} × {+b,−b} × {A} × {B} and define q as

+b −b

+a 0 1
2

−a
1
2 0

q(·, ·|A, B)

Now suppose, contra hypothesis, there is an equivalent hidden-variable

model (Ω, p) satisfying Single-Valuedness and Outcome Independence.

Let Λ = {λ}. Then we must have

p(+a,−b|A, B, λ) = p(−a, +b|A, B, λ) =
1

2
,

from which

p(+a|A, B, λ) = p(+a, +b|A, B, λ) + p(+a,−b|A, B, λ) = 0 +
1

2
,

and

p(+a|A, B,−b, λ) =
p(+a,−b|A, B, λ)

p(−b|A, B, λ)
=

1
2
1
2

= 1,

contradicting Outcome Independence.
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EPR
Comments

The conditions of EPR are tight. We cannot drop Outcome Indepen-

dence. By the existence theorems we cannot drop Single-Valuedness.

Here is a specific construction–for the EPR empirical model–of an

equivalent hidden-variable model satisfying Strong Determinism (so,

certainly Outcome Independence) and even λ-Independence. Let Λ =

{λ1, λ2}, and set p(λ1) = p(λ2) = 1
2 and

p(+a,−b|A, B, λ1) = 1, p(−a, +b|A, B, λ2) = 1.

Using p(A, B) = 1, we see that the stated conditions hold.

At the level presented here, the EPR argument doesn’t need any

quantum effects. It could be realized entirely classically. Von Neu-

mann gave a nice example of classical action at a distance:

Let S1 and S2 be two boxes. One knows that 1, 000, 000 years

ago either a white ball had been put into each or a black ball

had been placed into each but one does not know which color

the balls were. Subsequently one of the boxes (S1) was buried

on Earth, the other (S2) on Sirius . . . . Now one digs S1 on

Earth out, opens it and sees: the ball is white. This action

on Earth changes instantaneously the S2 statistic on Sirius.

EPR’s conclusion was that the theory of QM needed to be “completed.”

This leads to the question of whether a construction like the one we

just gave is always possible. This then leads to Bell’s Theorem.
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Bell
The Statement

Theorem 4 There is an empirical model (Ψ, q) for which there is no

equivalent hidden-variable model (Ω, p) which satisfies λ-Independence,

Parameter Independence, and Outcome Independence.
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Bell
Set-Up of the Proof

Proof. We let

Ψ = {+a,−a} × {+b,−b} × {A1, A2, A3} × {B1, B2, B3},

and define q with q(Ai, Bj) = 1
9 for all i, j and

+b −b

+a 0 1
2

−a
1
2 0

q(·, ·|Ai, Bi)

+b −b

+a
3
8

1
8

−a
1
8

3
8

q(·, ·|Ai, Bj) for j 6= i
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Kochen-Specker
The Statement

Theorem 5 There is an empirical model (Ψ, q) for which there is no

equivalent hidden-variable model that satisfies λ-Independence and Pa-

rameter Independence.

Kochen-Specker demonstrated the existence of a QM model that fails

Non-Contextuality: Whether or not their particle has spin in a certain

direction is dependent on which other directions are also measured.
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Kochen-Specker
The Background for the Proof.

To prove Kochen-Specker in our probabilistic framework, we will

need to adapt the concept of exchangeability from probability theory.

To give our definition, we consider the special case where the spaces of

possible measurements are all the same, as are the spaces of possible

outcomes:

{A, . . .} = {B, . . .} = · · · = {X1, X2, . . . , Xm},

{a, . . .} = {b, . . .} = · · · = {x1, x2, . . . , xn},

for integers m,n. We will consider a permutation map π:

(A, B, . . .) 7→ (π(A), π(B), . . .),

(a, b, . . .) 7→ (π(a), π(b), . . .).

Note that we use π twice (despite the different domains), because we

want to consider the same permutation on the two sequences.
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Kochen-Specker
The Background for the Proof

Definition 11 An empirical model (Ψ, q) satisfies Exchangeability

if for any indices i1, i2, . . . ∈ {1, 2, . . . ,m} and j1, j2, . . . ∈ {1, 2, . . . , n},

q(A = Xi1, B = Xi2, . . .) > 0 if and only if q(π(A) = Xi1, π(B) = Xi2, . . .) > 0,

for any permutation π, and when both are non-zero,

q(a = xj1, b = xj2, . . . |A = Xi1, B = Xi2, . . .) =

q(π(a) = xj1, π(b) = xj2, . . . |π(A) = Xi1, π(B) = Xi2, . . .).

In words, the requirement is that if we swap any number of mea-

surements, then, as long as we swap the outcomes in the same way, the

overall probability is unchanged. Thus, let q be the probability that

Ann gets the outcome xj1 and Bob gets the outcome xj2, if Ann per-

forms measurement Xi1 on her particle and Bob performs measurement

Xi2 on his particle. Let q′ be the probability that Ann gets the out-

come xj2 and Bob gets the outcome xj1, if Ann performs measurement

Xi2 on her particle and Bob performs measurement Xi1 on his particle.

Exchangeability says that q′ = q. Likewise, for several measurements

on a single particle. This is similar to exchangeability à la de Finetti,

though with a conditioning component.
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Kochen-Specker
The Proof

Proof.

We follow Cabello, Estebaranz, and Garc a simple treatment which

results in the 4×9 array. For various tuples of four orthogonal directions

in 4-space (from a total of 18 directions), we ask whether or not the

particle has spin in each of these directions. In each case, the answer

will be that we get three directions without spin and only one direction

with spin.

A E1 E1 E8 E8 E2 E9 E16 E16 E17

B E2 E5 E9 E11 E5 E11 E17 E18 E18

C E3 E6 E3 E7 E13 E14 E4 E6 E13

D E4 E7 E10 E12 E14 E15 E10 E12 E15

Consider an empirical model where

{A, . . .} = {B, . . .} = {C, . . .} = {D, . . .} = {E1, E2, . . . , E18},

{a, . . .} = {b, . . .} = {c, . . .} = {d, . . .} = {0, 1}.

Exchangeability is assumed to hold, and q assigns positive probability

to each of the nine tuples of measurement settings.
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Kochen-Specker
The Proof

Finally, for any column, the empirical model has the property that

precisely one of the following holds:

q(1, 0, 0, 0|Ei1, Ei2, Ei3, Ei4) = 1, (6.1)

q(0, 1, 0, 0|Ei1, Ei2, Ei3, Ei4) = 1, (6.2)

q(0, 0, 1, 0|Ei1, Ei2, Ei3, Ei4) = 1, (6.3)

q(0, 0, 0, 1|Ei1, Ei2, Ei3, Ei4) = 1. (6.4)

Now suppose, contra hypothesis, that there is an equivalent hidden-

variable model satisfying λ-Independence and Parameter Independence

— that is satisfies Non-Contextuality.

Next, take, say, the first column. If

q(0, 1, 0, 0|E1, E2, E3, E4) = 1, (6.5)

then certainly

q(b = 1|E1, E2, E3, E4) = 1.
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Kochen-Specker
The Proof

Since (E2, E5, E13, E14) is non-null, so is (E5, E2, E13, E14), by Ex-

changeability. Using Non-Contextuality, we therefore have

q(b = 1|E5, E2, E13, E14) = 1,

from which, by Exchangeability again,

q(a = 1|E2, E5, E13, E14) = 1.

Now use (6.1)-(6.4) to get

q(1, 0, 0, 0|E2, E5, E13, E14) = 1, (6.6)

which tells us about the fifth column.

We therefore get a coloring problem: We try to color precisely one

entry in each column–corresponding to the measurement that yields a

1. For example, suppose we color the entry E2 in the first column–

corresponding to (6.5). Then (6.6) tells us that we must color the entry

E2 in the fifth column. However, this is impossible. Each Ei appears

an even number of times in the Table, and there is an odd number of

columns. Thus, the table cannot be colored.
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Other No-Go Theorems

1. Gleason’s Theorem (We do not work in Hilbert space.)

2. Conway and Kochen (Relaxing Parameter Independence.)

3. Bohmian mechanics (The two existence theorems ‘predict’ the pos-

sibility of Bohmian mechanics–though not its specific content, of

course.)
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