
Recursion Theorems and Self-Replication

Via Text Register Machine Programs

Lawrence S. Moss∗

Abstract

Register machine programs provide explicit proofs of the sm
n -Theorem,

Kleene’s Second Recursion Theorem, and Smullyan’s Double Recur-
sion Theorem. Thus these programs provide a pedagogically useful
approach. We develop this topic from scratch, hence without appeal
to the existence of universal programs, pairing, quotation, or any form
of coding device. None of the results are new from the point of view
of computability theory apart from the particular formulations them-
selves. We introduce the notion of a text register machine; this is a
register machine whose registers contain words from some alphabet
and whose instructions are again words from the same alphabet. We
work with a particular instruction set whose language of programs we
call 1#. Tools for writing and evaluating 1# programs have been made
freely available: see www.indiana.edu/∼iulg/trm.

It is generally recognized that the greatest advances in modern computers
came through the notion that programs could be kept in the same memory

with ‘data,’ and that programs could operate on other programs, or on themselves,
as though they were data.”

Marvin Minsky [5]

1 Introduction

What is the simplest setting in which one can formalize the notion that
“programs could operate on other programs, or on themselves”? This paper
contains a proposal for such a formalization in the form of a programming

∗Mathematics Department, Indiana University, Bloomington, IN 47405 USA. Email:
lsm@cs.indiana.edu

1

language 1#.1 Using programs of 1# we obtain explicit programs correspond-
ing to the fixed point theorems from the theory of computation. In addition
to re-proving classic results, our goal is to suggest a useful way of teaching
them.

To get the simplest formulation of any complicated idea is not always
easy, and to do so for programs operating on programs one must make some
choices. The goal of this paper is to present a setting in which one could
explain the concept to a person who can read mathematical notation but
who doesn’t necessarily know about programming or computability. Thus
the model of computation in this discussion should be as intuitively simple as
possible. For this, I have chosen a certain flavor of register machines. Second,
the notion of a program should also be as simple as possible: both the syntax
and semantics should be explainable in less than fifteen minutes. This rules
out high-level programming languages. As they are standardly studied,
register machines work on numbers, but their programs are not numbers.
So we work with a variant notion, word register machines. Such machines
process strings over the tiny alphabet A = {1, #}. The key additional feature
of our machine is that its instructions and programs are words over this same
set A. We call such machines text register machines.

Word register machines are a Turing-complete computational formalism.
Text register machines also illustrate versions of the main foundational theo-
rems of recursion theory explicitly. So when a result says “there is a program
such that . . .” then it is often possible to easily exhibit such a program. The
results I have in mind are the sm

n -Theorem and the Second Recursion Theo-
rem. Usually the sm

n -Theorem is treated by appealing to the Church-Turing
thesis (that is, saying that the construction is “obvious but tedious”) or else
done via the coding of sequences by numbers. Our development is more
direct. It also leads to explicit self-reproducing programs.

We turn to the main development itself in Section 3. Before that, we
have some discussion of how our proposal fits into the history of the subject.

2 Historical and conceptual points

The register machine formalism was introduced in Shepherdson and Sturgis’
1963 paper [6]. Their goal was to provide a formalism for which one could
verify that all partial recursive functions are computable by some “finite,

1This paper leaves open the pronunciation of the name of the language. The symbol #
has many names, including check, octothorpe, pound sign, hash, and crosshatch. It is not
quite the sharp sign]. The names of languages like A# and C# use “sharp” anyways.

2

discrete, deterministic device supplied with unlimited storage.” Their notion
of a register machine comes in several variants. Broadly speaking, these
variants include machines whose registers contain natural numbers, and also
with machines whose registers contain words w ∈ A∗ over some set A =
{a1, . . . , as} of alphabet symbols. We are concerned in this paper with the
latter variant. It has for the most part been forgotten in the literature. For
example, Fitting [2] writes, “Register machines come from [Shepherdson
and Sturgis 1963]. As originally presented, they manipulated numbers not
words; the version presented here is a straightforward modification.” And
to be sure, I had not known of word register machines before I wrote up this
paper. Getting back to the idea itself, it might be worthwhile to recall (in
a somewhat updated terminology and notation) the formulation in [6].

In Sections 5 and 6 of [6] we find a formulation of partial recursive func-
tions on A∗ and then a definition of unlimited register machines over A.
These are register machines whose instructions are as follows:

P (i)(n): place ai on (the right-hand) end of 〈n〉

D(n): delete the (left-most) letter of 〈n〉, provided that 〈n〉 6= ε.

J (i)(n)[E1]: jump to line E1 if 〈n〉 begins with ai, otherwise go to the next
instruction.

In these, 〈n〉 denotes the content of register n, and ε the empty word. A
machine whose instructions are of the above types is called a URM(A).

The main result of Appendix B is that all partial recursive functions
over A∗ may be computed on some URM(A). A variant of the instruction
set above comes in Appendix C. It replaces the second and third types of
instructions by one “scan and delete” scheme defined as follows:

Scd(n)[E1 . . . , Es]: scan the first letter of 〈n〉; if 〈n〉 = ε, go to the next
instruction; if the first letter of 〈n〉 is ai, then delete this and go to
line Ei.

Then the main result of Appendix C is that one can simulate the delete and
jump instructions using the scan and delete operation.

The paper contains numerous other results. However, it does not for-
mulate direct results like the sm

n -Theorem for URM(A) computations. We
would like to do this directly. For this, it is essential that A include whatever
symbols are needed to formulate the syntax of the overall language. (In the
setting of [6], this is problematic for an interesting reason. If the symbols
P (i) are taken to be atomic symbols P (i) – and this seems to be the prima

3

facie interpretation – then the alphabet A would have to include those sym-
bols. But this is absurd if A is to be finite. So we must reformulate the
language to get around this.)

Register machines are used in many textbooks due to their intuitive ap-
peal. Needless to say, in writing this paper I looked at many sources to
make sure that the development was new. Occasionally register machines
are called counter machines. Minsky’s textbook [5] on automata theory and
computability presents a machine model that amounts to arithmetic reg-
ister machines. He calls them program machines; it is not clear from the
book why he did not mention [6] in the text even though it appears in the
references. He notes that the program is “ ‘built into’ the programming
unit of the machine.” Hence [program machines] “are not, then, ‘stored-
program’ computers.” But he then makes the quote reproduced above the
introduction of the present paper. Perhaps Minsky did not even present the
word register machines because register machines are not a direct model of
a stored-program computer. But our point is that register machines oper-
ating on words do allow one to come closer to the notions that Minsky cites
than machines operating on numbers. His book also does discuss Turing
machines whose symbol set goes beyond one or two symbols to be an arbi-
trary finite set, including the set of symbols used in a “representation” of
a Turing machine itself. Problem 7.4–3 of [5] asks a reader to construct a
self-reproducing Turing machine, and the solution of course would have to
use an expanded symbol set.

There are two papers that present material that seems close to ours.
One is Corrado Böhm’s paper [1]. He proposes a language P ′′ with a small
instruction set, and proves that it is Turing-complete. P ′′ is intended to
be run on Turing machines. Here are some differences with our work: we
feel that our instruction sets would be easier for a complete novice to use
than P ′′. (For example, moving register contents is a simple loop here.)
Certainly the programs for the self-replicating program that we end up with
is considerably smaller than what one finds for descendants of P ′′ such as BF.
Finally, our languages are regular sets of expressions, whereas languages like
P ′′ are context-free but not regular. (This is a very minor point.) We also
know that Neil Jones in [4] has proposed simple languages and studied the
sm
n - and Recursion Theorems. The difference here is that Jones’ languages

are not based on as simple a machine model as register machines. There
are good reasons why Jones works with the languages that he formulated,
of course.

There might be classroom situations where one might want a presenta-
tion like the one we outline here. I think back to my own first exposure

4

to Computability Theory, an inspiring course given by Herbert Enderton
at UCLA around 1977. The course used register machines as its primary
model, and in the first few weeks we had to run programs written on punched
cards. Later on, the course turned to µ-recursion, and via the usual coding
machinery it presented the sm

n -Theorem (but not the Recursion Theorem).
The development here would allow one to efficiently present all the main
results of interest without any of the coding; for some courses this would
be a good idea. Instead of punched cards one now has graphical interfaces,
and for this the technical overhead in learning the language would be small
indeed. The material would work well in any course that wants to discuss
self-replicating computer programs, a topic that comes up in various set-
tings where reproduction is studied, including compilers, artificial life, and
security. So someone teaching those topics could introduce them using 1#
and the freely available tools for it.

3 The language 1#

A register is a time-varying word indexed by a positive integer. We work
with a machine whose registers are R1, R2, R3, Each program uses a
fixed finite number of registers. We may either take the ideal machine which
we now describe to have infinitely many registers, or else to have a number
which includes all registers in whatever program we are running on it.

Syntax The basic alphabet of symbols is A = {1,#}.
There are five types of instructions, and the full syntax is listed in Fig-

ure 1.
The set of programs is just the set of all nonempty concatenations of

sequences of instructions. The set of instructions is a regular set, and hence
so is the set of programs. The programs are uniquely (and efficiently) parsed
into sequences of instructions.

We sometimes employ abbreviations in writing programs, and in partic-
ular we use | for the concatenation operation on programs. We also add
explanations in English. None of this is part of the official language.

We experimented with variations on the syntax in order to get an instruc-
tion set which minimized the lengths of the programs of interest. Nothing
beat Figure 1. Having extra characters allows for binary numbers, but this
does not quite compensate for the extra branches in the case statements.

5

instr meaning
1n# add 1 at the end of Rn
1n## add # at the end of Rn
1n### go forward n steps

instr meaning
1n#### go backward n steps
1n##### cases on Rn

Figure 1: The instruction set of 1#. Here n ≥ 1, and 1n is n consecutive 1s.

Semantics The easiest way to present the semantics is to run an evaluator
in connection with our tutorial on this topic. For those reading this on its
own, here are the details.

The registers store words w ∈ A∗. Running a program, say p, means exe-
cuting a sequence of steps, and at each step one or another of the instructions
which comprise p is active. It is convenient to number those instructions.
We begin with instruction 1 of p. When p starts, some registers might con-
tain words; these are the inputs. Actually, we do not distinguish between
a register being empty and its containing the empty string. The various
instructions in our set involve writing to the end of a register, popping an
element from the front of a register and then branching according to what
was found, and outright transfer (=goto) statements. Here is more detail
on all of these.

All writing is to be done at the end (the right side) of words. So if
R6 contains the string 11## and we execute the instruction 111111#, then
R6 will then have 11##1. After executing a write instruction, the next
instruction of p (if there is one) is the active one.

Executing a case statement 1n#5 removes the leftmost symbol of the
word in register n, so that item is no longer there. After this, there are
three continuation branches. In order, those branches are first for the case
when register n is empty, then when the popped element is 1, and finally for
#. Suppose R3 contains the string 1##1 and instruction 17 of our program
p contains the instruction 111#####. In executing this, we drop the initial
1, the tail ##1 then remains in R3, and finally we proceed to instruction
17 + 2 = 19 of p.

The transfer instructions are all relative; i.e., they specify a forward or
backward transfer of some positive number of instructions.

Consider the execution of a program p. If at some point, instruction
k is active and it asks to transfer forward l steps, and if p has k + l − 1
instructions, then after executing instruction k, we say that p halts. There
are similar ways for p to halt following the add instructions and even case
statements. Informally, and a bit incorrectly, we say that p halts if the active

6

line is “one below the last instruction of p.”

1#-computable partial functions Let n ≥ 0, and let p ∈ A∗. We define
the partial function ϕ

(n)
p : (A∗)n ⇀ A∗ by

ϕ(n)
p (x1, . . . , xn) = y

if p is a program, and if p is run with x1 in R1, x2 in R2, . . ., xn in Rn,
and all other registers empty, then eventually the machine comes to a halt
with y in R1 and all other registers empty. These partial functions ϕ

(n)
p are

called 1#-computable. (We allow n = 0, and in this case we would write
ϕp(). And in all cases we usually drop the superscript from the notation
when it is clear.)

This notion of 1#-computability is not the only one worth studying. For
many purposes, one would want 1#-computability using the first k registers.
Equally well, one often wants definitions that keep the original input intact;
the notion studied here loses the input.

Notation like ϕp(x1, . . . , xn) = ϕq(y1, . . . , ym) has the usual meaning:
either both sides are undefined, or both are defined and equal.

The empty string ε is not a program, and so ϕ
(n)
ε is the empty function

for all n.
A final comment: it is clear that restricting our notion from sequences

from A = {1, #} to sequences of 1’s alone, the 1#–partial computable func-
tions are exactly the partial computable functions in the classical sense.
There is also a formulation of this result which uses A to represent numbers
in binary.

4 Programs

4.1 Programs to move register contents

Here is a program move2,1 which writes the contents of R2 onto the end of
R1, emptying R2 in the process:

11##### cases on R2
111111### go forward 6
111### 1 branch: go forward 3
1## # branch: add # to R1

1111#### go backward 4
1# 1 branch: add 1 to R1
111111#### go backward 6

Note that in our displayed examples we often write the instructions going
down the two columns. Similarly, we can build movem,n for all distinct

7

1##### cases on R1
111111111### empty branch
11111### to 1 branch
11# # branch
11## add # to R2
11## add # to R2

111111#### go backward 6
11# 1: add 1 to R2
11## add # to R2
111111111#### go backward 9
move2,1

1#####111111111###11111###11#11##11##111111####11#11##
111111111####11#####111111###111###1##1111####1#111111####

Figure 2: The program write.

numbers m and n. The official program movem,n is

1m#####111111###111###1n##1111####1n#111111####.

4.2 Comparison and reversal

It is a good exercise to write some programs dealing with string manipula-
tions. One would be to write a program compare with the following property.
When run with x in R1 and y in R2, compare halts with 1 in R1 (and nothing
in any other register) if x = y, and with R1 (and all other registers) empty
if x 6= y.

A better exercise is to write a program that reverses words.

4.3 A program to write a program to write a word

Figure 2 contains a program write with the following property: when write
is started with x in R1 and R2 empty, we eventually halt with a word y =
ϕwrite(x) in R1 and all other registers empty. Moreover, y is a concatenation
of instructions 1# and 1##. So running y writes the original x after whatever
happens to be in R1, and does not touch the other registers. This implies
that for all x,

ϕϕwrite(x)() = x.

The official program is shown at the bottom of Figure 2; the parse is on top.
We use the horizontal line to indicate that move2,1 is concatenated at that
point.

8

4.4 s11

We construct a program s11 which, when when started with a program p in R1
and a word q in R2, and R3 and R4 empty, yields a program ϕs11

(p, q) which,
when started with r in R1, yields the same word as would be obtained when
p is started with q in R1 and r in R2. In particular, when p is a program,

ϕϕ
s1
1
(p,q)(r) = ϕp(q, r). (1)

We take s11 to be

move1,3 |move2,1 |write |move1,2 |ϕwrite(move1,2) |move2,1 |move3,1

We use | as a symbol for concatenation of programs. Note also that the
third of the seven segments is write, the program that we saw in Section 4.3
just above; the fifth is the result of applying that program to move1,2. Then
the following equations show the desired result (1):

ϕs11
(p, q) = move1,2 |ϕwrite(q) | p

ϕmove1,2 | ϕwrite(q) | p(r) = ϕp(q, r)

Incidentally, it turns to be easier to directly program some of the text-
book applications of the sm

n -Theorem than to use the theorem itself. So we
shall not use s11 in the sequel, in particular not in the next section and not
in Section 6 on the Second Recursion Theorem.

4.5 The programs diag and self

This section illustrates self-replicating programs in 1#. We begin with the
following program which we’ll call diag for the rest of this paper. When diag
is run with x in R1, the result is ϕwrite(x) |x in R1. It follows from this that

ϕϕdiag(x)() = ϕϕwrite(x) | x() = ϕx(x). (2)

Here is the informal description of diag:
Move x from R1 into R2, and at the same time put ϕwrite(x) in R3. Move

R3 back to the now-empty R1. Finally, move R2 onto the end of R1.
The way to formalize the “at the same time” is to write one combined

9

loop:

1##### cases on R1
11111111111### empty branch: go 11
111111### 1 branch: go 6
11## #: add # to R2
111# add 1 to R3
111## add # to R3
111## add # to R3

1111111#### go back 7
11# add 1 to R2
111# add 1 to R3
111## add # to R3
11111111111#### go back 11
move3,1

move2,1

One way to get a self-writing program self is to apply this program diag
to diag itself. When we run diag on itself, we get ϕwrite(diag)|diag in R1. So
when we run self on nothing, we first write diag into R1; and second we run
diag. This gives us self, as desired. For a more formal proof, we use (2) with
x = diag:

ϕself() = ϕϕdiag(diag)() = ϕdiag(diag) = self.

One can find the full programs on www.indiana.edu/∼iulg/trm.
Programs like self are often called quines following Douglas Hofstadter

in [3]; there are several web pages devoted to collections of them, for example.
A standard example is to take λ-terms as the programs, β-conversion as the
notion of execution, and then to consider (λx.xx)(λx.xx).

It might be useful to expose the device behind our self-replicating pro-
gram self by rendering it into English. We are interested in “programs”
(sequences of instructions) of a simple form, including instructions to print
various characters, and instructions which accept one or more sequences
of words as arguments, and so on. We’ll allow quotation, and we won’t
attempt to formulate a minimal language, or a formal semantics. We’re
aware of the semantic problems that are being pushed under the rug, but
the point is only to hint at a rendering of diag and self. Perhaps the most
direct example of a self-replicating program would be write me, but this
not immediately translated to 1#. Instead, we want a version of diag, and
we take

write the instructions to write what you see before it (3)

Here “what you see” and “it” refer to the input. So applying this informal
rendering of diag to write me would give

print "w" print "r" print "i" print "t"
print "e" print " " print "m" print "e" write me

10

Applying this version of diag to itself gives a long program which would look
like

print "w" print "r" print "i" print "t" print "e" · · ·
print "r" print "e" print " " print "i" print "t"
write the instructions to write what you see before it

(4)

Executing (4) prints instructions to print (3) followed by (3) itself. This is
(4).

5 Exercises

I have used most of the exercises below as classroom exercises before turning
to Kleene’s Recursion Theorem. As one might expect, some of the problems
can be solved by appealing to the Recursion Theorem. However, the direct
solutions are usually shorter.

1. Write a program which when started on all empty registers writes itself
to R1 and # to R2.

2. Write an infinite sequence of pairwise different programs

p1, p2, . . ., pn, . . .,

such that for all n, running pn with all registers empty gives pn+1 in
R1.

3. Write a self-replicating program that begins with the program to trans-
fer ahead one instruction, 1###.

4. Which programs p have the property that there is a self-replicating
program which begins with p?

5. Write a program s which when run with R2, R3, . . ., initially contain-
ing the empty string, writes s itself into R1 after whatever happens to
be there to begin with.

6. Write a program p with the property that when run on a string q in
R1, p runs and halts with 1 in R1 if q = p, and runs and halts with
R1 empty if q 6= p. (So p “knows itself”.)

7. Write a program p with the property that when run on a program q
in R1, the result is the same as would be the case when q is run with
p in R1. (So program and data have changed roles!) [You will want a
circular interpreter for this.]

11

8. Write two “twin” programs s1 and s2 with the properties that (a)
s1 6= s2; (b) running s1 with all registers empty gives s2 in R1; (c)
running s2 with all registers empty gives s1 in R1.

9. Work out a version of the Busy Beaver problem in this setting.

6 Kleene’s Second Recursion Theorem

Here is our formulation of this fundamental result: Let p be a program, and
consider ϕ

(2)
p . Then there is a program q∗ so that for all r,

ϕq∗(r) = ϕp(q∗, r)

For the proof, let q̂ be as follows (later we set q∗ = ϕq̂(q̂)):

diag |move1,2 |ϕwrite(move1,4) |move2,1 |ϕwrite(move4,2 | p)

We thus have that for all x,

ϕq̂(x) = move1,4 |ϕdiag(x) |move4,2 | p

so that ϕϕq̂(x)(r) = ϕp(ϕx(x), r). (This last point is worth checking in detail;
it uses the fact that diag only uses the first three registers.) Let q∗ = ϕq̂(q̂).
So

ϕq∗(r) = ϕϕq̂(q̂)(r) = ϕp(ϕq̂(q̂), r) = ϕp(q∗, r).

There are also versions of this result for ϕ
(k)
p with k ≥ 3, and the details are

similar.

7 Smullyan’s Double Recursion Theorem

Our final result is Smullyan’s Double Recursion Theorem, a result used by
Smullyan in work on recursion theory connected to the Gödel Incomplete-
ness Theorems. Let p and q be programs. Consider the functions of three
arguments ϕ

(3)
p (a, b, x) and ϕ

(3)
q (a, b, x). There are programs a∗ and b∗ so

that for all x, ϕa∗(x) = ϕp(a∗, b∗, x), and ϕb∗(x) = ϕq(a∗, b∗, x).
We lack the space to exhibit a∗ and b∗ explicitly in terms of p and q

(but Exercise 8 in Section 5 above could be a good first step). One example
application of the Double Recursion Theorem would be to find p and q so
that ϕp(p) = q, ϕp(q) = p, ϕq(p) = q, and ϕq(q) = p|q.

12

8 Using 1#

Several students in my class enthusiastically implemented 1#. Some of their
work has been polished, and it is available at www.indiana.edu/∼iulg/trm
along with other material. The most widely usable is a Java program that
comes with a pleasant interface that allows one to watch registers change as
programs run. Other interpreters come with tools which make it easier to
write programs; so in effect one can write in a slightly-higher-level language
that is translated back to a bona fide 1# program. There also is a universal
program (a circular interpreter) for 1#, that is a 1# program u such that for
all p and q, ϕu(p, q) = ϕp(q).

Acknowledgements

My thanks to Will Byrd and Jiho Kim for numerous comments, corrections,
references, and suggestions.

References

[1] Böhm, Corrado.“On a family of Turing machines and the related pro-
gramming language”, ICC Bull. 3, 187-194, July 1964.

[2] Fitting, Melvin. Computability Theory, Semantics, and Logic Program-
ming. Oxford Logic Guides, 13. The Clarendon Press, Oxford University
Press, New York, 1987.

[3] Hofstadter, Douglas R. Gödel, Escher, and Bach: an Eternal Golden
Braid. Basic Books, Inc. New York, New York.

[4] Jones, Neil. Computer implementation and applications of Kleene’s s-
m-n and recursion theorems. in Y. N. Moschovakis (ed) Logic From
Computer Science, 243–263, Math. Sci. Res. Inst. Publ., 21, 1992.

[5] Minsky, Marvin L. Computation: Finite and Infinite Machines.
Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1967.

[6] Shepherdson, J. C. and Sturgis, H. E. Computability of recursive func-
tions. J. Assoc. Comput. Mach. 10 217–255, 1963.

13

